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Abstract

The last radiology report by the Royal College of Ra-
diologists has identified the pressure that radiologists are
suffering due to excessive workloads levels. This is due to
the availability of a growing number of images and a short
time to provide the report, making the diagnosis a difficult
process. This suggests that the visualization of the radiol-
ogist should be accompanied, somehow, by an automatic
“explainable” process. In this paper, we give emphasis to
the breast cancer as it is one of the most common types of
cancer in women. Specifically, we deal with mammography
images because it is a primary step to be accomplished in
an early radiological breast diagnosis. Although machine
learning models are being used in medical imaging, these
models still struggle to provide enough interpretability to
provide reliability in the decision-making process of the ra-
diologist. In this work, we explore solutions that improve an
explainable model’s performance in mammography classi-
fication. We propose the use counterfactual information for
improving the breast classification task. We compare multi-
ple approaches to the integration of counterfactual informa-
tion into the training process. The experimental evaluation
testifies that incorporating such counterfactual information
improves both balanced accuracy and interpretability for
the breast classification task.

1. Introduction
The last radiology report by the Royal College of Radiol-
ogists [1] underscores the significant strain radiologists are
under due to excessive workloads levels. These pressing
issues not only adversely affect the working conditions of
radiologists, but also lead to an unavoidable delay and in-
accurate diagnoses, potentially resulting in poor treatment
outcomes for patients. One of the reasons is that the uti-
lization of medical imaging, particularly advanced imag-
ing techniques, has grown considerably over the past two
decades [8]. Various factors have contributed to this trend.
The development of modern imaging technology is notable.
It has improved image acquisition by reducing imaging

times, and image quality has achieved better resolution with
a decreasing radiation dose. The advances above, i.e. in the
accessibility and accuracy of medical imaging enabled radi-
ologists to obtain larger information records to conduct the
diagnosis [20]. However, and interestingly, the short time-
interval to obtain the diagnosis remains unchanged, con-
tributing for an increase pressure in the radiological work-
flow. This suggests that, somehow, the visualization process
of the radiologist should accompany with an explainability
or interpretability, and thus facilitating the diagnosis.

Although deep learning (DL) based methodologies are
being successfully used to diagnose medical images [14,
26], they still struggle to provide enough explanations, but
even when the explanations are available, its origin must be
carefully investigated.

In the ML or DL context, interpretability can be catego-
rized into two paradigms: (i) as an inherently interpretable
model, providing not only the result but also additional in-
formation about how the result was obtained as a part of
their normal functioning [3, 4, 6] and (ii) to apply post-hoc
explanation methods to analyze and explain the decisions of
a trained or deployed black-box model [7, 16].

In either case, interpretability may uncover a hidden
problem that DL models have with confounding factors,
that is, using the wrong information to obtain the final and
eventually the correct outcome [3]. As such, deep learn-
ing models often resort to alternative (confounding) details
in the image, with no medical relevance, to predict the cor-
rect diagnosis. Concretely, it is possible to identify (and
quantify) the use of confounding information [7], and de-
vise strategies to prevent their use in the decision process.

In this paper, we give emphasis to the breast cancer as it
is one of the most common types of cancer in women, and
because it surpassed lung cancer as the most common type
of cancer worldwide, with the highest incidence and second
highest mortality rate [8]. Specifically, we deal with mam-
mography images, since it is a primary diagnostic method
used to diagnose breast neoplasia [11]. Inspired by [4], our
methodology is based on a deep network having a built-
in case-based reasoning process whose explanations are not
created post-hoc but used during breast classification, in-
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stead. We explore solutions that improve the explainable
model’s performance in mammography classification, by
proposing the use of annotations of regions with lesions to
generate counterfactual information for use in training.

