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Abstract

The diagnosis and prognosis of breast cancer relies on
histopathology image analysis where markers such as Ki-
67 are increasingly important. The diagnosis using this
marker is based on quantification of proliferation, which
implies counting of Ki-67 positive and negative tumoral
cells, excluding stromal cells. A common problem for au-
tomatic quantification of these images derives from over-
lapping and clustering of cells. We propose in this paper
an automatic segmentation and classification system that
overcomes this problem using two Convolutional Neural
Networks (Dual U-Net), whose results are combined with
a watershed algorithm. Taking into account that a ma-
jor issue for the development of reliable neural networks
is the availability of labeled databases, we also introduce
an approach for epistemic uncertainty estimation that can
be used for active learning in instance segmentation ap-
plications. We use Monte Carlo Dropout within our net-
works to quantify the model’s confidence across its predic-
tions, offering insights into areas of high uncertainty. Our
results show how the postprocessed uncertainty maps can
be used to refine ground truth annotations and to generate
new labeled data with reduced annotation effort. To initial-
ize the labeling and further reduce this effort, we propose
a tool for groundtruth generation which is based on candi-
date generation with maxtree. Candidates are filtered based
on extracted features which can be adjusted for the specific
image typology, thereby facilitating precise model training
and evaluation.

1. Introduction

Breast cancer is the most common type of cancer for women
worldwide, and an early detection and diagnosis are crucial
for improving the survival rate. One of the primary methods
for diagnosis are immunohistochemical (IHC) tests of biop-
sies. Pathologists first analyze the tissue obtained through
the common Hematoxylin-Eosin (H&E) staining, to detect

tumoral areas, and then apply additional stains for further
classification of the tumor and for patient risk stratifica-
tion. To predict prognosis and therapeutic response, usually
quantification of cell proliferation is required, which can be
assessed with the stain produced by the Ki-67 biomarker
[7]. The Ki-67 index is obtained by counting the percent-
age of positively stained tumoral cells over all the malignant
cells (positive and negative). Usually, this involves manu-
ally counting between 500 and 1000 cells in three randomly
selected high-power fields or estimating by eyeballing the
Ki-67 Index, without formally counting. As expected, these
methods, although very labor-intensive, result in important
variability and low reproducibility depending on the se-
lected zones and the used method [16]. During the last
decade, digital pathology is being deployed in an increas-
ing number of pathology departments [22]. Digital pathol-
ogy involves high-resolution digital images (Whole-Slide
Images, WSI) obtained from biopsy samples captured with
a scanning device. WSI can contain up to 40 Gb uncom-
pressed data, thus substituting traditional light microscopes.
At the same time, digital image analysis (DIA) techniques
are emerging for automatic quantification of the most com-
mon stains (H&E, Ki-67, ER (estrogen receptor), PR (pro-
gesterone receptor) and HER2 for breast cancer) [27].

In order to automatically compute the required indices
for the previous stains, nuclear segmentation and classifi-
cation is required. Recent advances in Computer Vision
based on Convolutional Neural Networks (CNNs) produce
outstanding results in sematic segmentation. Semantic seg-
mentation identifies each pixel in an image as belonging to
one of the predefined classes, generating a mask for each
of these classes, but does not separate connected samples of
the same class. Instance segmentation and classification can
be achieved with more complex CNNs or by combination of
semantic segmentation with instance detection methods.

Uncertainty estimation is important for interpreting the
trustworthinesss of deep learning models. It can enhance
explainability, which is paramount in medical AI as it in-
creasingly influences crucial healthcare decisions [9, 23].
Since uncertain predictions are usually the most informa-
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tive, uncertainty estimation is also used in active learning
frameworks for selecting the most informative unlabeled
samples in order to achieve a high accuracy. Epistemic
uncertainty, related to the model and often due to lack of
training data, has been shown to be the most appropriate for
active learning [15].

