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Abstract

A large amount of data is necessary to lift the 2D human

pose to the correct 3D pose, but the available public data

is very limited. In particular, since monocular-based al-

gorithms use only limited visual information acquired from

one viewpoint, the amount of data is much smaller than that

of multi-view. To overcome this problem, 2D-3D pair aug-

mentation methods have been proposed, but they mainly fo-

cus on increasing the amount. However, recent research

shows that quality rather than quantity significantly impacts

performance improvement. This paper proposes AugData

Distillation (ADD), which can dramatically reduce the 3D

human pose estimation errors with only a small amount

of augmentation by simultaneously considering the quality

and quantity of training data. Quality distillation selects

core data that significantly contributes to performance im-

provement among all augmented data. The total amount of

augmentation is adjusted through scale distillation. These

processes remove meaningless data and enable the 3D pose

estimator to train core information. We selected TAG-Net

[15] as the baseline model to verify the performance im-

provement in the data-centric method. Although it is not the

top rank in all 3D HPEs, the algorithm achieved the high-

est accuracy in the monocular data-centric method. Exper-

imental results show that our approach reduced a baseline

method’s 3D human pose estimation error by 22% with only

1.6 times augmentation. This means that most of the base-

line model’s augmented data used for training adversely af-

fects performance improvement. A much lower estimation

error can be expected if the ADD is combined with various

latest network architectures.

1. Introduction

3D human pose estimation (HPE) is fundamental in applica-

tions such as action recognition, behavior analysis, human-

computer interaction, image understanding, and context

recognition. Monocular cameras have high ease of use,

but it is difficult to obtain depth information, so self-

Figure 1. t-SNE [21] results of three datasets. As the data com-

ponents change, the distribution shape of the feature space also

changes. The original training data and the corresponding 3D pose

to a particular point (left). Augmented ’magenta’ data for the orig-

inal ’black’ data; 3D poses of meaningless data show a significant

difference from the original data (center). Meaningful ’cyan’ data

remaining after AugData Distillation and the corresponding 3D

pose (right).

occlusion and camera viewpoint change significantly re-

duce estimation accuracy. That means poor generalization

for new poses or unknown environmental conditions. Re-

cent works overcome these challenging problems through

two approaches. One is a model-centric approach, which

improves deep network architecture or learning strategy

to extract and learn more efficient information from given

training data. It introduced a Pictorial structure model

(PSM) [1, 2, 12, 27, 30], a Graph natural network (GNN) [5,

22, 42], a transformer [8, 16, 23, 41, 43, 44], or a diffu-

sion model [32]. Also, it uses attention mechanisms [18]

and temporal information [18, 43] or combines top-down

and bottom-up models. However, since the amount of in-

formation that can be extracted from specific data is lim-

ited, the degree of performance improvement is insignifi-

cant compared to improvement efforts. The other is a data-

centric approach that increases the diversity of training data

through data augmentation methods. 3D human pose es-

timation usually consists of estimating 2D poses from an

RGB image and converting it into 3D poses, which is lift-

ing. Unlike 2D pose estimation, available public data for
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the lifting is very limited. Therefore, data augmentation

methods specialized in 2D-3D pose pair generation are es-

sential to overcome this problem. TAG-Net [15] introduced

evolutionary operators to combine initial poses and gener-

ate large training data. PoseAug [6] utilized additional in-

formation such as camera view and human-scale variation

and alleviated the dependency between joints to expand the

diversity of generated data. However, since these methods

focus only on the quantity rather than the quality of the aug-

mented training data, they include lots of meaningless data

that is unnecessary for learning deep networks.

In this paper, we propose a novel method for selective

data augmentation. Dataset distillation [39] compresses

the entire data into a small amount of representative data.

Meanwhile, our ADD carefully selects core data without

any data transformation. It dramatically reduces the estima-

tion error compared to the baseline methods. Our contribu-

tions are summarized as follows:

• We propose a novel data-centric method that selects only

core data directly related to performance improvement

among augmented data.

• The proposed method is a design that optimizes the qual-

ity and quantity of training data simultaneously, which

increases overall training efficiency.

