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Abstract

Since the onset of the Covid-19 pandemic in late 2019, the
realm of medical image analysis has seen a surge in impor-
tance, particularly with the utilization of CT-scan imaging
for disease diagnosis. This paper presents findings from
our participation in the 4th COV19D competition, specif-
ically targeting the challenges of Covid-19 Detection and
Covid-19 Domain Adaptation. Our methodology revolves
around lung segmentation and Covid-19 infection segmen-
tation, employing the state-of-the-art CNN-based segmen-
tation architecture PDAtt-Unet. Unlike conventional meth-
ods, we introduce a novel approach by concatenating the
input slice (grayscale) with segmented lung and infection,
thereby generating three input channels reminiscent of color
channels. Furthermore, we leverage three distinct 3D CNN
backbones—Customized Hybrid-DeCoVNet, in addition to
pretrained 3D-Resnet-18 and 3D-Resnet-50 models—to fa-
cilitate Covid-19 recognition for both challenges. To further
boost performance, we explore ensemble techniques and
testing augmentation. Comparison with baseline results
highlights the substantial efficiency of our approach, show-
casing a significant improvement in terms of F1-score (14%)
on the validation data. Our approach ranked second and
third in the Covid-19 Detection and Covid-19 Domain Adap-
tation Challenges, respectively, based on the test data results.

Our approach demonstrates improvements of 9.5% and 17%
compared to baseline performance in these challenges. Fur-
thermore, our approach exhibits very promising performance
compared with the approaches of other competitors, under-
scoring the significance of the proposed training paradigm
and the utilization of ensemble and testing augmentation
techniques.

1. Introduction

2. Introduction
Since the onset of the Covid-19 pandemic in late 2019, Re-
verse Transcription-Polymerase Chain Reaction (RT-PCR)
has been widely established as the primary method for Covid-
19 detection. Nevertheless, this testing modality presents
several drawbacks, including limited availability of RT-PCR
kits, lengthy procedures, and a notable incidence of false
negative results [15]. Consequently, medical imaging tech-
niques such as X-rays and CT-scans have gained prominence
as complementary tools for Covid-19 detection [5, 10]. CT-
scans not only serve in identifying Covid-19 infections but
also play a crucial role in monitoring patients’ conditions
and predicting disease severity [4, 10].

In recent years, Deep Learning methodologies have risen
to prominence in computer vision tasks, showcasing remark-
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able performance gains over conventional techniques [3, 6].
However, one of the primary challenges associated with
Deep Learning, particularly in the realm of Convolutional
Neural Networks (CNNs), lies in the necessity for extensive
labeled datasets, a resource often scarce in medical domains
[8, 10]. Furthermore, the majority of existing CNN architec-
tures are tailored for processing static images, which proves
inadequate in capturing the intricacies inherent in medical
imaging data, especially for the volumetric scans [4]. On
the other hand, domain adaptation is one of the most chal-
lenging aspects encountered in medical imaging, owing to
the high variability of data from one center to another due
to the variety of recording settings and scanners. Machine
learning techniques used in computer-aided medical image
analysis usually suffer from the domain shift problem caused
by different distributions between source/reference data and
target data [12].

In our paper, we present an approach to address both
Covid-19 detection and domain adaptation challenges on
the 4th COV19D competition. Our method revolves around
lung segmentation and Covid-19 infection segmentation us-
ing the PDAtt-Unet CNN-based segmentation architecture,
which concurrently segments lung regions and infections.
Departing from traditional methods, we integrate the input
slice with segmented lung and infection, creating three input
channels akin to color channels. We utilize three 3D CNN
backbones— Customized Hybrid-DeCoVNet, pretrained 3D-
Resnet-18, and 3D-Resnet-50 models—to train Covid-19
recognition for both challenges. Additionally, we explore
ensemble approaches and testing augmentation to enhance
performance. Our main contributions are:

• We adopted a Customized Hybrid-DeCoVNet architec-
ture for both Covid-19 Detection and Covid-19 Domain
Adaptation Challenges. This architecture incorporates the
concatenation of the original slice, the segmented lung,
and the segmented Covid-19 infection as the three input
channels.

• In addition to our proposed Customized Hybrid-
DeCoVNet architecture, we leveraged two pretrained 3D-
CNNs: 3D-Resnet-18 and 3D-Resnet-50.

• We explored ensemble approaches and testing augmenta-
tion techniques to enhance the robustness and performance
of our method.

• Our approach demonstrated a substantial improvement in
efficiency compared to baseline results, with a significant
margin in F1-score (14%).