In this paper we propose an efficient and accurate algo-
rithm to segment and classify tumor cell nuclei on breast
cancer histology based on semantic segmentation combined
with nuclei center estimation. The algorithm has been de-
veloped for Ki-67 stained images, and succeeds on the ma-
jor challenges of this kind of images: separation of over-
lapping cells and classification for proliferation index com-
putation with consistent discrimination of the stroma cells.
Furthermore, we complement our system with epistemic
uncertainty estimation through Monte Carlo Dropout tech-
niques in the U-Net models. This addition allows to assess
the confidence level of the predictions. Combined with a
graphical annotation tool it can be used in an active learn-
ing framework for correcting errors in the groundtruth and
for labeling new data with reduced effort.

The paper is organized as follows. Sec. 2 describes re-
lated works, Sec. 3 presents the tools used to generate the
groundtruth without an extensive manual labelling effort,
Sec. 4 describes the pipeline and the networks used for seg-
mentation, Sec. 5 introduces our approach to uncertainty
estimation, Sec. 6 presents the results obtained and Sec. 7
discusses the results and concludes the paper.

2. Related work

2.1. Ki-67 proliferation index computation

In March 2010, the ’International Ki-67 in Breast Cancer
Working Group’ agreed that the Ki-67 measurement was
a key point for tumor proliferation studies and developed
guidelines for its analysis based on computing the so-called
Ki-67 proliferation score. This score was defined as the per-
centage of positively stained cells among the total amount
of evaluated tumor cells [5]. Manual procedures to obtain
this index are time consuming and present a high variabil-
ity, mainly due to limitations of the human eye and random-
ness in choice of the regions for cell counting.Thus, several
works have focused on the automation of this process.

A recent study [24] has validated the usage of computer
assisted image analysis for Ki-67 stained images. Their re-
sults confirm that there is a significant benefit of automated
image analysis as part of daily pathologists’ workflow, both
in the consistency of the automated results and in the time
savings for pathologists. The work of [4] compares com-
mercial applications that have been developed for semiau-
tomated Ki-67 quantification, many of which rely on mea-
surements in user-defined regions of interest (ROIs). They
observed that results depend on the size of the ROI and that

a common rejection cause of the software results was due to
the confusion between tumor and stroma cells. This caused
a rejection of 23% of the samples.

The most common approach taken for DIA systems is to
rely on ROIs defined by the user in order to avoid stromal
areas. In [1], an automatic approach for Ki-67 index estima-
tion is presented. The process is applied to hot-spot regions
(area of higher density of positive tumor cells for Ki-67)
where stromal cells are not observed. The system relies on
color processing techniques to segment nuclei, which are
then classified as positive or negative based on color and
shape features. A recent work [2] proposes a pipeline for
accurate automatic counting of Ki-67 cells, using UNet for
nuclei segmentation, combined with a watershed algorithm
to separate overlapped regions, and a final classification into
positive and negative nuclei by a random forest classifier us-
ing deep features extracted from each nucleus patch. They
recognize as the biggest challenge the separation of over-
lapped cells in clustered areas. The analysis is also per-
formed on manually selected hot-spots of small size, with
little presence of stromal cells.

2.2. Semantic segmentation

Semantic segmentation approaches the image segmentation
problem by performing pixel-level classifications. CNN-
based techniques in end-to-end architectures have become
mainstream to approach this task when annotated data is
available. The most successful model for biomedical image
segmentation has been the one proposed by Ronneberger,
U-Net [18]. It follows an encoder-decoder architecture,
where the encoder gradually reduces the spatial dimension
with pooling layers and the decoder gradually recovers the
object details and spatial dimension. Although other seman-
tic segmentation networks have succeeded in different tasks
[3, 10, 20, 28] U-Net is still the state of the art for biological
images. Semantic segmentation with U-Net combined with
connected component analysis has been used for Ki-67 in-
dex computation in bladder cancer [12]. However, cases of
clustering with severe overlapping were not considered.