• Our method achieves meaningful improvement with a

small amount of distilled data in monocular 3D human

pose estimation.

2. Related Works

Model-centric 3D HPE. Given well-annotated data, 3D

human pose estimation methods can be divided into end-

to-end and two-stage manners. The end-to-end manner di-

rectly estimates the 3D pose from a monocular RGB image

without intermediate 2D representation [16, 18, 28, 36, 37].

This manner consists of a single model, but it has a high

computational cost and needs a considerable amount of 3D

pose data for network learning. Two-stage manner esti-

mates 2D pose in RGB image [4, 20, 35] and lifts them

to 3D coordinate [5, 17, 19, 23, 32, 40, 42–44]. Recent

works for 2D human pose estimation show very high accu-

racy. Since the two-stage manner leverages reliable 2D key

points, its 3D pose estimation performance outperforms the

end-to-end manner. However, like the end-to-end manner,

there is not enough 3D human pose data for network learn-

ing. Eventually, in both manners, 3D human pose data be-

came a critical bottleneck for performance improvement. In

other words, if the 3D pose data problem is solved, signifi-

cant improvement is possible.

Data-centric 3D HPE. Data augmentation is a representa-

tive data-centric approach. It improves the generalization

ability of the 3D pose estimator by increasing the diversity

of training data instead of focusing on designing complex

network architectures or learning schemes. Previous works

Figure 2. Overview of the ADD process. It maximizes the quality

of training data and minimizes the total amount of augmentation.

have deformed original training images [31] or created new

images through synthesis [3, 29, 38] to obtain the diver-

sity of images. Recent works have secured the diversity

of 3D pose by modifying the 3D skeleton information, not

the image. TAG-Net [15] generates a large amount of train-

ing data from original 2D-3D pairs by introducing evolu-

tionary operators performing partial skeleton recombination

and joint angle perturbation. Moreover, it limits changes

in joint angle and viewpoint to ensure the plausibility of

data. PoseAug [6] jointly optimizes the 3D pose estimator

and the data augmentor. The augmentor utilizes position,

body size, and viewpoint information for new pose genera-

tion and uses the pose estimator’s error as a feedback sig-

nal. Also, it reduces the mutual dependency between joints

to expand the diversity of the pose. Both TAG-Net [15]

and PoseAug [6] mainly focus on increasing the diversity

and amount of training data. Thus, the meaningless data

generated in the augmentation process limits performance

improvement. Multiple 3D pose hypotheses [11, 13, 33]

represent a similar effect to data augmentation. It computes

the full posterior distribution of the feasible 3D poses for

one 2D pose and generates various 3D hypotheses from the

distribution. However, it does not directly generate new 2D-

3D pair data to learn the lifting network.

From this analysis, we can see that the performance of

both two approaches depends heavily on 3D human pose

data. Expanding the diversity of original training data is un-

doubtedly helpful in solving the data limitations. However,

we should remove the meaningless data generated in the

augmentation process to maximize performance improve-

ment. Our proposed method efficiently selects only core

data directly related to estimation performance among aug-

mented data. Furthermore, the joint optimization of the

quality and quantity of training data drastically reduces 3D

human pose estimation errors.

3. AugData Distillation

3.1. Overall Structure

Knowledge distillation [7, 9, 26] generates a lightweight

student network that imitates the core characteristics of a
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Figure 3. Changes in the lifting learning process. The model learning process with existing data augmentation (left). After applying the

proposed ADD, the model learning process creates refined augmented data and re-learns models using pre-trained models and original data

(right).

teacher network. On the other hand, our ADD generates

a high-quality training dataset. The high-quality dataset

consists of only meaningful data that is directly helpful in

improving performance. ADD is entirely independent of

other processes for 3D pose estimation, as shown in Fig-

ure 2. Therefore, the proposed idea can be easily combined

with various lifting network architectures and pose augmen-

tation methods. Figure 2 shows the overall process of our

method. Pose Pair Generation augments original pose data,

and Plausibility Verification determines whether the joint

angles of the generated pose are valid. Quality Distilla-

tion intensively develops this verification part to select only

meaningful data. In other words, the goal of the proposed

method is to maximize the quality of the training dataset.

