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Abstract

Dataset Distillation (DD) is a promising technique to
synthesize a smaller dataset that preserves essential infor-
mation from the original dataset. This synthetic dataset can
serve as a substitute for the original large-scale one, and
help alleviate the training workload. However, current DD
methods typically operate under the assumption that the
dataset is unbiased, overlooking potential bias issues within
the dataset itself. To fill in this blank, we systematically
investigate the influence of dataset bias on DD. Given that
there are no suitable biased datasets for DD, we first con-
struct two biased datasets, CMNIST-DD and CCIFAR10-DD,
to establish a foundation for subsequent analysis. Then we
utilize existing DD methods to generate synthetic datasets
on CMNIST-DD and CCIFAR10-DD, and evaluate their
performance following the standard process. Experiments
demonstrate that biases present in the original dataset sig-
nificantly impact the performance of the synthetic dataset
in most cases, which highlights the necessity of identifying
and mitigating biases in the original datasets during DD.
Finally, we reformulate DD within the context of a biased
dataset. Our code along with biased datasets are available at
https://github.com/yaolu-zjut/Biased-DD.

1. Introduction
Recently, Dataset Distillation (DD) has attracted widespread
attention within the deep learning community due to its
potential to alleviate data burden and enhance training ef-
ficiency. It was first introduced by Wang et al. [39], with
the objective of condensing a large dataset into a small,
synthetic one such that models trained on the latter yield
comparable performance. After that, lots of subsequent
study [3, 5, 8, 24, 25, 27, 32, 43, 47, 49] has proposed
a series of methods to improve the performance of syn-
thetic datasets, including gradient matching [19, 45, 47],
trajectory matching [3, 5, 8, 9] and distribution matching
approaches [32, 38, 46, 48]. Despite achieving significant
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improvements, existing DD methods usually operate under
the presupposition that the dataset is unbiased, overlooking
potential issues within the dataset itself. However, in re-
ality, datasets can be fraught with various problems, such
as bias [11, 18, 35], imbalance [6, 16], label noise [2, 34],
and missing values [10, 12], which can significantly affect
the reliability and effectiveness of machine learning models
and algorithms trained on these datasets. So, what happens
when DD encounters dataset issues? How do dataset issues
affect DD? Yet, there hasn’t been research (either empirical
or theoretical) that can answer this question.

To fill in this blank, we aim to investigate the influence of
dataset issues on DD. In this paper, we concentrate on dataset
bias, which arises when unintended attributes (i.e., bias at-
tributes) are highly correlated with the label attribute within
the dataset. For example, many images labeled as “camel”
may have a “desert” background, creating an unintentional
correlation. In this way, models mistakenly associate “camel”
with “desert” instead of learning the actual characteristics of
a camel. In this case, the desert is a dataset bias.

First of all, we create two biased datasets for DD, named
CMNIST-DD and CCFAR10-DD, following the instructions
of Nam et al. [26]. Each dataset consists of 6 training sets
with varying biased ratios (0%, 10%, 50%, 80%, 95% and
100%) and 1 unbiased testing set. We hope that these datasets
can facilitate subsequent analysis on biased DD. Then we
use several representative DD methods [45–47] to generate
synthetic datasets on CMNIST-DD and CCIFAR10-DD and
evaluate their performance with the default parameter setting
in the original papers. Experimental results demonstrate
that dataset bias does affect DD in most cases. Therefore,
it is essential to consider potential biases in datasets during
DD. In view of this, we further provide a mathematical
definition of DD with biased datasets, which we termed
“biased DD” below. Compared to vanilla DD [3, 24, 27, 47,
49], which aims to generate a small synthetic dataset that
preserves as much information as possible from the original
dataset, biased DD emphasizes unbiased attributes instead
of the whole samples while minimizing the impact of biased
attributes. We leave the specific implementation of biased
DD to future work.

In summary, we emphasize our contributions as follows:
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• We propose a novel distillation scenario: distill valid infor-
mation of large biased training sets into small, synthetic
ones. To the best of our knowledge, We are among the few
who consider dataset biases during DD.

• We create two biased datasets, named CMNIST-DD and
CCFAR10-DD, to establish a foundation for subsequent
analysis and the design of future debiased DD methods.

