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1. Implementation Details

1.1. Datasets

We conducted experiments on three main datasets: CI-
FAR10/100 [4] and TinyImageNet [5]. These datasets are
considered single-label multi-class; hence, each image has
exactly one class label. The CIFAR10/100 are conven-
tional computer vision benchmarking datasets comprising
32×32 colored natural images. They consist of 10 coarse-
grained labels (CIFAR10) and 100 fine-grained labels (CI-
FAR100), each with 50,000 training samples and 10,000
test samples. The CIFAR10 classes include ”Airplane”,
”Car”, ”Bird”, ”Cat”, ”Deer”, ”Dog”, ”Frog”, ”Horse”,
”Ship”, and ”Truck”. The TinyImageNet dataset, a subset of
ImageNet-1K [3] with 200 classes, contains 100,000 high-
resolution training images and 10,000 test images resized
to 64×64. The experiments on these datasets make up the
benchmarking for many previous dataset distillation works
[1, 2, 6, 7, 10, 11].

1.2. Dataset Pre-processing

We applied the standardized preprocessing techniques to
all datasets, following the guidelines provided in DM [9]
and DataDAM [6]. Following previous works, we apply
the default Differentiable Siamese Augmentation (DSA) [8]
scheme during distillation and evaluation. Specifically for
the CIFAR10/100 datasets, we integrated Kornia zero-phase
component analysis (ZCA) whitening, following the param-
eters outlined in [1, 6]. Similar to DataDAM [6], we opted
against ZCA for TinyImagenet due to the computational
bottlenecks associated with full-scale ZCA transformation
on a larger dataset with double the resolution. Note that
we visualized the distilled images by directly applying the
inverse transformation based on the corresponding data pre-
processing, without any additional modifications.

*Equal contribution

1.3. Hyperparameters

Our method conveniently introduces only one additional hy-
perparameter: the power term in channel attention, i.e. pc.
All the other hyperparameters used in our method are di-
rectly inherited from the published work, DataDAM [6].
Therefore, we include an updated hyperparameter table in
Table 1 aggregating our power term with the remaining pre-
set hyperparameters. In the main paper, we discussed the
effect of power terms on both channel- and spatial-wise at-
tention and ultimately found that higher channel attention
paired with lower spatial attention works best. However,
our default, as stated in the main draft, is pc = ps = 4.
Regarding the distillation and train-val settings, we use the
SGD optimizer with a learning rate of 1.0 for learning the
synthetic images and a learning rate of 0.01 for training
neural network models (for downstream evaluation). For
CIFAR10/100 (low-resolution), we use a 3-layer ConvNet;
meanwhile, for TinyImagenet (medium-resolution), we use
a 4-layer ConvNet, following previous works in the field
[1, 6, 9]. Our batch size for learning the synthetic images
was set to 128 due to the computational overhead of a larger
matching set.

1.4. Neural Architecture Search Details

Following previous works [6, 8–10], we define a search
space consisting of 720 ConvNets on the CIFAR10 dataset.
Models are evaluated on CIFAR10 using our IPC 50 dis-
tilled set as a proxy under the neural architecture search
(NAS) framework. The architecture search space is con-
structed as a uniform grid that varies in depth D ∈ {1,
2, 3, 4}, width W ∈ {32, 64, 128, 256}, activation
function A ∈ {Sigmoid, ReLu, LeakyReLu}, normaliza-
tion technique N ∈ {None, BatchNorm, LayerNorm, In-
stanceNorm, GroupNorm}, and pooling operation P ∈
{None, MaxPooling, AvgPooling} to create varying ver-
sions of the standard ConvNet. These candidate architec-
tures are then evaluated based on their validation perfor-
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mance and ranked accordingly. In the main paper, Table 6
measures various costs and performance metrics associated
with each distillation method. Overall distillation improves
the computational cost; however, ATOM achieves the high-
est correlation, which is by far the most “important“ metric
in this NAS search, as it indicates that our proxy set best
estimates the original dataset.

2. Additional Visualizations.
We include additional visualizations of our synthetic
datasets in Figure 1, Figure 2, Figure 3. The first two repre-
sent CIFAR10/100 at IPC 50, while the third depicts Tiny-
ImageNet at IPC 10. Our images highly exhibit learned ar-
tifacts from the distillation process that are, in turn, helpful
during downstream classification tasks.
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Figure 1. Distilled Image Visualization: CIFAR-10 dataset with IPC 50.



Figure 2. Distilled Image Visualization: CIFAR-100 dataset with IPC 50.



Figure 3. Distilled Image Visualization: TinyImageNet dataset with IPC 10.



Hyperparameters Options/ ValueCategory Parameter Name Description Range

Optimization

Learning Rate ηS (images) Step size towards global/local minima (0, 10.0] IPC ≤ 50: 1.0
IPC > 50: 10.0

Learning Rate ηθ (network) Step size towards global/local minima (0, 1.0] 0.01

Optimizer (images) Updates synthetic set to approach global/local minima SGD with Momentum: 0.5
Momentum Weight Decay: 0.0

Optimizer (network) Updates model to approach global/local minima SGD with Momentum: 0.9
Momentum Weight Decay: 5e− 4

Scheduler (images) - - -

Scheduler (network) Decays the learning rate over epochs StepLR Decay rate: 0.5
Step size: 15.0

Iteration Count Number of iterations for learning synthetic data [1,∞) 8000

Loss Function

Task Balance λ Regularization Multiplier [0,∞)
Low Resolution: 0.01
High Resolution: 0.02

Spatial Power Value ps Exponential power for amplification of spatial attention [1,∞) 4
Channel Power Value pc Exponential power for amplification of channel attention [1,∞) 4

Loss Configuration Type of error function used to measure distribution discrepancy - Mean Squared Error
Normalization Type Type of normalization used in the SAM module on attention maps - L2

DSA Augmentations

Color Randomly adjust (jitter) the color components of an image
brightness 1.0
saturation 2.0
contrast 0.5

Crop Crops an image with padding ratio crop pad 0.125
Cutout Randomly covers input with a square cutout ratio 0.5

Flip Flips an image with probability p in range: (0, 1.0] 0.5
Scale Shifts pixels either column-wise or row-wise scaling ratio 1.2

Rotate Rotates image by certain angle 0◦ − 360◦ [−15◦,+15◦]

Encoder Parameters
Conv Layer Weights The weights of convolutional layers R bounded by kernel size Uniform Distribution
Activation Function The non-linear function at the end of each layer - ReLU
Normalization Layer Type of normalization layer used after convolutional blocks - InstanceNorm

Table 1. Hyperparameters Details – boilerplate obtained from DataDAM [6].
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