Lifting Network Training learns the deep network using the

distilled dataset. Scale Distillation adjusts the number of

iterations for pose generation to minimize the total amount

of augmentation.

3.2. Quality Distillation

Diversity. If data diversity increases, then the generaliza-

tion ability of a lifting network for new poses also im-

proves. To evaluate the diversity of augmented 3D poses,

we generate a reference distribution from the original train-

ing data (Figure 3). The reference distribution represents

how the original training data is scattered in the feature

space. Therefore, we can evaluate how well the augmented

new pose data fits into that distribution to assess the char-

acteristics of the new data. In other words, the reference

distribution serves as a criterion for judging how similar or

new the new pose data is compared to the existing data. The

reference distribution is created only once at the beginning

and is not updated. The detailed process for implementing

it is as follows: Each pose data consists of a 51-dimensional

vector; 17 joints × three coordinates. For efficient cal-

culation, we reduce its dimension to 2-dimensions using

PCA [34]. Moreover, we use a Variational Bayesian Gaus-

sian Mixture Model (VBGMM) to approximate the refer-

ence distribution. Since the model automatically sets the

number of components based on the Dirichlet process prior,

it is suitable for dealing with dynamic distribution. Data

diversity is the probability that the augmented 3D pose be-

longs to the reference distribution and is defined as

probi = p(Vi|θD), (1)

where Vi is a 2-dimensional vector of ith augmented pose

and θD is the parameters of the reference distribution. The

low probability value means that the augmented pose is less

similar to the poses of the original training data.

Rationality. Data augmentation generates new 2D-3D pose

pairs. To evaluate the rationality of the augmented 3D pose,

a lifting model already trained is used as a reference model

(Figure 3). Since obtaining a model with perfect perfor-

mance is unrealistic, we define the lifting model trained

on the original data as the reference model. The reference

model is a criterion for judging how well the augmented

data’s 2D pose matches the corresponding 3D pose. In other

words, the reference model can be used to approximately

validate errors that may occur when projecting augmented

3D poses into 2D poses while acquiring new training data.

Like the reference distribution, the reference model is cre-

ated only once at the beginning and is not updated. The

detailed process for implementing it is as follows: We use

the augmented 2D pose to input the reference model and

perform the lifting. We compute the error between the ref-

erence model’s output and the augmented 3D pose that acts

as a virtual ground truth as

errori = |f(X2d
i
, θM )−X3d

i
|, (2)

where (X2d
i

, X3d
i

) is the ith augmented pose pair, f is the

function of a reference model, and θM is the parameters of
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Table 1. Comparison of 3D human pose estimation performance in human3.6M data on 2D pose detector input.

Protocol #1 Dir. Disc. Eat Greet Phone Photo Pose Pur. Sit SitD. Smoke Wait WalkD. Walk WalkT. Avg.

TAG-Net [15] 45.6 44.6 49.3 49.3 52.5 58.5 46.4 44.3 53.8 67.5 49.4 46.1 52.5 41.4 44.4 49.7

ADD 37.2 45.3 38.5 43.6 45.1 54.6 45.0 45.4 47.1 59.9 44.4 46.4 50.9 38.8 41.1 45.5

(↓18.4%) (↑1.6%) (↓21.9%) (↓11.6%) (↓14.1%) (↓6.7%) (↓3.0%) (↑2.5%) (↓12.5%) (↓11.3%) (↓10.1%) (↑0.7%) (↓3.0%) (↓6.3%) (↓7.4%) (↓8.5%)

Protocol #2 Dir. Disc. Eat Greet Phone Photo Pose Pur. Sit SitD. Smoke Wait WalkD. Walk WalkT. Avg.