2.3. Cell counting

In [13] a supervised learning framework was proposed for
visual object counting tasks. It required as annotation a dot
for each object, and the goal was to accurately estimate the
count, evading the task of learning to detect and localize
individual object instances. The problem is approached as
mapping learning between an image and an image density
map whose integral over any image region gives the count
of objects within that region. Learning to infer such den-
sity was formulated as a minimization of a regularized risk
quadratic cost function. In [26] this mapping problem was
approached with CNNs, using a fully convolutional regress-
sion network to estimate the mapping from image to image
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density. The application in this case was microscopy cell
counting and detection. Counting cells in histopathology
images is useful in cases of overlapped cells, but it does not
give information of the cell morphology or class, which is
crucial for applications such as PI calculation.

2.4. HoVer-Net

In [8] a deep learning approach for simultaneous segmenta-
tion and classification of nuclear instances in histology im-
ages was presented. The network is based on the prediction
of horizontal and vertical distances of nuclear pixels to their
centres of mass, which are leveraged to separate clustered
nuclei and deliver instance segmentation. This is combined
with a semantic segmentation network in order to achieve
both segmentation and classification of the nuclei. This ar-
chitecture was applied to H&E stained images correspond-
ing to different types of cancer. The authors proved, for the
H&E databases , superior results to those obtained with in-
stance segmentation methods such as Mask-RCNN or Seg-
Net combined with watershed, mainly due to the ability to
separate nuclear instances which were overlapping.

2.5. Epistemic uncertainty estimation

Uncertainty estimation can be categorized into two types:
aleatoric uncertainty, which deals with the inherent noise
within the data, and epistemic uncertainty, which pertains to
the model’s knowledge about the data used for training. The
theoretical foundation for estimating epistemic uncertainty
is well-articulated in the pioneering work [6] through the
Monte Carlo Dropout technique. This approach leverages
dropout layers not only during training but also crucially
during inference. By doing so, it approximates Bayesian
posterior distributions, generating multiple predictions for
a single input. The variability among these predictions
provides a measure of epistemic uncertainty, reflecting the
model’s confidence in its learned representations.

Building on this foundation, [11] elaborated on the nu-
ances of uncertainty in deep learning. In semantic segmen-
tation tasks, this delineation allows models to not only pre-
dict with accuracy but also to highlight regions of low con-
fidence. Such regions might require further scrutiny, addi-
tional data collection, or expert intervention, thereby ele-
vating the utility and interpretability of the model’s outputs.
Its benefits in active learning are shown in [14], proving
that uncertainty estimation can be used to select annotation
regions, producing models with higher accuracy and less la-
beling effort than annotation of full images.

3. Database construction
After looking for publicly available databases of Ki-67 im-
ages with annotated ground-truth, we decided to create our
own database and its corresponding annotation. This strat-
egy was selected because we did not find any database with

a) b)

d) e)
c)

Figure 1. Preliminary ground-truth generation with morphological
tools: a) Original image. b) Gray level image. c) Maxtree repre-
sentation and feature extraction. d) Cell segmentation. e) Cell
classification and elliptical approximation

all the characteristics we were looking for in terms of vari-
ability of cases and of type of annotation (the database an-
notation had to define the mask and the class of each cell).

The database was constructed extracting tiles from WSIs
from 4 different patients of invasive breast carcinomas.
WSIs came from the Vall d’Hebron hospital (Barcelona)
and were scanned with a 3DHISTECH Pannoramic 1000
slide scanner with an objective magnification of 40x and a
resolution of 0.25 × 0.25 µm/pixel. Starting from Ki-67
WSIs, we have obtained 52 tiles of size 1024x1024 pixels,
corresponding to a field of view of 256x256µm. The pa-
tients had different levels of proliferation, marked by the
Ki-67 stain, and the tiles reflect a wide variety of cellular
structures. To reduce the computational load and memory
usage, images were downsampled to 512x512 pixels. Ac-
cording to our experiments, this resolution is enough for cell
detection and nucleus segmentation.