• Based on the test data results, our approach ranked second
and third in the Covid-19 Detection and Covid-19 Do-
main Adaptation Challenges, respectively, Our approach
demonstrates improvements of 9.5% and 17% compared
to baseline performance in these challenges.

• We have made our codes and pretrained models publicly

available in 1

This paper is organized in following way: Section 3 de-
scribes our proposed approaches for Covid-19 Detection and
Covid-19 Domain Adaptation Detection. The experiments
and results are detailed in Section 4. Finally, we conclude
our paper in Section 5.

3. Our Approaches

Our approach is tailored to capitalize on region of inter-
est segmentation, specifically lung segmentation, and in-
fection segmentation alongside input slices from CT scans.
The objective is to develop a model proficient in discerning
COVID-19 cases from non-COVID-19 cases. We evaluate
three baseline architectures: Customized Hybrid-DeCoVNet
[9], 3D-ResNet-18, and 3D-ResNet-50 [13].

3.1. Data Preprocessing

The objective of this phase is to eliminate slices that do not
exhibit any lung structures and to identify lung features in
the remaining slices. Following our previous approach in the
2nd COV19D competition and 3rd COV19D competition
[7, 9], ResneXt-50 [29] is used to filter the CT slices that
does not show lung regions, to concentrate only on the slices
that may have infection.

3.2. Customized Hybrid-DeCoVNet

In this challenge, we adopted our proposed Customized
Hybrid-DeCoVNet which were proposed for Covid-19 sever-
ity prediction, to perform Covid-19 recognition in this chal-
lenge. The first modification is by considering the input
slice, their region of interest segmentation and the infection
segmentation as input, these three images are concatenated
to form 3 channels. For segmenting the lung and infection,
we employed the PDAtt-Unet [8], which simultaneously seg-
ments the infection and lung regions. As illustrated in Figure
1, PDAtt-Unet comprises an Encoder with an input image
pyramid, serving as attention gates for the encoder features
to preserve awareness of salient parts across all encoder lay-
ers. The Decoder of PDAtt-Unet consists of two parallel
decoders, each similar to the Att-Unet decoder [26]. These
decoders are designed to segment the infection and lung
regions (regions of interest). Both the pyramid encoder and
dual decoders aim to maintain awareness of salient parts
during the encoding phase and regions of interest during the
decoding phase.

PDAtt-Unet is trained using three datasets Segmentation
dataset nr. 2 [27], COVID-19 CT segmentation [27] and
CC-CCII [25], each dataset is divided into 70%-30% as
training and validation splits, then PDAtt-Unet is trained on

1https://github.com/faresbougourzi/4th-COV19D-
Competition. ( Last accessed on March, 17th 2024).
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Figure 1. The comparison between Att-Unet [26] and PDAtt-Unet [8] segmentation architectures.

Figure 2. Customized Hybrid-DeCoVNet Approach.

the ensemble of 70% of the three datasets and evaluated on
the ensemble of the their 30%.

As illustrated in Figure 2, Customized Hybrid-DeCoVNet
comprises of four components. First, the three images de-
picting the input slice, the segmented lung and segmented
infection are merged into a three-channel image. This is per-
formed for every slice of the input CT-scans, then all of these
merged 3 channels images are concatenated. For a CT-scan
of N slice this will produce S = 224× 224× 3×N . Since
the number of slices is different from one CT-scan to another,
S is resized into a fixed size of 224 × 224 × 3 × 64. This
resulting volume is fed into the Stem block, which is a 3D
convolutional layer with a kernel of size (7, 7, 5) for height,
width, and depth, respectively. The Stem block transforms
the two input channels into 16 channels and is followed by
Batch Normalization Layer (BN) and ReLU activation func-
tion. The second block of Customized Hybrid-DeCoVNet
consists of four 3D-Resnet layers, which expand the channels
to 64, 128, 256, and 512, respectively. The Classification
Head comprises of 3D Adaptive MaxPooling, three 3D con-

volutional layers, and 3D Global MaxPooling. The output
of the Classification Head is flattened into a single-channel
deep feature map and fed into the Decision Head, which
consists of one FC layer that has two outputs (Non-Covid-19
and Covid-19). Our proposed architecture is designed to
enhance the performance of Covid-19 Prediction. It should
be noted that Customized Hybrid-DeCoVNet does not have
any pretrained weight in contrast with 3D-Resnet-18 and
3D-Resnet-50.

