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Abstract

Whole Slide Images (WSIs) have significantly advanced
the field of pathology by providing highly detailed views of
tissue samples. Integrating Deep Learning (DL) into this
area of research, particularly through transformer-based
foundational models, has marked a new era in automated
image analysis. These foundational models are adept at ex-
tracting features from WSIs, an essential step in their anal-
ysis process. The subsequent application of weakly super-
vised learning techniques combines these features to pre-
dict critical biomarkers, such as BRAF mutations and sen-
tinel lymph node (SLN) biopsy positivity, which are vital
in guiding patient treatment strategies. However, the lim-
ited availability of labelled datasets in pathology hinders
the usefulness of DL models. Domain adaptation strategies
adeptly overcome this hurdle, enabling model knowledge
transfer between different tissue types, thus addressing data
scarcity. Our study employs a form of domain adaptation
by fine-tuning two DINOv2 models, one pre-trained on nat-
ural images and the other on WSI of colorectal cancer from
the TCGA dataset, adapting them for melanoma analysis.
We also incorporate a comparison with features extracted
by a third DINOv1 model trained solely on WSIs of breast
cancer. With this approach, we find some notable success
in detecting BRAF mutations. Nonetheless, predicting SLN
positivity presents a more intricate challenge, largely due
to the indirect correlation between local histopathological
features in WSIs of primary tumours and lymph node metas-
tasis manifestation. This dual-faceted approach not only
combats the issue of limited data but also showcases the po-
tential for enhanced accuracy in the field of digital pathol-
ogy.

1. Introduction
Early detection of biomarkers is a critical component of
effective cancer management, significantly impacting both
the prognosis and the quality of life of skin cancer patients
[12, 27, 34]. Melanoma is the most aggressive form of skin
cancer, with a high rate of metastasis and mortality if not
detected and treated early. It is the fourth leading cause of
cancer-related mortality worldwide [24]. Timely identifi-
cation of this condition allows for tailored therapeutic ap-
proaches, which can considerably enhance the prospects of
patient survival and quality of life [13].

Advancements in skin cancer research have significantly
benefited from the identification of biomarkers associated
with the disease’s development. Among them, mutations
in the BRAF gene are of particular importance. Involved
in cell growth and division, alterations in this gene play a
critical role in melanoma progression [6, 8]. The detection
of BRAF mutations offers a pathway to more personalized
healthcare strategies, enabling clinicians to align surveil-
lance and treatment more closely with individual genetic
profiles. This approach opens avenues for integrating tar-
geted therapies that specifically counteract the oncogenic
effects of these mutations [6], thereby enhancing the effi-
cacy of skin cancer treatment.

Furthermore, the sentinel lymph node (SLN) biopsy has
become a standard procedure in melanoma management
[32]. This procedure involves removing a small group of
lymph nodes from the armpit or groin to check for cancer
cells. The SLN is considered a sentinel node because it is
the first node to which cancer cells would likely spread if
they were present in the body [3]. A positive SLN biopsy,
indicating the presence of cancer cells, guides the treatment
plan, including the extent of surgery and the type of radia-
tion therapy to be administered [3, 13].

The gold standard in pathology is the analysis of Whole
Slide Images (WSI). These gigapixel images are revolution-
izing pathology by providing high-resolution digital envi-
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ronments for analysis. Nonetheless, the processing of WSI
encounters significant challenges, notably the variability in
staining protocols, imaging equipment, and tissue prepara-
tion techniques, which can differ widely within and between
hospitals and images. This variability, coupled with the vast
scale of the images, demands robust computational solu-
tions where the interplay of medical knowledge and tech-
nological innovation becomes most evident.

