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Abstract

Alzheimer’s Disease (AD) poses a substantial health-
care challenge marked by cognitive decline and a lack of
definitive treatments. As the global population ages, the
prevalence of AD escalates, underscoring the need for more
advanced diagnostic techniques. Current single-modality
methods have limitations, emphasizing the critical need for
early detection and precise diagnosis to facilitate timely
interventions and the development of effective therapies.
We propose a novel multimodal medical diagnostic frame-
work for AD employing a hybrid deep learning model. This
framework integrates a 3D Convolutional Neural Network
(CNN) to extract detailed intra-slice features from MRI vol-
umes and a Long Short-Term Memory (LSTM) network to
capture intricate inter-sequence patterns indicative of AD
progression. By leveraging longitudinal MRI data along-
side spatial, temporal, biomarkers, and cognitive scores,
our framework significantly enhances diagnostic accuracy,
particularly in the early stages of the disease. We incor-
porate Grad-CAM to enhance the interpretability of MRI-
based diagnoses by highlighting relevant brain regions.
This multimodal approach achieves a promising accuracy
of 92.65%, outperforming state-of-the-art works by a mar-
gin of 6%.

1. Introduction
Alzheimer’s Disease (AD) represents an increasingly sig-
nificant public health challenge worldwide as the aging pop-
ulation grows. The neuro-degenerative disorder severely
impacts cognitive functions, resulting in memory loss, im-
paired reasoning, language deficits, and an eventual in-
ability to perform daily tasks [7]. Unfortunately, diagnos-
ing AD is fraught with challenges. Current clinical meth-
ods heavily rely on neuropsychological assessments, patient
history, and caregiver interviews, which are subjective and
prone to error. Moreover, definitive confirmation typically
requires post-mortem examination, making early and accu-
rate diagnosis elusive during a patient’s lifetime. The re-
liance on clinical symptoms alone leaves room for misdiag-
nosis, delays in intervention, and missed opportunities for
early treatment. Despite extensive research into the under-
lying biological mechanisms of AD, innovative diagnostic
approaches are urgently needed to overcome these hurdles.

AD diagnosis relies on various types of data, each pro-
viding unique insights into the condition. Clinical data,
obtained through patient interviews and examinations, of-
fers crucial information on symptom progression and cog-
nitive decline. Neuroimaging techniques, such as MRI and
PET scans, reveal structural and functional brain abnor-
malities, including atrophy and abnormal protein deposits
[18]. Cognitive assessments provide quantitative measures
of cognitive function over time. However, most existing
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works typically focus on utilizing a single type of data
like MRI or PET scans to visualize structural and func-
tional changes in the brain associated with AD, while ig-
noring other data sources [14]. Integrating these diverse
data sources improves diagnostic accuracy, monitors dis-
ease progression, and identifies potential therapeutic tar-
gets. Advancements in technology and interdisciplinary ap-
proaches hold promise for enhancing Alzheimer’s diagnosis
and treatment strategies, ultimately improving patient out-
comes and quality of life.

To address the complexities of AD diagnosis, our solu-
tion is to adopt a multi-modal approach centered on deep
learning techniques and magnetic resonance imaging (MRI)
data. We aim to leverage demographic features and cogni-
tive scores alongside MRI data to enhance the analytical ca-
pabilities of our model. Recognizing the importance of lon-
gitudinal data, our approach unfolds incrementally, gradu-
ally introducing additional modalities and longitudinal data
to assess the model’s evolving performance. This iterative
process encompasses the integration of demographic fea-
tures and cognitive scores with MRI data, culminating in
a comprehensive model that harnesses the strengths of all
three modalities. Through this approach, we aim to develop
a robust diagnostic tool capable of accurately detecting AD
progression, thereby contributing to advancements in neu-
rodegenerative disease diagnosis and management. Another
significant requirement in medical applications is the im-
portance of explainability and interpretability. To address
these concerns, we incorporate Class Activation Mapping
mechanisms for providing visual explanations of model de-
cisions. This emphasis on transparency and interpretability
not only enhances clinicians’ understanding of the features
driving diagnostic predictions but also instills confidence in
the model’s reliability in decision-making processes.