TAG-Net [15] 34.2 34.6 37.3 39.3 38.5 45.6 34.5 32.7 40.5 51.3 37.7 35.4 39.9 29.9 34.5 37.7

ADD 25.8 32.2 28.2 32.5 31.4 39.9 30.1 32.5 34.0 43.7 32.8 31.9 37.4 28.3 30.7 32.8

(↓24.6%) (↓6.9%) (↓24.4%) (↓17.3%) (↓18.4%) (↓12.5%) (↓12.8%) (↓0.6%) (↓16.0%) (↓14.8%) (↓13.0%) (↓9.9%) (↓6.3%) (↓5.4%) (↓11.0%) (↓13.0%)

Table 2. Comparison of results when ground truth 2D keypoints are used as inputs for the lifting model.

Protocol #1 (2D-GT) Dir. Disc. Eat Greet Phone Photo Pose Pur. Sit SitD. Smoke Wait WalkD. Walk WalkT. Avg.

TAG-Net [15] 39.7 47.1 43.8 46.3 49.3 57.2 45.3 50.3 50.3 81.3 49.6 47.3 54.4 40.3 43.3 49.7

ADD 34.0 37.4 32.3 38.0 38.1 48.3 38.6 34.4 37.3 45.6 37.4 37.8 39.7 29.9 33.0 37.5

(↓14.4%) (↓20.6%) (↓26.3%) (↓17.9%) (↓22.7%) (↓15.6%) (↓14.8%) (↓31.6%) (↓25.8%) (↓43.9%) (↓24.6%) (↓20.1%) (↓27.0%) (↓25.8%) (↓23.8%) (↓24.5%)

Protocol #2 (2D-GT) Dir. Disc. Eat Greet Phone Photo Pose Pur. Sit SitD. Smoke Wait WalkD. Walk WalkT. Avg.

TAG-Net [15] 30.2 35.4 31.1 35.0 34.6 41.9 32.9 34.3 36.5 50.9 36.0 34.9 40.0 30.7 34.1 35.9

ADD 24.1 27.5 24.7 28.9 28.0 36.8 27.2 25.4 28.4 34.6 28.7 27.2 30.6 21.7 25.9 28.0

(↓20.2%) (↓22.3%) (↓20.6%) (↓17.4%) (↓19.1%) (↓12.2%) (↓17.3%) (↓25.9%) (↓22.2%) (↓32.0%) (↓20.3%) (↓22.1%) (↓23.5%) (↓29.3%) (↓24.0%) (↓22.0%)

the model. A high error means that the augmented 2D-3D

pose pair is unreasonable from the lifting model’s perspec-

tive.

Score. Finally, we compute the score to measure the mean-

ingless degree of augmented poses. The score of ith aug-

mented pose considers the rationality and diversity of each

augmented pose simultaneously. It is defined as a weighted

linear combination of (1−probi) and error′
i
, where error′

i

means a normalized value between 0 and 1. The high score

value means there is a high probability that it is meaningless

data. Through multi-scale search and evaluation, we select

80% of augmented data with low scores.

3.3. Scale Distillation

The data augmentation is repeated until the total amount

of the training dataset reaches the user-defined target value.

For example, TAG-Net secures 5 times the initial training

data. Each iteration generates a new augmented distribu-

tion by applying the augmentation algorithm, and the output

is set as a new initial distribution. In our process, Quality

distillation is added after the augmentation algorithm, and

the distilled distribution becomes a new initial distribution

in the next iteration. We assumed that the iterations might

again generate redundant data after our distillation.

We performed a multi-scale search to find an optimal

multiplier showing the best result, with Quality distillation

fixed at 80%. The initial search scale is one, which is re-

duced to 1/10. This means we compared augmented results

from 1.0 to 10.0 times and performed the search from 0.1

to 0.9, giving the best N.0 time. In our experiment, we per-

formed the search in 3 steps up to a 1/100 scale. The best

performance improvement was achieved at 1.60 times the

original dataset. It proves that a small number of high-

quality data is much more effective in improving perfor-

mance than a large amount of low-quality data. If we in-

troduce Bayesian optimization to optimize the quality and

scale simultaneously, we can find more precise values of

two hyper-parameters.

