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Abstract

In this paper we propose a score of an image to use for
coreset selection in image classification and semantic seg-
mentation tasks. The score is the entropy of an image as ap-
proximated by the bits-per-pixel of its compressed version.
Thus the score is intrinsic to an image and does not require
supervision or training. It is very simple to compute and
readily available as all images are stored in a compressed
format. The motivation behind our choice of score is that
most other scores proposed in literature are expensive to
compute. More importantly, we want a score that captures
the perceptual complexity of an image. Entropy is one such
measure, images with clutter tend to have a higher entropy.
However sampling only low entropy iconic images, for ex-
ample, leads to biased learning and an overall decrease in
test performance with current deep learning models. To mit-
igate the bias we use a graph based method that increases
the spatial diversity of the selected samples. We show that
this simple score yields good results, particularly for se-
mantic segmentation tasks.

1. Introduction
Deep learning has made tremendous progress in the past
few years exploiting the scale of large training sets, among
other factors. Recently data centric methods, such as train-
ing on pruned dataset [21], or using non uniform mixing
strategies [24] have become standard practice for training
large scale models. In these methods a score is attached
to each data instance, and an instance is selected (or not)
for training using the ordered scores of available instances.
In this paper we focus on data pruning for computer vision
tasks where a subset of the instances available is used for
training with minimal loss of performance.

In previous data pruning approaches for computer vi-
sion, mostly on the classification task, scores naturally re-
flect the learning task at hand. That is, they are based on
the distribution of input and its label(s). This implicitly
pays less attention to the input itself. Also modeling this

distribution accurately is expensive - usually some steps of
training have to be done before the scores can be calcu-
lated [7, 15, 21, 22]. Thus one of the key questions, raised
in literature, is how early in training can the instances to be
pruned identified [15]?

We start with four observations. First, the vision per-
ception literature recognizes that images with less clutter,
simpler background, iconic objects, are processed faster by
the human visual system [18]. Many measures for char-
acterising human perception of scene complexity have been
proposed [10], among which the information theoretic mea-
sure of entropy is not only the simplest but also captures the
clutter in an image well [18].

Second, images with less clutter and a plain background,
also lead to better labeling of pictures by young chil-
dren [14]. In general child development literature shows
that the nature of picture books for young children leads to
different transfer learning experience. Similar studies for
deep learning can yield interesting insights.

Third, in natural language processing scores such as
length of sentences, or word rarity, have been proposed as
difficulty scores for machine translation [17]. Sentences
that are shorter are easier to translate than sentences that
are longer; here difficulty is a measure of only the input
sentence, not of the input, output sentences. Machine trans-
lation is similar to the semantic segmentation task in com-
puter vision.

Fourth, it has been shown that complexity of an image
(as measured by lossless bits-per-pixel) and the likelihood
of generating that image are negatively correlated [20]. This
provides an alternate method to compute the entropy of an
image, that has only been used in context of out of distribu-
tion sample detection [20].

Inspired by these observations, we raise the following
questions -
• What is the intrinsic measure of complexity of an image?
• Can a deep learning model learn from the intrinsically

more (or less) difficult images in a dataset and transfer
the knowledge effectively to other images in the dataset?

• Can this coreset selection and training work for tasks such
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Figure 1. Example of simple images from CIFAR (first two rows),
complex images from CIFAR (next two rows). Simple images
from VOC (next two rows), and complex images from VOC (last
two rows). Simple images are those with lowest BPPJ , while
complex images have highest BPPJ . Note we are using simple
and complex terms in line with the motivation of perceptual com-
plexity.

as image classification and semantic segmentation? Par-
ticularly the latter which is less explored task in literature.
In this paper we propose the bits-per-pixel (BPPJ ) of

a JPEG [16] encoded image as a measure of the percep-
tual complexity of the image. Bits-per-pixel of an lossless
compressed version of image is an upper bound for the en-
tropy of an image [2]. We acknowledge that JPEG is not
lossless compression, but in most cases we do not have ac-
cess to the raw uncompressed images. We assume that the
images available have been stored at high quality in order
to avoid compression artifacts, and hence can be approx-
imated as lossless. The three dataset that we work on in
this paper, CIFAR [9], VOC [5] and ADE20K [26] have in
general good quality images, with CIFAR being the dataset
with the most variations in quality. We experiment with al-
ternate methods to estimate entropy in the methods section.
Also as part of ongoing research we are exploring other per-
ceptual scores [10, 23].