The remainder of this article is organized as follows. In
Section II, a thorough review of related works is presented,
providing insights into existing methodologies and gaps in
current research. Following this, the details of dataset pre-
processing employed to ensure data quality and consistency
are presented in Section III. This section also covers the pro-
cess of integrating 3D-CNN and LSTM networks for cap-
turing temporal dependencies within the data. In Section IV,
the experimental results for various fusion techniques and
combinations of data modalities investigated are presented,
followed by concluding remarks and future work.

2. Related Work
Existing works on AD prediction and diagnosis encompass
a wide range of approaches, reflecting the complexity of the
disease and advancements in technology. Researchers have
explored traditional machine learning to advanced deep
learning models, often integrating diverse data sources such
as clinical records and neuro-imaging data. El-Sappagh et

al. [9] conducted a study comparing five machine learn-
ing algorithms to predict Alzheimer’s disease progression
using data from the ADNI database. They enhanced the
models by incorporating time-series features such as co-
morbidities and medication history, aiming to capture the
disease’s evolving nature over time. TBy considering dy-
namic factors alongside static variables, the models gain
a more nuanced understanding of disease trajectories, po-
tentially enabling earlier detection and personalized treat-
ment strategies. Moscoso et al. [12] investigated the util-
ity of MRI volumetric measures for early detection of AD
in Mild Cognitive Impairment (MCI) patients. They found
that stable MCI patients often progress to AD, challenging
the adequacy of non-disease training examples. By combin-
ing MRI data from the hippocampus and entorhinal cortex,
they enhanced prediction accuracy over time. Their study
highlights the importance of refining diagnostic approaches
for detecting AD in its early stages, especially considering
the dynamic nature of disease progression.

Zhang et al. [20] proposed a novel multimodal deep
learning framework for mental disorder detection, integrat-
ing facial expressions, gestures, and verbal content to im-
prove accuracy. Their approach effectively identified bipo-
lar disorder and depression, suggesting potential for gen-
eralization across various mental health conditions. The
deep learning architecture enables automatic feature extrac-
tion from complex multimodal data, helping in early de-
tection and intervention. Khagi et al. [10] conducted a
study on deep learning techniques for diagnosing AD us-
ing imaging modalities, specifically exploring 3D CNN ar-
chitectures. They introduced divNet, a novel approach de-
signed to improve classification performance by modifying
reception areas. They evaluated divNet’s effectiveness in
terms of memory usage, parameter count, and classification
accuracy. Tu et al. [15] introduced a multimodal model
tailored for AD diagnosis that integrates geometric algebra-
based feature extension and influence degree-based filtra-
tion with an Artificial Neural Network (ANN). By combin-
ing these diverse techniques, their model aims to capture
intricate patterns and relationships within multimodal data.
They reported high accuracy in diagnosing both AD and
MCI, surpassing the performance of existing approaches.

Viswan et al. [17] investigated visual explanation meth-
ods for convolutional neural networks (CNNs) and eval-
uated techniques such as Grad-CAM and Ablation-CAM.
Through various techniques such as LIME for textual data,
SHAP for numeric explanations, and rule-based systems,
researchers have gained valuable insights. Textual analy-
sis using XAI methods has revealed distinctive linguistic
patterns in medical transcripts, aiding in the classification
of dementia patients. Rule-based explanations generated
by XAI methods have simplified decision rules, facilitating
early identification and diagnosis of cognitive decline. Vi-
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sual explanations, particularly heatmaps generated by LRP,
GradCAM, and SHAP, have helped clinicians pinpoint crit-
ical features in medical images, such as MRI scans, leading
to improved diagnosis and treatment planning. Avelar et al.
[6] investigated the complexity of AD diagnosis and pro-
gression through a multilayer network approach, address-
ing the challenge posed by its multifactorial and hetero-
geneous nature. Using data from 490 subjects (147 cog-
nitively normal, 287 with mild cognitive impairment, and
56 with AD) sourced from ADNI, their study integrates
various biomarkers including structural MRI, amyloid-β,
PET, cerebrospinal fluid, cognition, and genetics. Em-
ploying multilayer community detection, the model accu-
rately identifies AD cases and predicts future AD progres-
sion with approximately 90% accuracy, even in cases mis-
diagnosed clinically. Shaker et al. [8] proposed a novel
deep learning model for early detection of AD progression
using multimodal time series data. The model integrates
stacked convolutional neural network (CNN) and bidirec-
tional long short-term memory (BiLSTM) architectures to
jointly predict AD multiclass progression and four cognitive
scores regression tasks. Evaluation involving 1536 subjects
highlighted the model’s effectiveness in analyzing hetero-
geneous temporal data and accurately predicting patients’
future status.