Self-supervised learning (SSL) has risen as a tool to
obtain robust feature extractors by leveraging the intrinsic
patterns and structures present in unlabeled data to learn
meaningful representations [7, 17] in the presence of het-
erogeneous data. Researchers [10, 21] have utilized self-
supervised contrastive learning [7] to improve the extracted
representations but the field is moving towards transformer-
based architectures [22, 30, 31]. In this context, Vision
Transformers (ViT) [11] have been increasingly adopted,
with the DINO framework [5, 20] representing the forefront
of this transition to attention-based systems. These ViT sys-
tems produce better results and provide an additional layer
of explainability.

A way to profit from data from different tissue types is
the use of domain adaptation. This technique is a partic-
ular and popular type of transfer learning that facilitates
the transfer of knowledge from a source domain, normally
abundant in labelled data, to a target domain where labels
are sparse or partially available [15, 29]. It plays a cru-
cial role in the field of histopathology due to the afore-
mentioned variability and scarcity of labelled data found in
WSIs. Adapting models from one tissue type to another
can help in capturing subtle, domain-specific features that
might be critical for accurate disease diagnosis and prog-
nosis. By using domain adaptation, the same model can be
used across multiple datasets, reducing the need for large,
annotated datasets specific to each new domain.

Given that WSIs exceed the processing capacities of
most systems when taken as a whole, they are typically di-
vided into numerous smaller segments or patches. A signif-
icant challenge arises when these patches, which may num-
ber in the hundreds or thousands per WSI, must be analyzed
under a single slide-level label. Multiple Instance Learning
(MIL), a variant of weakly supervised learning, has been
increasingly adopted to navigate this issue in WSI analysis
[18, 23, 33, 35]. Within this framework, each WSI is con-
ceptualized as a ’bag’, with its constituent patches viewed
as ’instances.’ This paradigm allows for slide-wide clas-
sification based on the collective feature representation of
patches, obviating the need for individual patch labels. This
approach enables the model to identify distinctive patterns
within the aggregated patch representations. Recent years
have seen a surge in the application of attention mecha-
nisms within MIL [16] to enrich feature aggregation from
WSIs, concurrently offering interpretability by spotlighting

the contributory weight of each patch [9, 19, 25]. While
efforts like those in [28] harness advanced attention tech-
niques to heighten model discrimination, methodologies
such as ACMIL [35] explore regularization strategies aimed
at preventing overfitting, particularly in scenarios of limited
training data.

In this paper, we propose a framework that combines
SSL, MIL, and transformer-based models to predict BRAF
and SLN positivity. We study the influence of different
domain-trained feature extractors as well as an array of MIL
methodologies, aiming to effectively utilize the limited la-
belled melanoma WSI data available for public use.

2. Materials and Methods
In this study, we present an integrated computational frame-
work designed to detect BRAF mutations and predict SLN
positivity. Our methodology leverages finetuned ViTs for
feature extraction and various weakly-supervised classifi-
cation strategies.

This section describes the data used and the steps in-
volved in image preprocessing and feature extraction. With
regard to the classification strategies, we discuss different
methodologies such as specific bag aggregators, ACMIL,
as well as our new proposal ACTrans.

2.1. Dataset

The TCGA Skin Cutaneous Melanoma (TCGA-SKCM)
dataset is part of the PanCancer Atlas initiative, which
was designed to address broad, overarching questions about
cancer. This dataset includes 475 slide-labeled WSI for
samples of skin cutaneous melanomas from primary tu-
mours. The distribution of positive and negative labels for
the BRAF and SLN positivity can be seen in Table 1. All
the data used in this study is publicly accessible through the
TCGA data portal1.

Marker Positive Cases Negative Cases

BRAF Positivity 250 225
SLN Positivity 223 252

Table 1. Distribution of WSI in the dataset according to BRAF
and SLN positivity.