2. Related work

The black box nature of the deep neural networks puts ra-
diologists off right to start, thus making the explainability
an imperative issue to be included in the diagnosis. As
mentioned in Sec. 1, explainability can be achieved in two
ways. In post-hoc analysis there exist works that interpret a
trained deep network by fitting explanations to perform the
classification task. This includes works based on activation
maximization [10, 15, 22], or saliency [13, 15, 17, 18],
for deep visualization. Interpretability, can also be achieved
with attention, e.g. [5, 24, 25], where the model’s output
highlight the image regions when making decisions. How-
ever, such models are unable to provide a reasoning about
which regions they are looking at. Our proposal is inspired
in the ProtoPNet [4] to surpass the limitation above. Con-
cretely, this network provides the reasoning above by ex-
posing parts (i.e. prototypes or cases) to which they focus
on are similar. This somehow resembles the visualization
process of the radiologists. For example, radiologists com-
pare suspected tumors in X-ray scans with prototypical tu-
mor images for diagnosis of cancer [21].

Counterfactual explanations (CFEs) - an emerging tech-
nique under the umbrella of ML interpretability models -
have shown to help the model to focus on the correct path-
ways towards the final decision [12]. With the use of CFEs
it is possible to overpass the limitations of DL models,
namely, its susceptibility to learn spurious correlation [23]
and amplifying biases [19]. These counterfactual examples,
commonly used in causal inference, are generated by mod-
ifying known examples with specific interventions, leading
to new examples with possibly alternative expected outputs.
In this work, by using an inherently interpretable model and
incorporating counterfactual data into the training process,
we aim to prevent the use of confounding information to ob-
tain the diagnosis. In this process, we improve not only the
explanations given by the model but also its performance in
the diagnosis of mammography images.

3. Proposed Approach

In this section we start by describing the learning process
based on prototypes (Sec. 3.1), followed by its reformu-
lation to account for binary breast classification problem,
as well as the incorporation of counterfactual information
(Sec. 3.2).

3.1. Prototypical Learning

In prototypical learning [4], it is assumed that the network
will learn a set of prototypes P = {P1,P2, ...,PK} in a
dataset D with K classes, where Pk = {pk

j }Jj=1 is the set
of J prototypes in the k-class, with pk

j denoting the j-th
prototype in the k-class, and where k = {1, ...,K} indexes
the classes in D. The network consists of a tree-stage archi-
tecture, containing (i) convolution network c with parame-
ters wc, (ii) prototype layer p, and (iii) a fully connected
layer f , with parameter wf . See top branch in Fig. 1. The
training process is also characterized by the following three
stages:
1) Stochastic gradient descent (SGD): In this stage, the
latent space of the most meaningful patches of the input im-
age are learned. This is achieved by clustering the patches
with semantically similar prototypes of the true classes.
The clustering is achieved by computing the square dis-
tances between the j-th prototype, pk

j , of the k-class and
the convolutional output z = c(x), obtaining the distance
dkj = ∥z − pk

j ∥22. Inverting the distance dkj , this results in
an activation map of similarity scores whose value indicates
how strong a prototypical part z is present in the image. For-
mally, given the convolutional output z, the prototype unit
of the k-class, ppk

j
computes

ppk
j
= max

z̃∈patches(z)
log

{
(dkj + 1)/(dkj + ϵ)

}
(1)

where ϵ = 10−4 is a regularization constant (in the experi-
mental evaluation we set ϵ = 10−4).

From the above, we conclude that in the SGD process,
the most meaningful patches z, for the classification task,
are grouped around semantically similar prototypes pk

j of
the images’ true classes. However, such classes must be
well-separated, that is, the clusters that are centered at
prototypes from different classes must have well defined
boundaries. This means that clustering and separability
must be both optimized. This is achieved by jointly opti-
mizing the parameters of the convolutional layers wc and
the prototypes Pk, with k = 1, ...K, in the prototype layer
pp, and keeping the parameters wf freeze.

Assuming a training dataset D = {(xi, yi)}Ni=1, we aim
to minimize the three-term loss function

L = min
P,wc

1

N
min

N∑
i=1

LCE(ŷi, yi)+λ1LClst+λ2LSep (2)

where ŷi = (f ◦pp ◦ c(xi)) is the predicted label, LClst and
LSep stands for the clustering and separability term losses,
respectively, and given by

LClst =
1

N

N∑
i=1

min
j:p

k=yi
j

min
zi∈patches(c(xi))

∥zi − pyi

j ∥
2
2 (3)
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Figure 1. Diagram of the proposed model’s architecture, with the classification of the whole image (top branch) and the counterfactual
classification of the image without the regions of interest (bottom branch). In the network three main blocks can be seen: (i) convolution
layers c with parameters wc (left), (ii) prototype layers pp (middle), and (iii) fully connected layers f with parameters wf (right).