In these original images, cells have to be classified into
three possible classes: positive, negative or non-epithelial
(e.g. stroma). The principal characteristics of cells of each
class differ both in their nucleus color and shape.

In order to create the ground-truth, we had to rely on the
expertise of pathologists from various hospitals (this work
was performed in the context of a project with a national
health institute). However, it was unrealistic to ask pathol-
ogists to annotate the images at the cell level from scratch
as each image may involve between 300 and 800 cells. As
a result, we created an initial preliminary annotation to try
to minimize pathologists’ workload.

This preliminary annotation was created by a mathemat-
ical morphology approach, as illustrated in Fig. 1. The
original images were first converted into gray level images
and inverted, so nuclei appeared as maxima (see Fig. 1.b).
These images were represented by a maxtree [19], where
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the tree leaves are the image maxima, the root node the
entire image support and the tree branches highlight the
morphological structure around maxima. The image rep-
resented as a 3D relief can be seen in Fig. 1.c. For each
maximum that had sufficient height, we considered as cell
candidate the binary connected component made by a cut at
80% of the maximum value (see the illustration in Fig. 1.c).
This way, for each maximum, it was possible to extract a
specific shape (cell candidate) as well as its radiometric and
geometric features. In practice, for each cell candidate we
computed its mean RGB color values, its size measured as
number of pixels, and its elongation. The classification was
done by manually adjusting the thresholds on the previous
features. An example of resulting cell detection can be seen
in Fig. 1.d.

As this preliminary annotation had to be corrected by
pathologists, it was necessary to transform the detection in
a representation that could be easily manipulated by means
of a graphical annotation tool. To this end, we approximate
each cell by its best fitting ellipse and assigned a specific
color to each cell class (see Fig. 1.e.). If necessary, the
pathologists could easily modify the control points or the
orientation of the ellipse to improve the matching with the
actual data. The class could also be easily corrected.

The preliminary ground-truth was given to a set of ex-
pert pathologists from various hospitals in Catalonia. When
necessary, they modified the cell segmentation results, cor-
rected the classification and accepted the resulting images.
To address the scarcity of data, we adopted a prudent
approach by implementing a patient-fold cross-validation
strategy during the training of our novel deep learning
model. Within each fold, we allocated the images of three
of the four available patients for the training set and re-
served the images of the fourth patient for the test set. This
approach not only served to evaluate the model’s ability
to generalize across new, unseen patient data, mirroring
real-world application scenarios, but also aimed to effec-
tively leverage the data from all four patients. Despite the
dataset’s constrained size (52 images), each image encom-
passes a range of 500 to 1000 cells, providing a rich dataset
for our model’s learning and evaluation processes.

The final ground-truth consists of label images where
pixels from a given cell are identified with a unique label,
and of a list assigning each cell to one possible classes.

4. Dual U-Net segmentation and classification
The algorithm consists of a semantic segmentation network
based on a U-Net network that classifies each pixel into
one of the four classes for Ki-67 images (positive, negative,
stroma and background) given the original color images of
size 512x512x3. The resulting pixel class determines the
shape, position and class of the predicted cells. However,
as mentioned before, this algorithm does not behave accu-

rately when cells are close or overlapping, because it merges
them as a single cell. Hence, the need of a second network,
which runs in parallel, with the objective to detect the cen-
ter of each cell. A U-Net model is also used and, to train
it, a density map is created for each image, and the task of
the network is to regress this density surface from the origi-
nal images. To predict the cell centers, the local maxima of
the predicted density map have to be detected. To do so, a
contrast filter is applied which detects local maxima which
exceed a given contrast threshold.