In this work, the labels for BRAF and SLN positivity are
defined based on established clinical and pathological cri-
teria. A positive BRAF case is identified through the pres-
ence of V600 mutations in the BRAF gene [6], which are
indicative of alterations that may influence cell growth, and
signaling pathways commonly associated with melanoma.
Conversely, a negative BRAF case lacks these mutations.
SLN positivity is determined by the presence of melanoma

1https://portal.gdc.cancer.gov
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Figure 1. Overview of the computational pipeline for Whole Slide Image analysis. Panel A) outlines the whole process from WSI
preprocessing to model output. Panel B) exemplifies the preprocessing of histopathological images. Panel C) details the knowledge
distillation approach between a student and teacher Vision Transformer (ViT) on datasets from TCGA Melanoma, TCGA Colorectal,
and the combination of CAMELYON16, and BRACS. Panel D) depicts the architecture of the MIL bag encoder that integrates patch
embeddings into a global WSI embedding. Panel E) shows the prediction task for BRAF mutation and sentinel lymph node (SLN) status
along with a heatmap of patch importance for interoperability for the BRAF positivity.

cells in the sentinel lymph node biopsy [32], which is a
prognostic indicator of the likelihood of lymphatic spread.
A negative SLN case shows no evidence of melanoma cells
in the sentinel lymph nodes.

2.2. WSI Preprocessing

Our data pre-processing follows the method detailed in [19],
involving a series of steps to separate tissue from back-
ground in WSIs. Initially, we downsample the images for
ease of processing and convert them from RGB to HSV
colour space. To create smoother edges, median blurring
is applied, followed by binarization using a threshold on the
saturation channel. We use morphological closing to fill in
small spaces eliminating holes, and then filter the contours
of foreground objects based on their area. Finally, patches
are extracted from the identified tissue areas.

2.3. Feature Extractors

As SSL has been proven to be state-of-the-art for extracting
robust features within the field of histopathological image
analysis [21, 22, 28, 31], our study employs the DINO [5]
and DINOv2 [20] architectures as primary feature extrac-
tors. In the DINO model, there is a ’student’ ViT trained on
smaller, localized image crops, and a ’teacher’ network that
utilizes bigger image crops. The student model’s objective
is to mimic the teacher’s output, with a focus on matching
the [CLS] tokens, which encapsulate global image infor-
mation. Contrary to most distillation methodologies [14],

in DINO, the teacher’s parameters are also updated through
an exponential moving average of the student’s parameters.

We use three distinct feature extractors named BRCA,
SKCM, and CRC2SKCM, each optimized through dataset-
specific finetuning of the DINO ViT foundational model.
Initially, we employed the Breast Cancer (BRCA) feature
extractor proposed in [35], a DINOv1 model adapted to
the combined CAMELYON16 [1] and BRACS [2] datasets.
The second feature extractor was obtained by finetuning the
base DINOv2 model [20] with the TCGA-SKCM dataset
to derive the SKCM feature extractor. Finally, we also
finetuned the model proposed by [22], another DINOv2
model which was pre-trained on TCGA’s Colorectal Can-
cer (CRC) cohort. The resulting feature extractor was called
CRC2SKCM. These procedures are illustrated at the bottom
of panel C) in Figure 1.

2.4. Weakly-Supervised Classifier

To be able to process the WSI, the patches need to be en-
coded to reduce their dimensionality. Using a feature ex-
tractor, each WSI’s patch is independently processed to ac-
quire its respective embedding. After obtaining the embed-
dings, a bag encoder is applied followed by a classifier.

Bag Encoder. Within the MIL framework, the embed-
dings from each patch are treated as instances of the bags of
a WSI. By adopting this strategy, the bag encoder applies an
aggregation technique to integrate these discrete patch em-
beddings into a WSI embedding. The objective is to encap-
sulate patch-specific information into a single vector. Let N

5134



represent the number of tokens per bag, hi the embedding
for the ith patch computed by the patch encoder, and z the
WSI embedding. The following aggregation schemes are
considered:
• Mean Aggregation: The simplest approach, where the

final representation of the WSI is computed as the arith-
metic mean of the computed representations across all
patches: zMean = 1

N

∑N
i hi. This strategy assumes equal

contribution from each patch towards the final prediction.
• Gated Attention Mechanism: this method employs a

Gated Attention mechanism based on [16], to dynam-
ically weigh the importance of each patch embedding
based on its relevance to the outcome.

zGA =

N∑
i=1

aihi; (1)

ai = Softmax
{
w⊤

(
tanh(Vhi

⊤) ◦ sigm(Uhi
⊤)

)}
Where ai is the attention weight for the i-th patch embed-
ding, and w ∈ R1×L and V, U ∈ RL×M are learnable
parameters.