The extensive review of prominent research works on
AD prediction and diagnosis revealed several limitations
and research gaps. Firstly, while many studies have ex-
plored various methodologies and data sources, there re-
mains a challenge in integrating disparate data modalities
effectively. Additionally, despite efforts to incorporate tem-
poral dynamics, the predictive models could not fully cap-
ture the evolving nature of the disease over time. While
fusion strategies have been explored, there is still a need
to investigate a wider range of fusion techniques to opti-
mize predictive performance. Our work aims to address
these limitations by leveraging 3D MRI scans, which pro-
vide detailed anatomical information crucial for early AD
detection. By considering temporal features, the model can
capture disease progression dynamics more accurately. Fur-
thermore, exploring different fusion strategies and combi-
nations of data modalities will enhance the model’s ability
to extract comprehensive information from heterogeneous
data sources, potentially leading to more robust and accu-
rate predictions of AD onset and progression.

3. Materials and Methods
Dataset Specifics. The ADNI (Alzheimer’s Disease
Neuroimaging Initiative) dataset [1] is a comprehensive
repository of neuroimaging, clinical, genetic, and bio-
chemical data, which was utilized in this study. The
dataset incorporates three distinct modalities to offer a mul-
tifaceted perspective on Alzheimer’s disease progression.

The first modality comprises demographic data, encom-
passing three fundamental features – gender, age, and ed-
ucation. These factors furnish essential contextual infor-
mation for characterizing the study cohort. The second
modality integrates cognitive scores (CS) and selected crit-
ical biomarkers, including APOE4 (Apolipoprotein E4),
ADAS13 (Alzheimer’s Disease Assessment Scale - Cog-
nitive Subscale 13), FAQ (Functional Activities Question-
naire), MMSE (Mini-Mental State Examination), and var-
ious RAVLT (Rey Auditory Verbal Learning Test) scores.
These biomarkers play a crucial role in assessing cogni-
tive decline and disease progression. The third modality in-
volves 3D MRI neuroimaging collected at five specific time
steps – baseline (BL), month 12 (M12), month 24 (M24),
month 36 (M36), month 48 (M48) visits.

The dataset provides data of a total of 204 patients.
Among these, 18 patients transitioned from Cognitively
Normal (CN) to Alzheimer’s Disease (AD), as can be seen
in Fig. 1. The data collection process involved obtaining
scans from five distinct visits: baseline (BL), 12 months
(M12), 24 months (M24), 36 months (M36) and 48 months
(M48). Additionally, due to the limited number of patients
diagnosed with Alzheimer’s Disease, we considered and re-
categorized Mildly Cognitively Impaired (MCI) patients as
AD, to ensure a well-defined cohort for analysis. We used
3T T1-weighted anatomical sequences which were recorded
using the volumetric 3D MPRAGE protocol with a Sagittal
acquisition type, ensuring high-quality imaging. The MRI
scans had a voxel resolution of 1 × 1 × 1 mm, providing
detailed spatial information. Each MRI scan consisted of
sagittal axis slices which could be downloaded as individ-
ual DICOM files. To streamline the data and make it com-
patible for further analysis, a crucial step involved the con-
version of these DICOM images into a consolidated format.
Specifically, all the sagittal axis slices of a single MRI scan
were transformed into a single nii.gz (Neuroimaging Infor-
matics Technology Initiative - compressed) file.