LSep =
1

N

N∑
i=1

min
j:p

k ̸=yi
j

min
zi∈patches(c(xi))

∥zi − pk
j ∥22 (4)

The minimization in (3) promotes each training image
xi, (with label yi) to have some latent patch zi close to a
prototype pyi

j for some j ∈ {1, ..., J}. The minimization
in (4), promotes every latent patch zi of a training image xi

(with label yi) to stay away from the prototypes not of its
own class yi, that is, pk

j , such that k ̸= yi.

2) Prototype projection: This learning step aims es-
sentially to visualize the prototypes as training images.
This is performed through a projection of the prototype pk

j

onto the closest latent training patch zi, such that it belongs
to the same class of the prototype pk

j . Formally, the update
of the prototype is as follows

pk
j ← arg min

zi∈Zj

∥zi − pk
j ∥22 (5)

where Zj = {zi : zi ∈ patches(c(xi)), such that k =
yi}.

3) Convex optimization in f layer: As it is men-
tioned in the SGD training stage, the wf parameters are
kept frozen. Denoting wk,j

f as the parameter weights
associated to the connection between the prototype unit
ppj

and the logit class k = cℓ. Such freezing mecha-
nism is straightforwardly achieved by fixing wk,j

f = 1,
∀j ∈ 1, ..., J , with pk=cℓ

j and wk,j
f = −0.5, ∀j ∈ 1, ..., J ,

with pk ̸=cℓ
j .

The goal of this stage is to provide sparsity to the final
model, that is wk,j

f ≈ 0, instead of the initial value of −0.5.
Such optimization is performed as follows

min
wf

1

N
CE(ŷi, yi) + λ3

K∑
k=1

∑
j:pk ̸=cℓ

j

|wk,j
f | (6)

where ŷi = (f ◦ pp ◦ c(xi)).

3.2. Counterfactual Learning

To achieve a proper binary task classification for the breast
diagnosis, and to account for the counterfactual information
in the prototype learning, the architecture network must be
reformulated. Now, given an image xi with the correspon-
dent image label yi (i.e., yi = 1 if xi contains lesion(s),
yi = 0, otherwise), the model must have two outputs: (i)
the predicted classification of the breast image ŷi, and (ii)
the counterfactual classification of the image xi, that is, the
classification of the image xi, if the region(s) of interest
(ROI) (i.e., the region(s) containing the lesion(s)) were re-
moved. Formally, let xi : Ω 7→ R, with Ω the image lattice,
the counterfactual classification function is given as:

Fc : Ω \ R 7→ {0, 1} (7)

with the positive regions R = {R1, ..., Rn} ∈ ROI in xi.
We denote x′

i as the image xi removing the positive re-
gion(s) in R, and y′i the corresponding label, that is, the
output of the function Fc above. Particularly, in our case,
the regions can be obtained by either using breast lesion de-
tector (i.e., the masses in X-ray) [2], or be defined manually.
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In order to obtain a second classification y′i, we introduce
a second branch (see Fig. 1 bottom branch) taking advan-
tage of the prototype layer pp. From Sec. 3.1, we see that
for each convolutional output patch in c and for each proto-
type pk

j , the prototype layer has the following two stages:
(1) computation of the distances dkj (recall (1)), and (2) an
inversion step into similarity scores. Thus, we proceed as
follows: first, we make a copy of the distances dkj from the
top to the bottom branch before the stage (2) above. Sec-
ond, we apply a mask M to remove the positive regions in
R, (i.e. the ROI), obtaining the counterfactual distance

d ′ k
j = dkj ⊙M (8)

where ⊙ represents the element-wise multiplication oper-
ator. The rationale behind (8) is that after inversion, the
distance d ′ k

j should be as minimal as possible not having
an impact in the classification.

Notice that M is a binary mask containing the regions
to be removed from the input image. This is illustrated in
Fig. 1 (bottom-left), where it can be seen the white bound-
ing box masking the mass lesion present in the image. With
the modification above, we can then train the model using
this second output as counterfactual in positive images.