• Transformer-based Encoding: Based on [28], this ap-
proach leverages an additional Transformer encoder to
process the collection of patches embeddings. Like the
initial patch encoder phase, this encoder generates a new
[CLS] token that encapsulates the collective information
of the entire bag of patch embeddings. By doing so, it en-
ables a deeper contextual analysis of the patch-level fea-
tures in relation to each other.

zT = x
(L)
[CLS];

x(l) = LN(y(l)) + x(l−1);

y(l) = FF(LN(m(l))) +m(l);

m(l) = MHSA(x(l−1)) + x(l−1);

(2)

Where l ∈ {1, . . . , L} and x(0) = {h[CLS],h1, . . . ,hN},
L is the total number of Transformer layers, LN repre-
sents Layer Normalization, FF represents the application
of a Feed-Forward network and MHSA represents the
application of the Multi-Head Self-Attention mechanism
[26].
MLP Classifier. After applying an aggregation strategy,

a Multi-Layer Perceptron (MLP) takes the WSI embedding
and outputs the predicted diagnostic label.

2.4.1 ACMIL

The Attention Challenging MIL (ACMIL) methodology
was introduced in [35] as a proposal to address overfitting
in scenarios with limited data availability such as for WSI
analysis. ACMIL’s weakly-supervised classifier integrates

two techniques: Multiple Branch Attention (MBA) to cap-
ture more discriminative instances, and Stochastic Top-K
Instance Masking (STKIM) to consider more instances be-
yond those with the top-K saliency.
• MBA: The MBA initially identifies M patterns and sub-

sequently aggregates their embeddings to formulate pre-
dictions. Each pattern is identified through a gated atten-
tion branch using Equation 1. To preserve the discrimi-
native quality of the patterns while ensuring semantic di-
versity among them, two regularization techniques were
introduced: semantic regularization and diversity regu-
larization. The semantic regularization, aimed at cap-
turing distinctive patterns, is implemented by adding an
MLP layer behind each pattern embedding, with a cross-
entropy loss function:

Lp = − 1

M

M∑
i=1

Y log(Ŷi) + (1− Y) log(1− Ŷi) (3)

where Ŷi = gi(zi) is the prediction based on i-th pattern
embedding zi and Y is the bag label.
To avoid learning similar patterns and get more discrim-
inative information, a diversity loss is introduced as fol-
lows:

Ld =
2

M(M − 1)
∑M

i=1

∑M
j=i+1

cos(ai, aj) (4)

where ai compounds all the attention values of the i-th
pattern, ai = {ai1, ...aiN}. The cos(.) function measures
the similarity in attention across different branches.
Once the patterns are obtained, they are aggregated as
a = 1

M

∑M
i=1 ai where a is the aggregated attention of

the whole bag, with dimension N . The bag embedding is
obtained by aggregating the instance features using aver-
aged attention a.