• Having obtained CMNIST-DD and CCFAR10-DD, we
conduct comprehensive experiments on them and conclude
that dataset biases can seriously affect the performance
of DD in most cases, which urgently calls for bias miti-
gation strategies specifically tailored for DD. Besides, we
redefine DD when distilling biased datasets and leave the
specific implementation to future work.

2. Related Work
In this section, we briefly overview various dataset issues
and existing work on DD.

Dataset Issues. Despite deep learning has achieved re-
markable success in various fields [1, 29, 30], the datasets
used to train these models contain many issues that cannot
be ignored. One critical issue is dataset bias [11, 18, 35, 44],
which arises when unintended attributes are highly correlated
with the label. Such bias can lead to models that trained on
these datasets producing inaccurate or unfair predictions.
Another critical issue is data imbalance [20, 23, 28], where
certain classes are overrepresented in the dataset, resulting in
models skewed towards those majority classes and perform-
ing poorly on minority classes. Additionally, due to the ex-
pensiveness of the labeling process or difficulty of correctly
classifying data (even for the experts), label noise [2, 34]
becomes another common problem, which severely degrades
the generalization performance of models. Missing values
is also a common issue often attributed to human error, ma-
chine error, etc., and can cause performance degradation and
data analysis problems.

Dataset Distillation, a method of compressing large
datasets into smaller ones to improve training efficiency,
was initially introduced by Wang et al. [39]. After that,
many subsequent studies have introduced various match-
ing losses to improve the performance of synthetic datasets.
For example, DC [47], DSA [45] and IDC [19] are pro-
posed to match gradients between synthetic and original
samples. MTT [3], LCMat [33], FTD [8], TESLA [5] and
DATM [15] introduce a trajectory matching paradigm to
minimize the loss of training trajectories between synthetic
and original datasets. Different from matching in parameter
space, DM [46], CAFE [38], IDM [48] and DataDAM [32]
use the feature space as the match proxy, and CLoM [25]
utilizes pre-trained models to enhance the performance and
cross-architecture generalization of synthetic datasets. Be-
sides, DD has found extensive applications across various
domains, including continual learning [14, 41], privacy pro-

tection [7, 36], federated learning [40, 42] and recommender
systems [31, 37].

Despite existing studies have demonstrated the effective-
ness of DD and its application across various fields, they all
hinge on the assumption of an unbiased dataset. Our study
is dedicated to exploring DD under dataset bias, a topic that
stands orthogonal to, yet distinct from, existing study. To
the best of our knowledge, prior to our work, only Cui et
al. [4] consider dataset bias during DD. Specifically, they
introduce a sample reweighting scheme that utilizes kernel
density estimation to reduce bias in DD.

3. Preliminaries

In this section, we present the formulation of dataset bias
(Sec. 3.1) and vanilla DD (Sec. 3.2).

3.1. Definition of Dataset Bias

Dataset bias is a dataset problem that occurs when unin-
tended bias attributes hold a substantial correlation with the
target attribute within the training dataset. To be specific,
suppose x is a biased image sampled from a dataset with
its corresponding label y, z is the attributes extracted from
x. Among these attributes, zg denotes the attribute that is
essential for predicting a target label y, while zb denotes the
attribute that is less essential, but has a strong correlation
with y. Since zb is easier for the model to learn compared to
zg [26], the model becomes biased by overly exploiting zb
instead of zg when trained on the biased dataset, failing to
predict the samples which do not contain zb.

For instance, many images labeled as “camel” may con-
tain a “desert” background. This unintentional correlation
will mislead models into associating “camel” with “desert”
instead of learning the actual characteristics of a “camel”.
Samples that have a strong correlation (like “camel in the
desert”) are called bias-aligned samples, while samples
that have a weak correlation (like “camel on the grass”) are
termed bias-conflicting samples. Finally, the biased rate
of the dataset can be calculated by Equation (1), where Nba

and Nbc denote the number of bias-aligned samples and
bias-conflicting samples respectively.

Biased Rate =
Nba

Nbc +Nba
(1)

3.2. Definition of Vanilla DD

Vanilla DD is built on the assumption of an unbiased dataset.
Its goal is to generate a small synthetic dataset that retains
as much information as possible from the original dataset.