To integrate the new counterfactual output into training,
we modify the loss in (2). Specifically, we introduce the
following three terms:

S1 = LCE(ŷ
′
i, y

′
i)

S2 = LClst(z
′
i, y

′
i)

S3 = LSep(z
′
i, y

′
i)

(9)

where ŷ ′
i are the model’s counterfactual predictions, y′i are

conterfactual labels of x′
i, (i.e., the label of xi after remov-

ingR from xi), and z′i are the patches of convolutional out-
put, i.e. z′i ∈ patches(c(x′

i)).
For the strategy of “J”oining the standard and counter-

factual outputs, we can use J1, J2 and J3 as follows:

J1 = LCE(ŷi ⊕ ŷ ′
i, yi ⊕ y′i)

J2 = LClst(zi ⊕ z′i, yi ⊕ y′i)

J3 = LSep(zi ⊕ z′i, yi ⊕ y′i)

(10)

where⊕ represents concatenation operator. In (10), we aim
to explore several combinations and evaluating the impact
of the two branches of the network, for each cross-entropy,
separability and clustering terms, as we thoroughly detail in
Sec. 4.

4. Experimental Setup
For this work we used the INBreast dataset [9], which is
a public benchmark breast dataset. It consists in 410 im-
ages in DICOM format with 3328 × 4084 or 2560 × 3328

Table 1. Balanced accuracy and interpretability of different loss
strategies with fully augmented no lesion vs has lesion dataset. The
scores in bold highlights better performance against the baseline
(ProtoPNet).

Model B. acc. Interpretability
ProtoPNet 0.55 0.12

ProtoPNet with S1 0.49 0.08
ProtoPNet with S1+S2 0.72 0.20

ProtoPNet with S1+S2+S3 0.53 0.06
ProtoPNet with J1+J2 0.62 0.24

ProtoPNet with J1+J2+J3 0.61 0.37
ProtoPNet with J1+J2+S3 0.63 0.21

pixels, depending on the breast size of the patient. The BI-
RADS1 labels for each image and segmentation masks for
the masses are also provided. Before the data is given as
input to the model for training, the images were downsam-
pled to 224× 224, while the segmentation masks resized to
7× 7.

We tested the model in two binary classification scenar-
ios: (i) no lesion vs has lesion, and (ii) benign vs malig-
nant. These are the most used scenarios in radiology. The
first one, can be interpreted a selection or dividing positive
cases from negative cases. The second one, corresponds to
refine the positive cases into one of the benign or malignant
classes. In the first scenario, the image is considered as ma-
lignant (positive class) if it has a BI-RADS > 3, otherwise
it is benign (negative class). In the second scenario, only
the images with a label of BI-RADS = 1 are considered no
lesion (negative class).

Two different data augmentation processes were com-
pared: “full augmentation” comprising horizontal flipping,
random rotation (up to 15◦), random skew (0.2 magnitude)
and random shear (up to 10◦); and “semi augmentation”
with just the horizontal flipping and random rotation. These
two different type of regularization processes come from the
fact that, during the experiments, the accuracy performance
depended on the transformation that had been used. Thus,
these two types of regularization serve to better systematize
the results and to discover what is the best way to perform
the ProtoPNet regularization. Also, this allow us to com-
pare the results and to discover if the “semi augmentation”
process can achieve similar results to “full augmentation”
as the smaller dataset would result in faster training of the
network.

To evaluate the classifier’s performance, two metrics
were used, one for the accuracy of the model and other for
the corresponding interpretability. For measuring the ac-
curacy of the model we used the balanced accuracy, i.e.
B.acc. = (Sensivity + Specificity)/2. This metric is

1Breast Imaging-Reporting and Data System, is a quality assurance
tool originally designed for use with mammography to grade the lesion
severity.

4999



Table 2. Balanced accuracy and interpretability of different loss
strategies with fully augmented benign vs malign dataset. The
scores in bold highlights better performance against the baseline
(ProtoPNet).