• STKIM. This method incorporates a masking operation
into the attention mechanism, positioned before feature
aggregation and following attention value generation. It
stochastically masks out a portion of instances with the
highest attention values (top-K) with a probability p and
redistributes their attention values among the remaining
instances.
The ACMIL model is trained by minimizing a combined

loss function, which includes the sums of Ld, La, and a
cross-entropy loss calculated between the model’s slide-
level predictions and the corresponding labels

2.4.2 ACTrans

We made a variation to the ACMIL method explained in
Section 2.4.1 where the features obtained from MBA are ag-
gregated using the transformer aggregator described in Sec-
tion 2.4. We call this new approach Attention Challenging
Transformer (ACTrans).
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2.5. Patch Importance Visualization

The attention-based aggregators identify which patches of
the WSI were more relevant for the models’ prediction. The
relative importance of the extracted patches is quantified by
converting the attention scores associated with the model’s
predicted class into percentiles. These scores are derived
from the attention and transformer bag aggregators (Section
D of Figure 1). The quantified scores are then mapped to
their respective spatial locations within the WSI. This pro-
cess yields a heatmap, which is superimposed on the WSI
to illustrate the distribution of patch importance across the
image. This method is not available for the mean bag ag-
gregator.

3. Experiments and Results
Several experiments were performed to compare the influ-
ence of the different feature extractors and aggregators for
BRAF and SLN classification tasks. The implementation
details and experiment design used are the same for each
task.

Every feature extractor (Section 2.3) is combined with
each presented weakly-supervised classifier following these
steps: 1) the WSIs are processed and tessellated into
patches; 2) patch features are extracted using every feature
extractor; 3) these extracted features serve as the input for
each weakly-supervised classifier.

We combine every feature extractor (Section 2.3) with
each presented weakly-supervised classifier (Section 2.4).
We followed the next steps (Figure 1): 1) we processed the
WSIs and tessellate it into patches; 2) we extracted patch
features using every feature extractor; 3) these extracted
features then served as the input for each weakly-supervised
classifier.

3.1. Implementation Details

The DINOv2 foundational model was utilized to obtain the
SKCM and CRC2SKCM feature extractors introduced in
Section 2.3. WSIs were cropped into patches of 518x518
pixels at 20× magnification, resulting in a dataset exceed-
ing 20 million patches. These patches were subsequently
resized and random cropped to 224 by 224 pixels, ensur-
ing compatibility with the input dimensionality of the Vi-
sion Transformer model. The training was performed with
a batch size of 84 throughout 100,000 iterations.

The dataset was randomly split 10 times into training,
validation, and test sets with a ratio of 80:10:10. These
splits were performed in a stratified way to maintain the
balance of labels throughout the splits. We preprocess the
WSIs and segmented tissue regions as explained in Section
2.2. From these regions, 256x256 patches were extracted at
10X magnification, as shown in Panel B) of Figure 1.

All experiments were conducted using a learning rate of

0.0001 and weight decay of 0.005. For the ACMIL and
ACTrans models, the number of branches, mask probability,
and number of top-K values were set as proposed in [35] (5,
0.6, and 10 respectively).

3.2. Results

The experimental outcomes, detailed in Tables 2 and 3,
highlight the different performances of bag aggregators
across the BRAC, SKCM, and CRC2SKCM feature sets.
We employ the following classification metrics: F1 score,
Precision, Recall, ROC AUC, and Balanced Accuracy.

When predicting BRAF positivity, the models gener-
ally exhibit improved performance with the SKCM and
CRC2SKCM feature sets, demonstrating the efficacy of do-
main adaptation in the context of skin cancer. However, a
performance decrement was observed for ACMIL and AC-
Trans with SKCM, underscoring the variability in response
to different feature sets. When adapting domains from col-
orectal to skin cancer, models with self-attention mecha-
nisms outperformed others, indicating the potential benefit
of these architectures in complex image-based diagnostics.
Although ACMIL-based models display higher recall com-
pared to the rest of the weakly-supervised classifiers, they
also show a relatively lower precision.

The SLN positivity predictions in Table 3 present a dif-
ferent trend, simpler models like the mean aggregator ex-
hibit superior performance compared to their more complex
counterparts. This suggests that the association between im-
age features and SLN labels may not be as strong, a find-
ing consistent with the literature that indicates a challeng-
ing predictive task where models struggle to significantly
outperform random chance [4, 21]. The modest perfor-
mance improvement over random chance by these models
underscores the need for ongoing research to identify more
effective feature representations or alternative approaches
that can more accurately capture the complexities associ-
ated with SLN positivity in melanoma diagnostics.