3.3. 3D-Resnet-18 and 3D-Resnet-50

In addition to our proposed Customized Hybrid-DeCoVNet,
we evaluated the use of pretrained 3D CNN architectures.
To this end, we used the pretrained 3D-Resnet-18 and 3D-
Resnet-50 from [13]. These pretrained models were trained
for action recognition from 3D-video. For 3D-Resnet-18, the
pretrained weights was trained on the ensemble of Kinetics-
700 and Moments in Time datasets. While, 3D-Resnet-50
was trained on the ensemble of Kinetics-700, Moments in
Time, STAIR-Actions datasets. To adopt these models for
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Table 1. Datasets summary of the 4th COV19D Competition. 494 Non annotated

Sub-Competition Train Validation
Covid-19 Non-Covid-19 Covid-19 Non-Covid-19

Covid-19 Detection Challenge 703 655 170 156
Covid-19 Domain Adaptation Challenge 120 120 56 113

Covid-19 recognition, we changed the decision layer to give
2 output which corresponds to Non-Covid-19 and Covid-19
classes.

4. Experiments and Results
4.1. The COV19-CT-DB Database

In this competition, the COVID19-CT-Database (COV19-
CT-DB) [1, 2, 16–21] is used for two sub challenges, which
are Covid-19 Detection Challenge and Covid-19 Domain
Adaptation Challenge. In Covid-19 Detection Challenge,
many CT scans have been aggregated, each one of which
has been manually annotated in terms of Covid-19 and non-
Covid-19 categories. The resulting dataset is split into train-
ing, validation and test partitions. The provided training
and validation partitions for developing the approach are
summarized in Table 1.

In the second challenge, Covid-19 Domain Adaptation
Challenge, CT scans have been aggregated from various
hospitals and medical centres. Each CT scan has been manu-
ally annotated with respect to Covid-19 and non-Covid-19
categories. The resulting dataset is split into training, vali-
dation and test partitions. Participants will be provided with
a training set that consists of: i) the annotated data of the
1st Challenge which are aggregated from some hospitals and
medical centres (case A); ii) a small number of annotated
data and a larger number of non-annotated data (case B), all
of which are aggregated from other hospitals and medical
centres and their distribution is different from that of case
A. Participants will be provided with a validation set that
consists of a small number of annotated data of case B.

4.2. Experimental Setup

We utilized the Pytorch Library and four NVIDIA GPU De-
vice GeForce TITAN RTX 16 GB for Deep Learning training
and testing. The batch size of 16 CT-scan volumes was used
to train the Customized Hybrid-DeCoVNet and 3D-Resnet-
18 architectures for 80 epochs. While, a batch size of 8 is
used to train 3D-Resnet-50 for 40 epochs. Warm up Cosine
learning rate Schedule is adopted with initial learning rate
of 0.0001. The following data augmentations are used for
training and testing augmentation approach: random rotation
with an angle between -40◦ to 40◦, vertical and horizontal
flipping with a probability of 20% for each, Multiplicative

Noise, Random Brightness, Random Brightness Contrast,
Random Contrast, and Random Grid Shuffle .

Table 7. Covid-19 Detection Challenge Submissions

Sub Macro F1-score Non-Covid-19 Covid-19
1 93.30 94.40 92.20
2 93.50 94.63 92.37
3 92.75 93.86 91.64
4 93.67 94.71 92.63
5 94.60 95.53 93.66

Table 8. Covid-19 Detection Challenge Final Results

Approach F1-score Non-Covid Covid
MDAP [28] 94.89 95.97 93.81
Deep-Adaptation 94.60 95.53 93.66
ACVLAB[14] 94.39 95.52 93.26
FDVTS[23] 94.24 95.41 93.07
ViGIR Lab[11] 93.63 94.97 92.29
M2@Purdue[24] 90.14 92.06 88.22
baseline [22] 85.11 87.48 82.74

Table 10. Covid-19 Domain Adaptation Challenge Final Results

Sub Macro F1-score Non-Covid-19 Covid-19
1 74.96 96.52 53.39
2 73.67 96.10 51.25
3 64.74 92.48 37.00
4 74.33 96.23 52.44
5 63.23 91.50 34.97

4.3. Results

4.3.1 Results of the first sub-challenge

In this part, we used the training data of Covid-19 Detection
Challenge (first challenge) and the validation data to train
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Table 2. Results of the first Sub-challenge without testing augmentation

Architecture Val1 Train2 Val2
Accuracy F1-score Accuracy F1-score Accuracy F1-score

Customized Hybrid-DeCoVNet 92.33 92.33 83.75 83.72 82.58 82.09
3D-Resnet-18 91.41 91.41 82.08 81.88 83.70 82.59
3D-Resnet-50 91.41 91.40 84.58 84.58 83.70 82.59
Ensemble 91.10 91.10 85 84.93 83.70 82.59