Assume that we are given a large training set T =

{(xi, yi)}||T |
i=1, the synthetic dataset S = {(x̂i, yi)}||S|

i=1

(|S| ≪ |T |), generated by vanilla DD, can be obtained
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Figure 1. Visualizations of bias-conflicting samples and bias-aligned samples. Figure (a) and (f) visualize the bias-conflicting samples
in CMNIST-DD and CCIFAR10-DD, respectively. Figure (b)-(e) and (g)-(j) visualize the bias-aligned samples with various severities
in CMNIST-DD and CCIFAR10-DD, respectively. Severity increases from top to bottom. As for CCIFAR10-DD, we add 10 types of
corruptions to 10 categories of CIFAR10. Specifically, “snow” for “airplane”, “frost” for “automobile”, “fog” for “bird”, “brightness” for
“cat”, “contrast” for “deer”, “spatter” for “dog”, “elastic” for “frog”, “JPEG” for “horse”, “pixelate” for “ship” and “saturate” for “truck”.
Best viewed in color.

by solving the following minimization problem:

min
S

D(S, T ), (2)

where D is a task-specific matching loss.

4. Dataset Bias in Synthetic Datasets
4.1. Biased Dataset Preparation

Although biased datasets such as Colored MNIST and Cor-
rupted CIFAR10 [26] already exist, these datasets exhibit
high levels of bias (biased ratio: 95.0%, 98.0%, 99.0% and

99.5%), which is not conducive to comprehensively analyz-
ing the impact of dataset bias on DD. To this end, we con-
struct two biased datasets, CMNIST-DD and CCFAR10-DD,
following the instructions of Nam et al. [26]. Specifically,
as for CMNIST-DD, we select ten distinct colors and inject
each color with random perturbation into the foreground
of each digit of MNIST [22]. By adjusting the number of
bias-aligned samples in the training set, we obtain six dif-
ferent datasets with the ratio of bias-aligned samples of 0%,
10%, 50%, 80%, 95% and 100%. As for CCFAR10-DD,
we utilize a set of protocols [17] for corruption and inject
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Figure 2. Visualizations of synthetic datasets generated by various DD methods on CMNIST-DD. All experiments are conducted at a severity
level of 4.

them into CIFAR10 [21]. Specifically, “snow” for “airplane”,
“frost” for “automobile”, “fog” for “bird”, “brightness” for
“cat”, “contrast” for “deer”, “spatter” for “dog”, “elastic”
for “frog”, “JPEG” for “horse”, “pixelate” for “ship” and
“saturate” for “truck”. CCFAR10-DD also has six differ-
ent datasets with their correlation ratios as in CMNIST-DD.
Finally, a parameter, severity, is introduced to regulate the
intensity of disturbance on CMNIST-DD and CCFAR10-DD
datasets. Figure 1 exhibits the bias-aligned samples under
severity=1-4 for CMNIST-DD and CCFAR10-DD.

4.2. Experimental Setups

Having obtained CMNIST-DD and CCFAR10-DD, we next
utilize them as the original dataset and perform DD on them.
In this paper, we select three representative DD methods for
experiments: gradient-matching based DC [47], DSA [45]
and distribution-matching based DM [46].

Specifically, DC aligns the training gradients derived from
synthetic samples with those obtained from original samples.
Given a model with parameters θ, the optimization process
can be expressed as:

min
S

σ (∇θL(θ;S),∇θL(θ; T )) , (3)

where L(·; ·) denotes the training loss and σ(·; ·) represents

the distance measure. On the basis of DC, DSA further
applies data augmentation techniques to improve the perfor-
mance of synthetic datasets:

min
S

σ
(
∇θL(A(S, ωS), θ),∇θL(A(T , ωT ), θ)

)
, (4)

where A is a family of image transformations such as crop-
ping, color jittering and flipping that are parameterized with
ωS and ωT for synthetic and real training sets respectively.
DM aligns the feature distributions of synthetic and real train-
ing sets using maximum mean discrepancy [13] in sampled
embedding spaces:

min
S

∥ 1

|T |

|T |∑
i=1

f(θ;A(xi, ω
T ))− 1

|S|

|S|∑
i=1

f(θ;A(si, ω
S))∥2,

(5)
where f(·; ·) is the feature extraction function.