4. Experiments

4.1. Dataset and Evaluation Metrics

We used the Human3.6M [10] dataset for quantitative per-

formance comparison with previous methods, which is most

commonly used in 3D human pose estimation. We followed

the same data configuration and testing processes as the

previous methods [6, 13–15, 22, 24, 25, 33]. Human3.6M

consists of 3.6 million 3D human poses and corresponding

images taken in an indoor environment, and there are 17

scenarios of 11 professional actors. In addition, accurate

2D and 3D joint coordinate values obtained from the four

calibrated cameras are provided. Skeleton topology, repre-

senting the 3D human body, consists of 17 joints. S1, S5,

S6, S7, and S8 are used for the training, and S9 and S11

are used for the test. All estimation errors are measured in

two ways: Protocol #1 and Protocol #2. Protocol #1 is cal-

culated in mm units through Mean Per Joint Position Error

(MPJPE) without a separate rigid alignment. Protocol #2

is described as Procrustes Analysis MPJPE (P-MPJPE, PA-

MPJPE) because it includes the rigid alignment based on a

root joint. Each Protocol uses two inputs: ground truth 2D

keypoints and the results of 2D joint detection.

4.2. 3D HPE Results

We compared the estimation error (mm) and computed the

error reduction degree (%). As shown in Table 1 and Ta-

ble 2, the proposed method reduced the estimation error of

the baseline method to a considerable extent, from 8.5% to
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Table 3. Comparison with various data-centric approaches. Items that do not contain the detailed value in the paper are marked as ‘–‘.

Protocol #1 Dir. Disc. Eat Greet Phone Photo Pose Pur. Sit SitD. Smoke Wait WalkD. Walk WalkT. Avg.

VNect [24] 62.6 78.1 63.4 72.5 88.3 63.1 74.8 106.6 138.7 78.8 93.8 73.9 55.8 82.0 59.6 80.5

SIM [22] 51.8 56.2 58.1 59.0 69.5 78.4 55.2 58.1 74.0 94.6 62.3 59.1 65.1 49.5 52.4 62.9

WSGAN [14] 62.0 69.7 64.3 73.6 75.1 84.8 68.7 75.0 81.2 104.3 70.2 72.0 75.0 67.0 69.0 73.9

MDN [13] 43.8 48.6 49.1 49.8 57.6 61.5 45.9 48.3 62.0 73.4 54.8 50.6 56.0 43.4 45.5 52.7

MultiPoseNet with Oracle [33] 48.6 54.5 54.2 55.7 62.6 72.0 50.5 54.3 70.0 78.3 58.1 55.4 61.4 45.2 49.7 58.0

PoseAug [6] - - - - - - - - - - - - - - - 50.2

TAG-Net [15] 45.6 44.6 49.3 49.3 52.5 58.5 46.4 44.3 53.8 67.5 49.4 46.1 52.5 41.4 44.4 49.7

GraphMDN [25] 40.0 43.2 41.0 43.4 50.0 53.6 40.1 41.4 52.6 67.3 48.1 44.2 44.9 39.5 40.2 46.2

ADD 37.2 45.3 38.5 43.6 45.1 54.6 45.0 45.4 47.1 59.9 44.4 46.4 50.9 38.8 41.1 45.5

Protocol #2 Dir. Disc. Eat Greet Phone Photo Pose Pur. Sit SitD. Smoke Wait WalkD. Walk WalkT. Avg.

SIM [22] 39.5 43.2 46.4 47.0 51.0 56.0 41.4 40.6 56.5 69.4 49.2 45.0 49.5 38.0 43.1 47.7

WSGAN [14] 38.5 41.7 39.6 45.2 45.8 46.5 37.8 42.7 52.4 62.9 45.3 40.9 45.3 38.6 38.4 44.3

MDN [13] 35.5 39.8 41.3 42.3 46.0 48.9 36.9 37.3 51.0 60.6 44.9 40.2 44.1 33.1 36.9 42.6

MultiPoseNet with Oracle [33] 35.3 35.9 45.8 42.0 40.9 52.6 36.9 35.8 43.5 51.9 44.3 38.8 45.5 29.4 34.3 40.9

PoseAug [6] - - - - - - - - - - - - - - - 39.1

TAG-Net [15] 34.2 34.6 37.3 39.3 38.5 45.6 34.5 32.7 40.5 51.3 37.7 35.4 39.9 29.9 34.5 37.7

GraphMDN [25] 30.8 34.7 33.6 34.2 39.6 42.2 31.0 31.9 42.9 53.5 38.1 34.1 38.0 29.6 31.1 36.3

ADD 25.8 32.2 28.2 32.5 31.4 39.9 30.1 32.5 34.0 43.7 32.8 31.9 37.4 28.3 30.7 32.8

Figure 4. 3D human pose estimation error before and after ADD.