Finally, the results of the two networks are merged (see
Fig. 2). A watershed is applied on each predicted connected
component from the segment output to split them into as
many cells as centers the count network has predicted. In
some cases we can find cells without a detected center or
vice versa (centers without cell). Experiments have demon-
strated that the best results are achieved by utilizing all seg-
mented cells and only the centers associated with at least
one cell. For cells that lack a detected center, their centers
of mass are computed. Finally, each resulting connected
component corresponds to a cell, and a single class has to
be assigned to it. Semantic segmentation assigns a class
to each individual pixel and, after the cell shape has been
defined, majority voting of the pixel class within each con-
nected component is used for class assignment.

4.1. Semantic segmentation

Semantic segmentation aims at classifying the individual
pixels of the image into one of the four defined classes
(three cell types plus the background). From this pixel clas-
sification the cell shape, position and class are defined.

We use as semantic segmentation model the U-Net
model [18], which has proved to produce very good results
for many biomedical image segmentation tasks.

The network is trained using the ground truth multiclass
masks, where each pixel is identified by a label representing
each class. A Dice loss is used to train the network and
weighted F-score, precision and recall at pixel level for the
three cell classes are used as metrics to evaluate the results.

The ResNeXt-50-32x4d [25] is used as encoder. Due to
the reduced size of the available database, transfer learning
is applied by initializing the weights of the encoder with
the “ImageNet” weights. We used Adam as optimizer and
a batch-size of 4 images with a learning rate of 0.0005. To
avoid overfitting, data augmentation was applied with the
following parameters: shift factor range of (-0.1, 0.1) and
flipping with probability 0.5. Batch-size and learning rate
were not specifically adjusted for this experiment; we used
the same values that we use for semantic segmentation in
histopathological images of other stains with databases of
similar size. The model was trained for 200 epochs, and the
best-performing checkpoint was selected. Final results can
be seen in Sec. 6.
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Figure 2. Schematic representation of the application of the segmentation model (named segment) and the cell center detection model
(named count). As can be observed, there is considerable differences between the segmentation and classification without the application
of the count model (image at the top) and with the application of this network (image at the right).

4.2. Cell center detection

The semantic segmentation can merge different cells in a
unique connected component when cells are close. In or-
der to detect the cell centers we use a system which predicts
the cell density map from the original image. To do so, a
specific Fully Convolutional Regression Network was de-
signed in [26]. In this work, we propose to use for this task
the same architecture based on U-Net as for semantic seg-
mentation. Here, in order to regress the density maps, the
loss function is the Mean Square Error.

For training the network, density maps for the Ki-67
dataset have to be provided. This can easily be generated
from an initial dot annotation. This dot annotation is com-
puted as the mass center of each cell identified in the ground
truth. Afterwards, each dot is represented by a Gaussian,
and the density map is formed by the superposition of these
Gaussians. The central task of the network is to regress
this density map from the corresponding original cell im-
age. We are interested in cell center detection, which can be
achieved by local maxima detection on the density map.

The standard deviation of the Gaussian functions used
to generate the ground truth has to be adjusted according to
the spatial dimensions of the cells. Our experiments showed
that a standard deviation between 3 and 7 provides accurate
results, and we used 7 for further experiments.

For the count final step, the local maxima in the predicted
image are retrieved. As the prediction is noisy, a contrast
filter [21] is applied to only select those local maxima with
a contrast greater than a given threshold h. This allows to
separate cells whose representative density function over-
lap. See Fig. 3, where the used contrast value is 0.15.

Figure 3. 150x150 square section of an image: Ground truth with
Gaussian filter of standard deviation 7, prediction obtained by the
network, binarization and local maxima extraction with h = 0.15.

As we are interested in measuring the performance in
terms of cell center prediction, a matching between the cen-
ters of the ground truth and of the prediction is performed.
Given each center of the prediction the closest center in the
ground truth is searched and vice versa, discarding the cor-
respondences with higher distance than a certain threshold
and the correspondences that are not one to one.