Implementation Details. In this paper, we use the default
hyperparameter settings of DC, DSA and DM1 to synthesize
datasets and evaluate their performance. As for evaluat-
ing the original CMNIST-DD and CCIFAR10-DD, we set
the batch size, weight decay, epoch and momentum to 256,
0.0005, 150 and 0.9, respectively. The optimizer is set as

1https://github.com/VICO-UoE/DatasetCondensation
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Figure 3. Visualizations of synthetic datasets generated by various DD methods on CCIFAR10-DD. All experiments are conducted at a
severity level of 4.

SGD, with an initial learning rate of 0.01. The learning rate
is decayed by a factor of 0.1 at epochs 50 and 100. Besides,
we repeat each experiment 3 times and report the mean and
standard deviation.

4.3. Experiments

We use the default hyperparameter settings of DC, DSA and
DM to synthesize datasets (50 images per class) on CMNIST-
DD and CCIFAR10-DD. Specifically, we use datasets with
biased ratios of 0 and 1, at a severity level of 4 to conduct
experiments. For clearer visualization, we select a subset
of samples from the synthetic dataset and visualize them.
Figure 2 and Figure 3 exhibit the visualizations of synthetic
datasets generated by various DD methods on CMNIST-DD
and CCIFAR10-DD, respectively. We find that when the
biased ratio is 0, digits in the same class have completely
different colors. However, when the biased ratio is 1, digits
in the same class share the same color, which reveals that the
color attribute has indeed been encoded into the synthetic
datasets as a significant feature. As for CCIFAR10-DD,
synthetic datasets generated from the biased dataset exhibit
less diversity and richness compared to those derived from
the unbiased dataset. We believe this phenomenon can be
attributed to the biases in the original datasets that skew the
distribution of features.

After that, we generate corresponding synthetic datasets
using datasets with different biased ratios (0%, 10%, 50%,
80%, 95%, 100%) and evaluate their performance on an un-
biased test set. Furthermore, we evaluate the performance of
the model trained on the original dataset with various biased
ratios as a control. As shown in Tab. 1, we observe that
when the biased ratio is relatively low, the performance im-
pact on synthetic CMNIST-DD is minimal. In other words,
the performance of the synthetic dataset is relatively similar
to that of the original CMNIST-DD. However, as the biased
ratio increases (≥ 50%), the performance disparity between
the synthetic dataset and original CMNIST-DD is gradually
increasing, which means DD is affected by dataset biases.
When the biased ratio reaches 100%, the performance on the
synthetic dataset experiences a dramatic decline, but the per-
formance gap between the synthetic dataset and the original
CMNIST-DD narrows significantly. As for CCIFAR10-DD,
when the biased ratio is below 80%, the performance gap
between the synthetic and original datasets is quite large,
which means dataset biases do affect DD. However, when
the biased ratio exceeds 95%, the performance of the syn-
thetic dataset even higher than that of the original dataset.
This phenomenon indicates that DD can retain more useful
information of the original dataset under extreme bias rates
(nearly 100%), offering a brand new perspective into the
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Dataset Method
Ratio of biaseds-aligned samples

0% 10% 50% 80% 95% 100%

CMNIST-DD
Full set 99.49±0.02 99.49±0.02 99.29±0.01 98.50±0.05 95.22±0.11 8.89±0.50

DC 97.33±0.11 97.72±0.12 93.77±0.30 86.87±1.20 65.10±2.26 0.23±0.18
DSA 98.08±0.10 98.18±0.06 97.26±0.04 95.34±0.10 84.29±0.90 1.44±0.14
DM 97.42±0.02 97.32±0.04 94.03±0.32 74.15±0.09 12.92±0.53 6.45±0.91

CCIFAR10-DD
Full set 73.77±0.35 72.86±0.12 67.13±0.36 55.02±0.18 37.34±0.36 24.55±0.72

DC 41.68±0.17 41.57±0.47 36.76±0.43 29.70±0.11 27.61±0.36 25.99±0.48
DSA 49.52±0.29 48.72±0.50 42.86±0.35 37.45±0.44 34.24±0.61 33.31±0.46
DM 52.29±0.51 52.54±0.25 47.47±0.73 42.13±0.21 38.23±0.47 36.68±0.15

Table 1. Performance of synthetic datasets (IPC=50) generated by different DD methods on CMNIST-DD and CCIFAR10-DD with varying
ratios of bias-aligned samples (severity=4). Performance is evaluated on unbiased samples. “Full sets” means the model is trained on the
original full dataset without distillation. Bold entries are best results.