Data Preprocessing. A preprocessing pipeline was de-
signed to eliminate extraneous information, correct inten-
sity variations, align volumes to a common anatomical
space, focus analyses on relevant brain structures, and
streamline the dataset for more efficient processing. The
preprocessing pipeline was automated to process the input
images, through a series of python scripts. Firstly, a process
of reorientation to a standard space was performed, for ad-
justing image orientation or flipping left and right. These
operations are integral to the foundational steps of prepro-
cessing, ensuring consistent voxel processing and interpre-
tation across diverse software and systems. In our specific
case, we employed FSLEyes [11] to visualize the data, re-
vealing instances where images had undergone a 180° rota-
tion. To rectify this, we utilized the fslreorient2std tool [11]
from FSL to standardize the orientation of these images be-
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Figure 1. Patient Distribution

fore proceeding with further processing (Fig. 2).
Next, bias field correction (BFC) was performed to ad-

dress brightness issues in MRI scans resulting from various
factors, such as the patient’s positioning in the MRI scan-
ner or the scanner’s version. These brightness issues man-
ifest as low-frequency, smoothed, and undesirable signals
within the scanner, impacting the overall image quality. If
left uncorrected, these nonhomogeneities can adversely af-
fect subsequent processing steps, including skull stripping.
We employed the N4 BFC algorithm [2] from the advanced
normalization tools (ANTs). This utilizes an improved B-
spline fitting routine allowing for multiple resolutions in the
correction process, thereby enhancing the effectiveness of
bias field correction in optimizing image quality (Fig. 3).

Figure 2. MRI after reorientation

Another critical step is the MNI152 standard template
registration, used for aligning images based on brain struc-
tures, facilitating the comparison of different MRI scans. In
our study, all the MRI scans were aligned to be compati-
ble with the MNI152 T1 1mm.nii.gz template. The affine
transformation performed ensures alignment without de-
forming the images, involving fundamental transformation
steps like rescaling, rotation, translation, and shearing. The

Figure 3. MRI after bias field correction

FLIRT tool in FSL was utilized for the registration, with
correlation ratios serving as the similarity metric. This ap-
proach successfully standardized all MRIs to the MNI152
template space [4] as shown in Fig. 4, ensuring uniformity
and compatibility by bringing all images to the same dimen-
sions (182, 218, 182). As a final step, skull stripping was
performed, to isolate the brain tissue from non-brain tissue
in MRI images. This process is essential for eliminating ex-
traneous information, such as residual neck voxels, which
can act as noise and contribute to the high dimensionality
of training data, complicating the subsequent classification
task. We employed the Brain Extraction Tool (BET2) [3]
from FSL to perform skull stripping as shown in Fig. 5.
This tool is effective in accurately calculating a brain mask,
allowing for the removal of remaining body parts and noise
from the brain region.

Figure 4. MRI after MNI152 registration

Figure 5. MRI after skull stripping
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Figure 6. Process of extracting spatiotemporal features

Spatiotemporal Feature Extraction from MRI scans.
Following the loading of the nii.gz files using the nibabel
library [5] and their conversion into numpy arrays, a crucial
step in the data preparation process involved reshaping the
image data for each patient into 5D tensors. This transfor-
mation is essential to make the data suitable for input into
the machine learning model. The tensors were structured
with dimensions (5, 1, 182, 218, 182), aligning precisely
with the expected input shape for the model. This reshaping
process ensured that the spatial information from the neu-
roimaging data was appropriately organized for subsequent
analysis. Additionally, considering the categorical nature
of the labels associated with the MRI scans, where CN is
represented as 0 and AD as 1, the data was appropriately
labeled to facilitate supervised learning.