The final network used the U-Net architecture, with
ResNeXt-50-32x4d, Adam optimizer, batch-size 4 and
learning rate 0.0005. The model was trained for 100 epochs,
and the best-performing checkpoint was selected. The final
results can be seen in Sec. 6.
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4.3. Result combination

Analyzing the relation between the predictions of the two
networks, we observed that while most connected compo-
nents detected by the segment network had a single center
detected by the count network, approximately 14% of the
components had more than one center, while 15% of the
detected components had no center. Moreover, some cen-
ters detected by the count network did not have any asso-
ciated component. Although the watershed segmentation
separates the connected components with more than one
center, the best strategy had to be decided regarding the
situations where there is no correspondence between the
two networks. Experiments were performed considering all
possible combinations of predictions and the decision was
to consider all the predictions of the segment network, but
only the centers of the count network that corresponded to
a segmented cell.

Once the semantic segmentation is completed and the
centers have been detected, we can split the connected com-
ponents of the semantic segmentation into individual cells
using the watershed algorithm. In this case, the predicted
centers would be the markers that identify the starting point
of each basin that the watershed needs to flood. If there is a
cell predicted by the segment network that does not have an
associated predicted center, the center of mass of the pre-
dicted cell is computed as cell center. Basins are defined
by the inverse distance transform of the binarized output of
the segment network. The distance transform shows the dis-
tance from each foreground pixel to its closest background
pixel. Thus, the inverse distance transform has higher val-
ues in the borders and lower values in the centers of the
cells, creating basins at each cell. The predicted compo-
nents are also useful to define the zones that the flooding
cannot exceed, called the mask. This method is able to split
large connected components in as many markers as it con-
tains because every marker will start a flood if a basin has
been defined (see Fig. 4)

Figure 4. Watershed process. a) The markers showing the center
cells that have to be retrieved and the mask showing the regions
that need to be labeled, b) The inverse distance transform of the
segmentation prediction (in green high values, in blue low values),
and c) The watershed labels with a different color for each indi-
vidual cell.

4.4. Homogenization of individual cells

Since semantic segmentation is pixel based, a predicted cell
could have pixels of different classes. So, as a last step,
for each one of the connected components produced after
the watershed, the median of the values from the multiclass
prediction is computed and assigned to each pixel. Thus,
each predicted cell will only have one associated class.

5. Epistemic uncertainty estimation

In this study, we introduce an advanced methodology for
estimating epistemic uncertainty within our semantic seg-
mentation model. Drawing upon the technique proposed
in [11], and using Monte Carlo Dropout (MCD) [6] as a
Bayesian approximation, we quantify the uncertainty in our
model predictions. To integrate epistemic uncertainty es-
timation, we augmented the decoder block of our segment
network with a dropout layer after each convolutional layer.
This facilitates the use of MCD during the inference phase,
allowing the network to simulate Bayesian inference pro-
cesses. By conducting inference repetitively (30 times in
our study), we capture the variability in the predicted class
for each pixel. The mean of the per class variance is inter-
preted as pixel uncertainty.

The resultant uncertainty heatmaps highlight the borders
of segmented cells as areas of high uncertainty. Recogniz-
ing that border uncertainties do not significantly contribute
to our analysis, we refine these heatmaps by filtering out the
border uncertainties in order to focus on the uncertainties
within the cell interiors. A subsequent rescaling of heatmap
values ensures that these refined maps accurately represent
meaningful uncertainties for analysis (Fig. 5). These refined
uncertainty heatmaps serve a dual purpose. First, they en-
able the identification of regions within the ground truth la-
bels that may be inaccurate or uncertain. Such insights are
useful for iterative model refinement, allowing us to aug-
ment our dataset with revised annotations that address pre-
viously undetected ambiguities. Second, heatmaps facili-
tate an active learning loop, where the model uncertainty
directly informs the selection of samples for reannotation
and retraining.