Severity 1 2 3 4

CMNIST-DD BR=0 97.28±0.09 97.46±0.07 97.41±0.01 97.42±0.02

CMNIST-DD BR=100 8.65±0.24 7.78±1.02 6.60±0.36 6.45±0.91

CCIFAR10-DD BR=0 57.40±0.45 55.75±0.37 56.04±0.15 52.29±0.51

CCIFAR10-DD BR=100 49.92±0.10 50.06±0.44 45.10±0.13 36.68±0.15

Table 2. The effect of perturbation severity on the performance of
synthetic datasets. BR denotes biased ratio. All experiments are
conducted using DM, with 50 images per class.

design of dataset debiasing.
To delve into the impact of severity on DD, we conduct a

series of experiments utilizing DM. By adjusting the severity
(1-4) of the biased training set, we generate corresponding
synthetic datasets and subsequently evaluate their perfor-
mance on an unbiased test set. As illustrated in Tab. 2, the
severity of disturbance also has a notable impact on the per-
formance of synthetic datasets. Specifically, biased datasets
are more susceptible to the increased disturbance severity,
resulting in a more significant performance degradation than
their unbiased counterparts.

In summary, although DD is less affected by dataset bias
or even benefits from it at low and very high bias rates, but
in most cases, dataset bias considerably impacts DD, which
highlights the necessity of identifying and mitigating biases
in the original datasets during DD.

5. Biased DD
In the previous section, we have demonstrated that dataset
bias does affect DD and vanilla DD methods fail when faced
with biased datasets in most cases, which indicates that the
vanilla definition of DD is no longer suitable for biased
datasets. To this end, we reformulate DD within the context
of biased datasets, which we call biased DD, as follows:

Let Tb = {(xj , zg,j , zb,j , yj)}||Tb|
j=1 be the set of bias-

aligned samples, where xj and yj are the j-th bias-
aligned sample and its label, zg,j and zb,j denote its un-

biased attribute and biased attribute. Similarly, the set
of bias-conflicting samples can be formulated as Tg =

{(xk, zg,k, yk)}|
|Tg|
k=1, and |Tb| + |Tg| = |T |. The objective

of biased DD is to extract and retain the unbiased attributes
zg from both biased set Tb and unbiased set Tg, while mini-
mizing the impact of biased attributes zb. Specifically, it can
be formalized as the following optimization problem:

min
S

D(S,Ag)− λD(S,Ab), (6)

where Ag is the composite of unbiased attributes present
in both Tb and Tg, Ab is the collection of biased attributes
within Tb. λ is a regularization balancing the contribution of
unbiased and biased attributes in the optimization process.
We will leave the specific implementation of biased DD to
future work.

6. Conclusion

In this paper, we delve into DD when the dataset is en-
dogenously biased. Specifically, we construct two biased
datasets, namely CMNIST-DD and CCIFAR10-DD and con-
duct a series of experiments on them. Experimental results
show that dataset biases indeed influence DD in most cases,
highlighting the necessity of designing bias mitigation strate-
gies specifically tailored for DD. Therefore, we propose a
mathematical definition of biased DD and leave the specific
implementation to future research.

Future Work. In this paper, we have demonstrated that
dataset bias does affect DD. In the future, we will extend our
experiments to larger datasets, more complex models and
more advanced DD methods. Besides, it would be interesting
to investigate why synthetic datasets outperform original
datasets under extreme bias rates and what can be done with
this phenomenon. Furthermore, how to eliminate or mitigate
the impact of biased samples on synthetic datasets during
the DD process is also a promising direction.

7661



Acknowledgments
This work is supported in part by the Key R&D Program of
Zhejiang under Grant 2022C01018 and by the National Nat-
ural Science Foundation of China under Grant U21B2001.