3.3. Visualization of Heatmaps

Figure 2 presents heatmaps illustrating the assigned patch-
level importance given by the model for the task of BRAF
mutation positivity. These were obtained using the ACMIL
model for each of the feature extractors mentioned in Sec-
tion 2.3. Patches that significantly influenced the model’s
prediction are highlighted in warmer hues (reds and or-
anges), indicating higher attention scores. Conversely, ar-
eas depicted in cooler tones (blues) correspond to patches
with lesser influence on the predictive decision.

The BRCA feature extractor’s heatmap reveals focused
areas of attention, suggesting an emphasis on regions with
stark colour contrasts. Conversely, the heatmaps for the
other two feature extractors display a more distributed at-
tention pattern, aligning with diverse image characteristics.
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Aggregator F1 score Precision Recall ROC AUC Balanced accuracy

BRAC Feature Extractor

Mean 0.601 ± 0.077 0.614 ± 0.086 0.646 ± 0.104 0.594 ± 0.096 0.563 ± 0.097
GA 0.603 ± 0.076 0.621 ± 0.089 0.652 ± 0.106 0.593 ± 0.093 0.568 ± 0.098
Transformer 0.596 ± 0.075 0.607 ± 0.090 0.636 ± 0.104 0.582 ± 0.109 0.546 ± 0.101
ACMIL 0.605 ± 0.065 0.534 ± 0.061 0.718 ± 0.155 0.523 ± 0.072 0.523 ± 0.072
ACTrans 0.633 ± 0.082 0.563 ± 0.060 0.773 ± 0.196 0.555 ± 0.060 0.555 ± 0.060

SKCM Feature Extractor

Mean 0.609 ± 0.072 0.630 ± 0.085 0.658 ± 0.103 0.606 ± 0.098 0.575 ± 0.093
GA 0.612 ± 0.074 0.637 ± 0.083 0.671 ± 0.115 0.600 ± 0.095 0.584 ± 0.087
Transformer 0.616 ± 0.073 0.635 ± 0.096 0.668 ± 0.120 0.599 ± 0.110 0.578 ± 0.104
ACMIL 0.600 ± 0.048 0.530 ± 0.037 0.705 ± 0.130 0.521 ± 0.042 0.521 ± 0.042
ACTrans 0.597 ± 0.078 0.538 ± 0.057 0.700 ± 0.185 0.529 ± 0.065 0.529 ± 0.065

CRC2SKCM Feature Extractor

Mean 0.620 ± 0.061 0.634 ± 0.087 0.656 ± 0.102 0.611 ± 0.094 0.571 ± 0.102
GA 0.648 ± 0.063 0.660 ± 0.095 0.689 ± 0.126 0.621 ± 0.092 0.584 ± 0.090
Transformer 0.631 ± 0.069 0.652 ± 0.098 0.678 ± 0.135 0.644 ± 0.099 0.591 ± 0.113
ACMIL 0.655 ± 0.046 0.530 ± 0.029 0.868 ± 0.129 0.529 ± 0.042 0.529 ± 0.042
ACTrans 0.637 ± 0.073 0.545 ± 0.052 0.796 ± 0.194 0.543 ± 0.065 0.543 ± 0.065

Table 2. BRAF positivity classification results showing µ±σ for the 10 random splits, across all the MIL strategies using the three different
feature sets.