While the active learning process itself has not been ex-
plicitly developed in this study, we posit that leveraging
model uncertainty to inform sample selection for reanno-
tation and retraining could significantly enhance the effi-
ciency and efficacy of data labeling efforts. However, it is
worth noting that the envisioned active learning cycle repre-
sents a prospective application of our uncertainty estimation
technique. We believe that utilizing epistemic uncertainty
as a strategic tool for dataset enhancement and model de-
velopment holds substantial promise, particularly in align-
ing with the principles of active learning to prioritize data
labeling efforts effectively.
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Figure 5. Example of the uncertainty heatmap refinement process.
a) The original image. b) The output uncertainty heatmap, being
the brigher regions the ones with higher uncertainty. c) The refined
heatmap after eliminating the cell borders uncertainties.

6. Results

As explained in Sec. 3, due to the low number of images
with ground truth supervised by the pathologists, we have
created 4 different folds, each one containing the images of
three of the four available patients.

In evaluating our proposed method for cell segmentation
and classification, we assessed the weighted F1-Score at the
cell level as the primary metric, as it considers the balance
between precision and recall in identifying true positive cell
predictions. Additionally, recognizing the practical impli-
cations of our work in the clinical setting, we introduced a
problem-specific metric, the Mean Absolute Error (MAE)
of the Proliferation Index. The MAE serves as a crucial
tool for evaluating the estimated Ki-67 index. The correct
estimation of this index ensures that our method aligns with
the specific clinical requirements, providing a more direct
and interpretable measure of the model’s impact on diag-
nostic processes. By employing these metrics, we aim to
establish the robustness of our approach in both a technical
and clinically relevant context. We have selected as base-
line for our result comparison the state-of-the-art architec-
ture HoVer-Net (see Sec. 2). For completeness, we also pro-
vide F1 Score at cell level (without weights), which we have
called Macro-F1 and the F1 score at pixel level, referred to
as Micro-F1.

The results obtained in each one of the folds with the
networks hyperparameters chosen as described in Sec. 4
are provided in Sec. 6. We present a final cell-based av-
eraged weighted F1-score of 0.68 ±0.07 among the four
folds, being the positive class the one with the higher score
of 0.80 ±0.06. The non-epithelial class (e.g. stroma class),
though, only achieves 0.58 ±0.06. However, note that miss-
detection or false alarms of stroma cells does not effect the
calculation of the Ki-67 score. This score is only affected
when there is a confusion between stroma and non-stroma
class. An improvement of the results could be obtained by
computing stroma-masks with a separate network [17]. In
this case, cells would only need to be classified in posi-
tive and negative class, but an additional network would be

needed, thus increasing the computation time.
The final mean absolute error between the ground truth

and the predicted Ki-67 score is 3.89% ±0.04. We can see
that our Dual U-Net model, in average, improves the re-
sults of the HoVer-Net model in both weighted F1-Score
and Mean Absolute Error (MAE) (see examples in Fig. 6).
Additionally, we assess the quality of the uncertainty maps
generated through our approach. Notably, cells with low
staining intensity exhibit higher uncertainty, prompting fur-
ther investigation. We showcase examples where, despite
both ground truth and prediction identifying cells as posi-
tive, the high uncertainty and low staining intensity merit
further review by pathologists. Additionally, we highlight
the necessity of revisiting cases with ambiguous identifica-
tion between non-epithelial cells and either negative or pos-
itive cells. These doubtful cases, which also significantly
impact the Ki-67 score, are also candidates for the ground
truth revision. This insight underscores the potential of em-
ploying uncertainty maps as a tool for active learning, refin-
ing ground truth annotations, and fostering the development
of more robust models.

7. Conclusions
We have presented a system for quantification of Ki-67 im-
ages which overcomes the common problem of overlapping
cells by using two parallel CNNs whose results are merged
with a watershed algorithm. The task of the first network
is semantic segmentation to classify pixels as belonging to
negative, positive, stromal class or background, while the
second network detects the nuclei centers by means of den-
sity estimation.