Model B. acc. Interpretability
ProtoPNet 0.67 0.19

ProtoPNet with S1 0.78 0.22
ProtoPNet with S1+S2 0.75 0.44

ProtoPNet with S1+S2+S3 0.72 0.31
ProtoPNet with J1+J2 0.73 0.35

ProtoPNet with J1+J2+J3 0.77 0.37
ProtoPNet with J1+J2+S3 0.72 0.46

preferable over accuracy because the INbreast dataset is im-
balanced. In concrete, the benign vs malignant case, we
have 310 negative images and 100 positive and in the no
lesion vs has lesion case, we have 67 negative images and
343 positive. For the model’s interpretability, we measured
how much of the activation of the positive prototypes was in
the region of interest, since it quantifies how good that pro-
totype is at detecting relevant features to the classification.
The interpretability measure is given as

Interpretability =

∑
j:p

k=yi
j

(M ∩A(pk
j ))∑

j:p
k=yi
j

A(pk
j )

, (11)

where M is the binary mask for the ROI and A(pk
j ) is ac-

tivation map of the the prototype pk
j for a given class yi of

the image xi.

5. Results
We perform the experimental evaluation exploring diverse
loss strategies evaluating the inclusion of the counterfactual
information into each of the cross-entropy, separability and
clustering terms as in eq. (10), and also, how the two differ-
ent data augmentation strategies impact on both the classi-
fication scenarios (i.e. no lesion vs has lesion, and benign
vs malignant).

First, we have evaluated the fully data augmentation
for the two classification scenarios. Tables 1, 2 report
these results. It can be seen that from the 12 experiments,
10 provided better results when compared to the baseline
(i.e. without the use of counterfactual information), exhibit-
ing an increased in both the balanced accuracy and inter-
pretability. These experiments also show that the proposed
solution is a viable way to reduce the use of confounding
information, as shown in Fig. 2 and to reduce the accuracy
gap between ProtoPNet and black-box models.

In the second set of experiments, we tested some of the
best performing loss combinations of the previous set of ex-
periments in the semi augmented dataset on both classifica-
tion tasks. The obtained results are shown in Tabs. 3, 4.

Table 3. Balanced accuracy and interpretability of different loss
strategies with semi augmented no lesion vs has lesion dataset.
The scores in bold highlights better performance against the base-
line (ProtoPNet).

Model B. acc. Interpretability
ProtoPNet 0.57 0.10

ProtoPNet with S1+S2 0.51 0.06
ProtoPNet with J1+J2+J3 0.53 0.20

Table 4. Balanced accuracy and interpretability of different loss
strategies with semi augmented benign vs malign dataset. The
scores in bold highlights better performance against the baseline
(ProtoPNet).

Model B. acc. Interpretability
ProtoPNet 0.48 0.11

ProtoPNet with S1+S2 0.67 0.16
ProtoPNet with J1+J2+J3 0.56 0.08

In these experiments we are able to observe that, al-
though the results are not massively better in the both met-
rics as in the previous experiment (in Tabs. 1, 2), we should
highlight that in Tab. 3 the configuration “J1+J2+J3” dou-
bles the interpretability performance regarding the baseline.
Concerning the Tab. 4, we also observe that a significant
improvement in the balance accuracy is achieved. Despite
the obtained reduced training time with more restricted aug-
mentation process, these results are important to highlight,
as they help to design the regularization methodology to
be adopted. In particular, the ProtoPNet requires extensive
data augmentation for medical imaging applications.

6. Conclusions

The main goal of this work is to demonstrate that the incor-
poration of counterfactual information improves the classi-
fication accuracy in the radiological diagnosis. In partic-
ular, and from our experiments, we see that there is an im-
provement in both the balanced accuracy and interpretabilty
in most of loss strategies, notably in the separate cross en-
tropy and cluster losses, as well as all losses joined. Further
work, will include more precise counterfactual information.
The radiologist may be interested in removing benign le-
sion from the image, and concentrate the attention only in
the presence of malignant lesions. It this way, can be ben-
eficial the inclusion of a text prompt detailing and refining
what is the best counterfactual information for the reliability
of the diagnosis.

7. Compliance with Ethical Standards

This research study was conducted retrospectively using hu-
man subject data made available in open access. Ethical
approval was *not* required.
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Figure 2. Qualitative comparison of an example test image in fully augmented benign vs malign dataset.
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