References
[1] Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad,

Ilge Akkaya, Florencia Leoni Aleman, Diogo Almeida, Janko
Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4
technical report. arXiv preprint arXiv:2303.08774, 2023. 2

[2] Görkem Algan and Ilkay Ulusoy. Image classification with
deep learning in the presence of noisy labels: A survey.
Knowledge-Based Systems, 215:106771, 2021. 1, 2

[3] George Cazenavette, Tongzhou Wang, Antonio Torralba,
Alexei A Efros, and Jun-Yan Zhu. Dataset distillation
by matching training trajectories. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 4750–4759, 2022. 1, 2

[4] Justin Cui, Ruochen Wang, Yuanhao Xiong, and Cho-Jui
Hsieh. Mitigating bias in dataset distillation. 2

[5] Justin Cui, Ruochen Wang, Si Si, and Cho-Jui Hsieh. Scaling
up dataset distillation to imagenet-1k with constant memory.
In International Conference on Machine Learning, pages
6565–6590. PMLR, 2023. 1, 2

[6] Debashree Devi, Saroj K Biswas, and Biswajit Purkayastha.
A review on solution to class imbalance problem: Under-
sampling approaches. In 2020 international conference on
computational performance evaluation (ComPE), pages 626–
631. IEEE, 2020. 1

[7] Tian Dong, Bo Zhao, and Lingjuan Lyu. Privacy for free:
How does dataset condensation help privacy? In International
Conference on Machine Learning, pages 5378–5396. PMLR,
2022. 2

[8] Jiawei Du, Yidi Jiang, Vincent YF Tan, Joey Tianyi Zhou, and
Haizhou Li. Minimizing the accumulated trajectory error to
improve dataset distillation. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition,
pages 3749–3758, 2023. 1, 2

[9] Jiawei Du, Qin Shi, and Joey Tianyi Zhou. Sequential subset
matching for dataset distillation. In Thirty-seventh Conference
on Neural Information Processing Systems, 2023. 1

[10] Tlamelo Emmanuel, Thabiso Maupong, Dimane Mpoeleng,
Thabo Semong, Banyatsang Mphago, and Oteng Tabona. A
survey on missing data in machine learning. Journal of Big
data, 8:1–37, 2021. 1

[11] Simone Fabbrizzi, Symeon Papadopoulos, Eirini Ntoutsi, and
Ioannis Kompatsiaris. A survey on bias in visual datasets.
Computer Vision and Image Understanding, 223:103552,
2022. 1, 2

[12] Raymond Feng, Flavio Calmon, and Hao Wang. Adapting
fairness interventions to missing values. Advances in Neural
Information Processing Systems, 36, 2024. 1

[13] Arthur Gretton, Karsten M Borgwardt, Malte J Rasch, Bern-
hard Schölkopf, and Alexander Smola. A kernel two-sample
test. The Journal of Machine Learning Research, 13(1):723–
773, 2012. 4

[14] Jianyang Gu, Kai Wang, Wei Jiang, and Yang You. Sum-
marizing stream data for memory-restricted online continual
learning. arXiv preprint arXiv:2305.16645, 2023. 2

[15] Ziyao Guo, Kai Wang, George Cazenavette, Hui Li, Kaipeng
Zhang, and Yang You. Towards lossless dataset distillation
via difficulty-aligned trajectory matching. arXiv preprint
arXiv:2310.05773, 2023. 2

[16] Khan Md Hasib, Md Sadiq Iqbal, Faisal Muhammad Shah,
Jubayer Al Mahmud, Mahmudul Hasan Popel, Md Imran Hos-
sain Showrov, Shakil Ahmed, and Obaidur Rahman. A survey
of methods for managing the classification and solution of
data imbalance problem. arXiv preprint arXiv:2012.11870,
2020. 1

[17] Dan Hendrycks and Thomas Dietterich. Benchmarking neural
network robustness to common corruptions and perturbations.
arXiv preprint arXiv:1903.12261, 2019. 3

[18] Aditya Khosla, Tinghui Zhou, Tomasz Malisiewicz, Alexei A
Efros, and Antonio Torralba. Undoing the damage of dataset
bias. In Computer Vision–ECCV 2012: 12th European Con-
ference on Computer Vision, Florence, Italy, October 7-13,
2012, Proceedings, Part I 12, pages 158–171. Springer, 2012.
1, 2

[19] Jang-Hyun Kim, Jinuk Kim, Seong Joon Oh, Sangdoo Yun,
Hwanjun Song, Joonhyun Jeong, Jung-Woo Ha, and Hyun Oh
Song. Dataset condensation via efficient synthetic-data param-
eterization. In International Conference on Machine Learn-
ing, pages 11102–11118. PMLR, 2022. 1, 2

[20] Bartosz Krawczyk. Learning from imbalanced data: open
challenges and future directions. Progress in Artificial Intelli-
gence, 5(4):221–232, 2016. 2

[21] Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple
layers of features from tiny images. 2009. 4
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