The small figure on the upper left shows the average estimation

errors, and the large figure shows the detailed estimation error for

each joint of the last Protocol. A solid line means a degree of

reduction in estimation error. The larger the error, the greater the

degree of improvement.

24.5%. When using the results of a 2D pose detector as in-

put, the improvement effect varies depending on the type of

pose. Specifically, based on protocol #1 in Table 1, there

was a significant improvement in most poses, but in some

poses where the original 3D pose estimation accuracy was

not high, the lifting results were worse. Protocol #2 did not

show any cases where the results were worse, but overall, it

showed a similar pattern to protocol #1. On the other hand,

when using ground-truth values as input, as shown in Ta-

ble 2 and Figure 4, significant performance improvements

were observed in all poses regardless of the protocol, with

a much greater improvement than in Table 1. Combining

these results, we can conclude that (1) the higher the origi-

nal accuracy of the pose, the greater the improvement effect,

and (2) the higher the accuracy of the input 2D pose, the

greater the performance improvement effect. From a dif-

ferent perspective, end-to-end approaches have the advan-

tage that the final 3D pose estimation performance is inde-

pendent of the 2D pose results, while two-stage approaches

have a limitation in that the final 3D pose estimation perfor-

mance depends on the performance of the 2D pose detector.

The performance comparison with the existing data-centric

approaches is shown in Table 3. The results are arranged in

the order in which the average error of Protocol #2 is large.

Our method of applying ADD shows the lowest estimation

error.

Only the results of protocols presented in the paper were

included in the comparison. Some methods showed differ-

ent sorting results between the two protocols. The group

at the top of Table 3 with large estimation errors showed

a different performance order depending on the protocol,

but the order was consistent regardless of the protocol for

the lower group with smaller estimation errors. When the

proposed method was applied, it was found that the perfor-

mance improvement was greater when using ground-truth

values as input. Similar to the previous results, this means

that the effectiveness of the proposed method increases as

the accuracy of the input 2D pose increases. From Table 3,

the following conclusions can be drawn; (1) For poses with

high estimation accuracy, the improvement depends on the

type of algorithm rather than the measurement method, and

for poses with low estimation accuracy, the improvement

changes depending on the measurement method. In other

words, difficult poses must be intensively improved to con-

trol the overall performance pattern. (2) To improve the

results of a model consisting of 2 stages, maximizing the

lifting input, that is, the 2D pose accuracy is helpful. End-

to-end methods that directly estimate 3D pose from images

do not have this issue but may have difficulty finding cor-
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Figure 5. Changes in performance improvement before and af-

ter the quality and scale distillation. Even if a random hyper-

parameter was used, applying each factor greatly improved per-

formance. Additional performance improvements were possible

by applying optimal parameters.

relations with the input when backward analyzing the final

result.

Because the lifting network architecture of the baseline

method is simple, we expect better results if we change

it to the latest network architectures among model-centric

approaches. Also, data generation efficiency and network

training efficiency greatly increase when our method is ap-

plied. The number of iterations required to generate aug-

mented data decreased to 1/3, the total amount of augmen-

tation decreased to 1/2, and the training time decreased to

1/2.