Table 3. Results of the second sub-challenge without testing augmentation

Architecture Val1 Val2
Accuracy F1-score Accuracy F1-score

Customized Hybrid-DeCoVNet 92.33 92.33 83.14 80.64
3D-Resnet-18 92.33 92.32 87.07 85.60
3D-Resnet-50 92.63 92.60 84.26 82.92

and save the best model on the validation data after each
epoch, this two splits will be denoted as Train1 and Val1.
We also used the training and validation data of the Covid-
19 Domain Adaptation Challenge (the second challenge) to
evaluate the performance of our approach in unseen data,
these two splits will be denoted as Train2 and Val2. Table
2 summarizes the obtained results. From these results, it is
noticed that the performance on the Train2 and Val2 splits
decreased compared with the results on Val1, this is due to
the change of data domain. However, the drop in results
in not too big, this shows that our approach can achieve a
good result. On the other hand, the ensembling approach
achieves better performance on Train2 compared with the
single architectures.

4.3.2 Results of the second sub-challenge

In the second sub-challenge, we combined the training data
of Covid-19 Detection and Covid-19 Domain Adaptation
challenges (Train1+Train2) in order to compare the perfor-
mance of the three backbones in the scenario where the
training data is augmented. The obtained results are sum-
marized in Table 3, in which, Val1 and Val2 correspond to
the validation of the first and the second challenge, respec-
tively (correspond to the same splits used in Table 2). By
comparing the results of Tables 2 and 3, it is noticed that
augmenting the training data improve the performance of the
three backbones, especially 3D-Resnet-18.

Table 4 depicts the results of using testing augmentation,
in which, each CT-scan is augmented ten times and the CT-
scan prediction corresponds to the average probabilities of
the prediction of the ten augmentations. Compared with
the results of Table 3, using testing augmentation further

improves the performance.

4.4. Comparison with the Baseline On the Valida-
tion Data

Table 5 depicts the comparison with the baseline results from
[22]. The comparison of our approach and the baseline re-
sults shows that our approach achieved better performance
on both challenges. In more details, our approach achieved
better performance than the baseline approach by 14.33% in
terms of F1-score for Covid-19 Detection Challenge. Sim-
ilarly for Covid-19 Domain Adaptation Challenge, our ap-
proach achieved better performance than the baseline by
14.52% in terms of F1-score.

4.5. Covid-19 Detection Challenge Results on the
Test Data

Since it is allowed to have five submissions in the Covid-19
Detection Challenge, the details of the first four submissions
are summarized in Table 6. The fifth submission is an en-
semble of the four models from the previous submissions,
achieved by averaging the prediction probabilities of each
class.

Table 7 summarizes the results obtained on the testing
data. It is noticed that the four single models have achieved
similar results, with slightly better performance observed
when using 3D-Resnet-50. Despite the proposed Customized
Hybrid-DeCoVNet not having pretrained weights, it achieves
very similar results to the pretrained ones (3D-Resnet-18
and 3D-Resnet-50). Additionally, it should be noted that
the Customized Hybrid-DeCoVNet does not explore testing
augmentation techniques, as they did not show effective-
ness with this architecture on the validation data. The best
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Table 4. Results of the second sub-challenge with testing augmentation

Architecture Val1 Val2
Accuracy F1-score Accuracy F1-score

Customized Hybrid-DeCoVNet 91.41 91.40 84.83 83.23
3D-Resnet-18 92.33 92.33 88.76 87.52
3D-Resnet-50 92.33 92.33 85.39 84.34
Ensemble 92.33 92.33 88.20 87.14

Table 5. Results Comparison with the baseline

Architecture sub-challenge 1 sub-challenge 2
Accuracy F1-score Accuracy F1-score

Baseline [22] - 78 - 73
Customized Hybrid-DeCoVNet 91.41 91.40 84.83 83.23
3D-Resnet-18 92.33 92.33 88.76 87.52
3D-Resnet-50 92.33 92.33 85.39 84.34
Ensemble 92.33 92.33 88.20 87.14

performance on the testing data was achieved by the en-
sembling approach of the four models from the first four
submissions. This highlights the importance of using predic-
tions from multiple models to achieve better performance.
Table 8 summarizes the comparison with the models from
other challenge teams, where our approach ranked second.
Furthermore, it is observed that the narrow margin of differ-
ence, merely 0.5% between the top 4 teams, underscores the
fierce competition and high level of expertise demonstrated
across all participants, reflecting the intense nature of the
challenge.