Aggregator F1 score Precision Recall ROC AUC Balanced accuracy

BRAC Feature Extractor

Mean 0.655 ± 0.068 0.575 ± 0.070 0.785 ± 0.143 0.592 ± 0.069 0.566 ± 0.058
GA 0.625 ± 0.100 0.579 ± 0.082 0.732 ± 0.204 0.579 ± 0.083 0.568 ± 0.059
Transformer 0.633 ± 0.065 0.563 ± 0.072 0.750 ± 0.145 0.582 ± 0.078 0.546 ± 0.050
ACMIL 0.568 ± 0.050 0.533 ± 0.057 0.630 ± 0.142 0.573 ± 0.036 0.573 ± 0.036
ACTrans 0.582 ± 0.131 0.529 ± 0.112 0.699 ± 0.258 0.575 ± 0.107 0.575 ± 0.107

SKCM Feature Extractor

Mean 0.661 ± 0.070 0.580 ± 0.065 0.790 ± 0.138 0.591 ± 0.058 0.572 ± 0.066
GA 0.633 ± 0.080 0.576 ± 0.069 0.740 ± 0.173 0.571 ± 0.080 0.564 ± 0.053
Transformer 0.628 ± 0.060 0.571 ± 0.064 0.724 ± 0.141 0.590 ± 0.077 0.555 ± 0.052
ACMIL 0.581 ± 0.096 0.510 ± 0.103 0.713 ± 0.173 0.551 ± 0.092 0.551 ± 0.092
ACTrans 0.601 ± 0.044 0.549 ± 0.093 0.702 ± 0.149 0.588 ± 0.064 0.588 ± 0.064

CRC2SKCM Feature Extractor

Mean 0.652 ± 0.090 0.586 ± 0.080 0.762 ± 0.164 0.599 ± 0.056 0.581 ± 0.060
GA 0.623 ± 0.101 0.578 ± 0.080 0.735 ± 0.224 0.594 ± 0.090 0.569 ± 0.058
Transformer 0.612 ± 0.070 0.567 ± 0.057 0.697 ± 0.174 0.572 ± 0.068 0.550 ± 0.051
ACMIL 0.589 ± 0.096 0.534 ± 0.112 0.674 ± 0.113 0.572 ± 0.110 0.572 ± 0.110
ACTrans 0.598 ± 0.077 0.552 ± 0.132 0.715 ± 0.205 0.577 ± 0.089 0.577 ± 0.089

Table 3. SLN positivity classification results showing µ± σ for the 10 random splits, across all the MIL strategies using the three different
feature sets.
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Original BRCA SKCM CRC2SKCM

Figure 2. Comparative heatmap visualizations for melanoma WSI analysis. The first column shows the original histopathological images of
skin cutaneous melanoma. The subsequent columns display the corresponding heatmaps generated using the ACMIL approach and three
distinct feature extractors: BRCA, SKCM, and CRC2SKCM. These heatmaps represent the model’s focus areas, with warmer colours
indicating regions of higher relevance to the model’s predictions and cooler colours representing areas of lesser importance.

4. Conclusion
In this paper, we have shown a methodological approach
to harness the capabilities of domain-adapted transformer-
based models to predict relevant melanoma biomarkers,
and is enhanced through self-supervised and weakly super-
vised learning techniques. Our findings suggest that the ap-
plication of domain adaptation holds promise, particularly
for the prediction of BRAF mutation status from WSIs of
melanoma patients. The domain adaptation of foundational
models pre-trained on other WSI datasets yielded perfor-
mance gains, underscoring the efficacy of domain adapta-
tion in this context.

However, the predictive outcomes for SLN positivity
were less conclusive, showing the inherent challenge of in-
ferring metastatic spread to lymph nodes, a condition not di-
rectly depicted in WSIs. This underscores the current limi-

tation of models that rely solely on local features from WSIs
to make predictions about distal pathologies.

Despite these challenges, the advancements in founda-
tional models for feature extractor fine-tuning and the ensu-
ing a level of interpretability, as evidenced by our heatmap
visualizations, mark a significant step towards more accu-
rate diagnostic tools in the field of dermatopathology. Our
work contributes to the expanding field of explainable AI
in medicine, indicating a path for future research to build
upon these findings and explore additional modalities that
may augment the predictive capabilities for SLN positivity.
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