Since there was no annotated database available we have
also developed a tool for groundtruth generation. This tool,
based on connected component extraction using maxtree,
has proven effective and easy to adapt to the specific fea-
tures of the cells in Ki-67 staining. It is a versatile tool
that can easily be adapted to compute groundtruth for other
histopathological images (different stains or tumors).

Our approach not only surpasses the performance of
the state-of-the-art HoVer-Net in cell detection and clas-
sification across all metrics but also includes a novel
method for epistemic uncertainty estimation using Monte
Carlo Dropout. This methodology allows us to quantify
the model’s prediction confidence, offering invaluable in-
sights into potential inaccuracies or uncertainties within the
ground truth annotations. By leveraging these insights,
we propose an active learning strategy aimed at enhancing
the quality and robustness of our model through iterative
ground truth refinement.

The results show the improvement achieved with respect
to the state of the art network for cell detection and classifi-
cation HoVer-Net. It consistently outperforms HoVer-Net
in each fold across various evaluation metrics, including
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FOLD Model W - F1 M - F1 m - F1 N - F1 P - F1 S - F1 MAE

1 Prop 0.76 0.73 0.68 0.81 0.88 0.49 0.82%
HNet 0.75 0.68 0.65 0.84 0.85 0.34 0.77%

2 Prop 0.69 0.71 0.60 0.71 0.80 0.61 3.36%
HNet 0.62 0.65 0.52 0.67 0.80 0.49 5.47%

3 Prop 0.66 0.69 0.58 0.67 0.77 0.62 9.36%
HNet 0.54 0.61 0.47 0.67 0.75 0.40 10.71%

4 Prop 0.60 0.63 0.52 0.55 0.74 0.61 1.99%
HNet 0.56 0.61 0.45 0.54 0.75 0.56 2.64%

AVG Prop 0.68± 0.07 0.69± 0.04 0.60± 0.07 0.68± 0.11 0.80± 0.06 0.58± 0.06 3.89%± 0.04
HNet 0.62± 0.10 0.64± 0.03 0.52± 0.09 0.68± 0.12 0.79± 0.05 0.45± 0.09 4.89%± 0.04

Table 1. Metrics obtained for each one of the folds and the average among all the five folds. We present the Macro F1-Score (M-F1),
the Weighted F1-Score (W-F1), the Micro F1-Score (m-F1), the F1-Score of the negative class (N-F1), the F1-Score of the positive class
(P-F1) and the F1-Score of the non-epithelial class (S-F1). We also present the Mean Absolute Error of the predicted Ki-67 index (MAE).

Figure 6. Visualization of the predicted results. We can see the original tile (left column), the ground truth (left-middle column), the
predicted output (right-middle column) and epistemic uncertainty heatmap (right column). Regarding the segmentation and classification,
in red we have the positive cells, in green we have the negative cells and, in yellow, the non-epithelial cells. Regarding the epistemic
uncertainty heatmap, the brighter the pixel is, the higher uncertainty it has.

Macro F1, Weighted F1, Micro F1, Negative F1, Positive
F1, and Stroma F1. We have observed that HoVer-Net per-
forms consistent segmentation but fails more often in the
classification between positive and stromal cells.

The performance of both models exhibits some variabil-
ity across the different folds, reflecting the inherent chal-
lenges in medical image analysis. This variance under-
scores the importance of evaluating models across multiple
data subsets to ensure their robustness and generalizability.
The averaged results across folds demonstrate that our sys-
tem maintains its superiority in terms of F1 scores, with
consistently higher scores compared to HoVer-Net. The

lower Mean Absolute Error (MAE) further confirms its ac-
curacy in predicting Ki-67 index, which is actually the met-
ric that the pathologists use to diagnose.

Currently, we are also applying this system for ER and
PR staining, obtaining good quality results, which show the
capability of generalization of the algorithms proposed.
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