4.6. Covid-19 Domain Adaptation Challenge Re-
sults on the Test Data

For the Covid-19 Domain Adaptation Challenge submis-
sion, we selected three trained models and two ensembling
approaches. The details of the first three submissions are
summarized in Table 9. Notably, the first and second submis-
sions correspond to the second and third submissions of the
previous challenge, as outlined in Table 6. In the third sub-
mission, we utilized the second trained model (submission
2) to predict pseudo labels for the unlabelled data. Subse-
quently, we trained a new model using Train1, Train 2, and
the unlabelled data with the pseudo labels. For the fourth
and fifth submissions, we employed average probabilities
ensembling and a Covid-19 domination strategy. In the latter,
if any model among the first three predicts the CT-scan as
Covid-19, the ensembling prediction is Covid-19.

The results of these five submissions and a comparison
with other participant approaches are summarized in Ta-

bles 10 and 11, respectively. Notably, the first submission
achieved better performance than the other four submissions.
Additionally, using pseudo labels resulted in a reduction in
performance of the 3D-Resnet-50 model compared to train-
ing the model without utilizing the unlabelled data. This
decrease is likely due to inaccuracies in the predicted pseudo
labels, which can mislead the model. Despite a consider-
able drop in performance of the third model in the third
submission compared to submissions 1 and 2, ensembling
did not significantly influence the overall performance from
the fourth submission onwards. This underscores the im-
portance of selecting appropriate models for ensembling to
improve performance. Furthermore, the second ensembling
approach proposed in the last submission was found to be
unsuitable for this task. Our approach ranked third, with only
four teams achieving better performance than the baseline,
as shown in Table 11. This shows that domain adaptation is
very challenging task in medical field, including Covid-19
Detection.

5. Conclusion
In this paper, we introduced a new approach for addressing
the Covid-19 Detection and Covid-19 Domain Adaptation
Challenges. Our approach primarily leveraged lung seg-
mentation and Covid-19 infection segmentation through the
utilization of state-of-the-art CNN-based segmentation ar-
chitecture, namely PDAtt-Unet. This architecture enables
simultaneous segmentation of lung regions and infections.
Rather than feeding individual input slices to the training
network, we concatenated the input slice (grayscale) with
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Table 6. Covid-19 Detection Challenge Submissions

Sub Backbone Training Data Test Augmentation
1 Customized Hybrid-DeCoVNet Train1+Train2 No
2 3D-Resnet-18 Train1+Train2 Yes
3 3D-Resnet-18 Train1+Train2+Val1+Val2 Yes
4 3D-Resnet-50 Train1+Train2 Yes
5 Ensemble - -

Table 9. Covid-19 Domain Adaptation Challenge Submissions

Sub Backbone Training Data Test Aug
1 3D-Resnet-18 Train1+Train2 Yes
2 3D-Resnet-18 Train1+Train2+Val1+Val2 Yes
3 3D-Resnet-18 Train1+Train2 +Pseudo Label Yes
4 Ensemble 1 - -
5 Ensemble 2 - -

Table 11. Covid-19 Detection Challenge Submissions

Approach F1-score Non-Covid Covid
FDVTS [30] 77.55 96.97 58.14
MDAP [28] 77.21 96.82 57.60
Deep-Adaptation 74.96 96.52 53.39
M2@Purdue [24] 65.79 91.92 39.66
baseline [22] 60.16 86.67 33.65

the segmented lung and infection, resulting in three input
channels akin to color channels.

Moreover, we employed three distinct 3D CNN back-
bones to train Covid-19 recognition for both challenges:
Customized Hybrid-DeCoVNet, as well as pretrained 3D-
Resnet-19 and 3D-Resnet-50 models. To further enhance
performance, we investigated ensemble approaches and test-
ing augmentation techniques. Comparative analysis against
baseline results demonstrates the significant efficiency of our
proposed approach, exhibiting a substantial margin in terms
of F1-score (14%). Our approach ranked second and third
in the Covid-19 Detection and Covid-19 Domain Adapta-
tion Challenges, respectively, based on the test data results.
Our approach demonstrates improvements of 9.5% and 17%
compared to baseline performance in these challenges. Fur-
thermore, our approach exhibits very promising performance
compared with the approaches of other competitors, under-
scoring the significance of the proposed training paradigm
and the utilization of ensemble and testing augmentation
techniques. Thus contributing to the ongoing efforts in com-
batting Covid-19 pandemic and the future ones.
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