4.3. Ablation Study

We performed the ablation study based on Protocol #2 with

2D ground truth input (Figure 5). Through the test, we

can separate the effect of each factor’s contribution to per-

formance improvement. When the AugQuaility distillation

was applied with a random hyper-parameter value, the esti-

mation error decreased by 8.8% to the baseline model. The

error decreased by an additional 4.3% when we optimized

the hyper-parameter value. When scale distillation is ap-

plied using a random hyper-parameter value, the estimation

error further decreases by 6.5%. Furthermore, the error was

reduced by an additional 4.6% after the hyper-parameter op-

timization. In summary, the quality distillation resulted in a

performance improvement of 12.7% compared to the base-

line model, and the scale distillation provided an additional

improvement of 10.7% for the quality distillation. If we

apply only scale distillation, the estimated error naturally

increases. This is because it is the same as simply reducing

the amount of data without considering the quality of the

data used for learning. If you randomly select 1.6 times the

amount of original data from the entire augmented training

data, in the worst case, only a very small number of origi-

nal and augmented data that are meaningless in improving

performance will be selected. As a result, performance may

decrease compared to the baseline model. In other words,

quality and scale distillation create synergy when used to-

gether, and quality should be considered first.

4.4. Qualitative Analysis

We performed t-SNE [21] on training data samples to ana-

lyze the distribution change in feature space. We compared

the distributions before and after ADD (Figure 6, 7). The

difference is revealed in the 3D feature space. Data points

are more concentrated around the center point of each clus-

ter after ADD. We found that the meaningful data that helps

improve the lifting model’s performance has a geometri-

cally close relationship in the feature space. This means

that filling in missing data while maintaining the shape or

pattern of the existing distribution is more helpful in in-

creasing model accuracy or reducing estimation errors than

randomly increasing the diversity of original data.

Also, we compared three groups of 3D human poses

(Figure 8). The first group is pose samples randomly se-

lected from the original data. The second group is meaning-

ful pose samples selected as core data through ADD. Most

of them slightly modify the poses of the original data. The

third group is samples judged as meaningless poses through

ADD and excluded from the final network training. It can

be seen that the ratio of samples showing a different appear-

ance from the original data is large. As with feature space,

ADD does not ignore the increase in diversity in determin-

ing the final training data, but most of it contributes to main-

taining the consistency of the pose distribution included in

the existing training data.

5. Conclusion

Data augmentation is useful, especially when training data

is insufficient. Previous studies were proposed mainly from

a quantitative point of view. Recent studies have proved

that data quality is more important than the amount of data.

Our proposed AugData Distillation is the first study in the

field of 3D human pose estimation to maximize the qual-

ity of augmented data while minimizing the total amount of

augmentation. Our method significantly reduced 3D pose

estimation error. Training efficiency also increased, includ-

ing data generation time and training time. The experimen-

tal results prove that small but high-quality data is a good

choice for considerable performance improvement.

Limitations. While ADD selects only data directly re-

lated to performance improvement, it depends on the ref-

erence model’s architecture. Therefore, if the backbone

model changes, the distilled dataset and the amount of per-

formance improvement may vary. This means it is not an

optimal dataset utterly independent of the model.

Future directions. Further verification is needed to deter-

mine whether optimal subset generation is possible by com-

bining various SOTA backbone architectures. Additionally,

ADD can be applied to end-to-end methods to eliminate the

dependence on the 2D pose given as input for lifting.
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Figure 6. Training data distribution represented on the 2D feature space through t-SNE [21]. Purple means augmented training data,

and blue means distilled training data after ADD. We randomly selected 5% of the samples from each dataset. We performed t-SNE by

repeatedly sampling several times to analyze the shape pattern more objectively.

Figure 7. 3D distribution representation of two different training datasets through t-SNE [21]. Samples were selected under the same

conditions as in Figure 6. The range of each axis was automatically adjusted according to the scale of the cluster. After ADD, it can be

seen that the cluster density around the center has increased.
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Figure 8. Examples of pose data for three groups: original data, core data after ADD, and meanless data. The poses of original data usually

show a pattern in which only arms and legs move while standing upright (top). Meaningful poses judged to help improve performance

show a pattern similar to the original poses (center). Meaningless poses judged by redundant data unrelated to performance improvement

often show abnormal patterns: handstands and extreme joint deformation (bottom). Some of them are poses that people can take. However,

if the pattern does not exist in the validation and test data, it is classified as a meaningless pose.
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