In Fig. 1, we show images from CIFAR [9] and VOC [5]

Figure 2. Images from CIFAR. Top row: lowest BPPJ , Second
row: highest prototypical score [21]. Third row: highest consis-
tency score [7]. In the last three rows the same scores are used
but in the reverse order. Perceptually top row shows simple im-
ages, fourth row shows complex image. Second, third rows show
images that are easy or redundant in training process, while fifth,
sixth rows show images that are hard or important for training.

dataset, selected by BPPJ score. Simple CIFAR images
would be good candidates for iconic images in a child’s
picture book. Compared to other scores for data pruning
in computer vision [7, 15, 22] (and references therein), our
intrinsic score, BPPJ , does not use supervised labels, or
even unsupervised cluster distances [21]. In Fig. 2 we show
images of trucks from CIFAR selected using three differ-
ent scores. One of the drawbacks of using BPPJ is im-
mediately visible – images are too self-similar and sample
a small subset of the data 1. On the other hand the hard
images as identified by consistency score are the most di-
verse, in fact a wrongly labelled image is correctly scored
as highly inconsistent.

Less diversity implies that the pruned training set is bi-
ased and although the model easily overfits to the training
set, it does not generalize well to the test set (test set is not
pruned). This issue of less data diversity, and the resultant
bias, in actively sampled, or pruned, training dataset has
been raised in [19, 25]. One method proposed to solve it
is to use better data coverage sampling methods. We use
the graph density approach of [3] to diversify the sampled
dataset. Consequently we are exploiting BPPJ , while ex-
ploring the sample space using a K-NN graph. For the se-
mantic segmentation task we also use a novel feature (in this
context), the histogram of ground truth labels of an image,
and use the Jensen-Shannon divergence distance to build the
K-NN graph. This captures well the semantic similarity of
a pair of images.

1shows compression artifacts in CIFAR that affect BPPJ score. The
fourth, fifth image in the top row have low BPPJ because they are highly
compressed.
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Sampling methods have also been proposed in [13] (and
references therein). Other methods for increasing data di-
versity, or reducing bias, could be the unbiased approaches
proposed in, for example [6, 11]. These approaches recog-
nize that datasets for training machine learning models tend
to be biased unless the data is collected with care, but they
have not explored the case where bias may be introduced
knowingly and systematically, for example when using data
pruning methods. As part of ongoing research we are ex-
ploring these methods.

Our results for image classification task on CIFAR show
that the scoring using BPPJ does not do well on its own,
but combined with graph based sampling its comparable to
SOTA. We show that using BPPJ and graph based sam-
pling we are able to achieve substantially better results than
random pruning for semantic segmentation tasks. We are
not aware of other data pruning methods/scores for this task.

2. Method

The score BPPJ of an image is the bits-per-pixel of its
JPEG encoded version. We use the byte size of JPEG di-
vided by its dimensions to calculate BPPJ . As ADE20K
and VOC datasets store images as high quality JPEG, this
is straightforward. For CIFAR data we use JPEG standard,
through OpenCV 2, at the highest quality setting, to com-
press the numpy array of each image. Note that CIFAR
dataset is a subset of Tiny Images which are scrapped im-
ages from the web. These images were most likely already
lossy compressed. Thus even for CIFAR we do not have
access to raw uncompressed images. If raw uncompressed
images are available we can use a lossless compression en-
coder as in [20].

Another method for estimating the bits-per-pixel of an
image is the log likelihood of that image inferred from a
trained generative model [12]. In the past likelihood has
been used for out-of-distribution detection, but as far as we
know not for data pruning. We use it as a score, NLL,
to prune data for the image classification task. It has also
been observed [20] that generative likelihood of an image
is inversely correlated with complexity of the image that is
measured by the entropy of a lossless encoder. Subtracting
the entropy from log likelihood of an image compensates
for the complexity of the image [20]. This score, CPX =
NLL − BPPJ gives, surprisingly, the best results for the
image classification task.

In [21] authors cluster features, inferred from a self-
supervised model, of images, using k-means algorithm. The
distance to the nearest cluster centroid is the prototypical-
ity score of an image, PS. k-means is a method for vec-
tor quantization and the distance to the nearest centroid
is the distortion incurred in using the quantizer. By rate-

2https://opencv.org/

distortion theory [2] we can consider the distortion to have
a bit-per-pixel interpretation under lossy compression con-
ditions. The difference between PS and BPPJ is that the
latter uses JPEG which has no learning component. PS, on
the other hand has a learning component but it is trained on
a different dataset in an unsupervised manner. Also the dis-
tortion in PS is on the decoded features, and in BPPJ is
on the decoded image; in fact its not clear that the features
used in PS can be used to decode (generate) the image. On
the other hand NLL and CPX use generative model learnt
on the dataset itself, and have the capability to generate (de-
code) the image itself. They are unsupervised generative
models. Note that in this work we do not compare with the
any other scores for coreset selection, data pruning, because
they rely on supervised learning.

To increase data diversity and remove bias arising from
self-similar sampled subset, we use the graph density
method proposed in [3]. A K-NN graph is built, where each
image is a node, and each node has K edges that connect
the top-K nearest neighbours. Graph is made symmetric
and weighted by using a Gaussian kernel on the distance
associated with an edge. Score of an image is attached to
corresponding image. To sample nodes from the graph, it-
eratively the highest scored node is selected, and its neigh-
boring nodes’ scores are down-weighted. Since the distance
between two nodes is a representation of their semantic sim-
ilarity, score of neighboring nodes that are farther away
from the selected node are down-weighted relatively less
than those of nodes that are closer. This is done to maxi-
mize the diversity of the sampled data and implemented via
reverse message passing, where the neighboring nodes re-
ceive a weighted message from the selected node and use it
to update their score [3]3.

Distance between nodes of the K-NN graph can be de-
fined using features of the images, for example features in-
ferred from self-supervised models such as SWAV [1]. Dis-
tance here would be the standard l2 metric. K-NN graphs
built this way are denoted as GS . This requires a pre-trained
model to infer features from, and though it works reason-
ably well for image classifcation task, it does not work well
for semantic segmentation. For the latter we propose to use
the histogram of ground truth labels as the feature, and the
Jensen Shannon divergence [4] between the histograms as
the distance between nodes. K-NN graphs built this way
are denoted as GH In Fig. 3 we see that nearest neighbours
using SWAV features have very limited semantic similarity,
the third and fourth neighbours on the top row do not have
any people in it. The biggest advantage of using histograms
of labels as features is that it allows for diversity in the se-
mantic space, not in the feature space. In semantic segmen-
tation where class imbalance is an inherent problem, sam-

3To select samples in ascending order of scores, the node with the low-
est score is selected and its neighbours’ score up-weighted
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Figure 3. 4-nearest neighbours, for image in the first column. Us-
ing SWAV features, top row. Using histograms of semantic labels,
bottom row. ADE20K dataset.

1000 5000 12500 25000
RND 58.12 80.14 89.32 92.12
BPPJ 34.56 57.39 79.23 88.22
PS 52.11 78.03 87.47 91.58
NLL 41.09 66.72 88.9 90.52
CPX 57.17 80.46 90.01 92.31

BPPJ +GS 54.5 79.43 89.1 92.34

Table 1. Accuracy (%) for CIFAR dataset for different sam-
pling methods (rows) and different pruned sample size (columns).
RND uses no random sampling, BPPJ , PS, NLL, CPX use
the score only, while BPPJ + GS uses score and graph based
sampling. Best results are obtained by using ascending order for
all scores.

pling the semantic space is more suitable; as we will show
in results there is a substantial gain in performance using
this feature. It should be noted that having semantic labels
implies that annotations are available, while SWAV features
do not have that requirement.

3. Results
In this paper we use CIFAR-10 dataset for image classification
experiments. We use Resent18 model with hyper-parameters as
in [21]. For semantic segmentation we use VOC and ADE20K
dataset, MobileNet model as the encoder, and one convolution
along with deep supervision as the decoder [26]. For ADE20K
we use the default hyper-parameters, for VOC we lower the learn-
ing rate. We estimate the likelihood, NLL, of an image in CIFAR,
using GLOW models [8, 12] trained on CIFAR. We use NLL and
BPPJ to calculate CPX .

Table 1 shows the result for image classification task. BPPJ

does not do well at all, and neither does NLL. We tried sampling
both in descending and ascending order of BPPJ and NLL and
the best results we got were with descending order – that is with
high bits-per-pixel images. Accounting for complexity of image,
CPX , estimated by generative model does well, beating PS and
random sampling for lower pruning rates. Also using graph sam-
pling substantially improves performance for BPPJ score, show-
ing the importance of data diversity.

In Fig. 4 and Fig. 5 semantic segmentation results for VOC
and ADE dataset are shown. For both datasets we see that BPPJ

(again in descending order) by itself (without graph sampling)
does better than prototypicality score (in ascending order). BPPJ

along with k-NN graph defined by histograms of labels GH give
measurable improvement over random sampling and over graph
sampling using SWAV featuers GS . PS does poorly for semantic
segmentation because it exaggerates the class imbalance problem.

In this paper we proposed a simple, intrinsic, perceptual com-
plexity score for coreset selection. This score requires no training
and does not use the labels; when we use labels, in GH , we are
not training on them and coreset selection can still be done before
training starts. One of our original hypothesis of learning from
iconic images does not seem, as of now, correct for deep learning
models. We also believe that perceptual scores could be used a
priors to be updated with label and task information, once training
starts. The positive results of this study are usage of CPX and on
semantic segmenation.

Figure 4. Results for semantic segmentation using VOC data. Leg-
end similar to Table 1, BPPJ +GS uses BPPJ as score, and GS

as the k-NN graph. BPPJ +GH uses GH as the k-NN graph.

Figure 5. Results for semantic segmenation on ADE20K dataset.
Legends same as in Fig.4.
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