The 3D CNN model designed for the classification task
of Alzheimer’s Disease utilizes a hierarchical architecture
tailored for processing three-dimensional data. The model
comprises four convolutional blocks, each contributing to
the extraction of increasingly complex features from the in-
put MRI data. The initial convolutional block incorporates
two convolutional layers with ReLU activation functions,
followed by 3D max-pooling and dropout for regulariza-
tion. This block is crucial for capturing low-level features.
Subsequent convolutional blocks, each comprising two con-
volutional layers, build upon this foundation to extract hier-
archical features. The progressive increase in the number of
channels in these layers enables the model to discern more
intricate representations. To enhance flexibility and pre-
vent overfitting, dropout layers are strategically placed after
each max-pooling operation. This is especially important in
medical imaging tasks where data may be limited, necessi-
tating robust feature learning. The final convolutional block
is succeeded by a flatten layer, transforming the output of
the convolutional layers into a one-dimensional tensor. The
3D CNN processes the 5 visits’ MRI images and extracts

spatial features which are then fed into the LSTM layer as
shown in Fig. 6. This sequential integration of 3D CNN and
LSTM allows the model to leverage both spatial and tempo-
ral information from the MRI volumes and cross-sectional
biomarkers, enhancing the overall diagnostic accuracy and
stability, particularly in the early stages of AD.

Cognitive, Demographic & Hippocampus data. We
harnessed the diverse disease information available in the
ADNI dataset through three distinct modalities. The pri-
mary modality involves 3D MRI neuroimaging, allowing
us to delve into detailed neural imaging for comprehensive
analysis as described before. The second modality encom-
passes demographic data, featuring key attributes such as
gender, age, and education. This demographic information
enriches our understanding of the patient profile, contribut-
ing valuable context to the diagnostic process. The third
modality incorporates a Cognitive Score (CS) along with se-
lected critical biomarkers. This includes 13 features, such
as APOE4, ADAS13, FAQ, MMSE, and 4 RAVLT scores
which are summarized in Table 1. Leveraging this diverse
set of biomarkers allows for a more holistic assessment of
AD, considering both genetic predispositions and cognitive
performance.

We conducted a meticulous preprocessing of the ADNI
dataset to extract pertinent information aligned with our
chosen modalities. Focusing specifically on patients corre-
sponding to the MRI image data, we curated a dataset that
encompassed demographic features (gender, age, and edu-
cation) and a cognitive score along with critical biomark-
ers. To ensure uniformity in our dataset, we transformed
categorical data into numerical categories. Additionally,
we performed normalization on selected columns to address
variations in data ranges. The curated dataset was then di-
vided into training and test sets, with an 80-20% split, to
facilitate robust model training and evaluation. To seam-
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Table 1. Cognitive Scores and Demographic information

Sl.no Variable Description
1 ADAS-13 13-item AD assessment scale
2 FDG Fluorodeoxyglucose
3 TAU A Protein
4 PTAU A Protein
5 CDRSB Clinical Dementia Rating
6 MMSE Mini-Mental State Examination
7 RAVLT Immediate Rey Auditory Verbal Learning Test
8 RAVLT Learning Rey Auditory Verbal Learning Test
9 RAVLT Forgetting Rey Auditory Verbal Learning Test
10 RAVLT % Forgetting Rey Auditory Verbal Learning Test
11 FAQ Functional Activities Questionnaire
12 MOCA Montreal Cognitive Assessment
13 Hippocampus Hippocampus Volume
14 AGE Age
15 PTGENDER Gender
16 PTEDUCAT Education
17 APOE4 No. of £4 alleles of APOE

lessly integrate our data into the PyTorch framework, we
converted them into PyTorch tensors, ensuring compatibil-
ity with the neural network architecture. We designed a 2-
layered fully connected neural network with 32 and 16 neu-
rons, respectively. This configuration was chosen to strike
a balance between model complexity and computational
efficiency. Subsequently, the tensor vectors were passed
through the neural network, leveraging its capacity to cap-
ture intricate patterns within the data.

Information Fusion. In the final stage of the multimodal
AD diagnosis framework, the output of the last layer of the
Deep Neural Network (DNN), consisting of 16 feature vec-
tors, is concatenated with the output of the LSTM. This
concatenated information is then processed by a subsequent
network composed of two dense layers with 128 and 64 hid-
den units respectively, and 1 dense output later with 2 units.
The first two dense layers contribute to hierarchical feature
learning and representation, while the last layer serves as
the output layer for the classification task. The final layer
outputs probabilities between 0 and 1, describing the like-
lihood of a patient progressing to Alzheimer’s Disease or
remaining in a Cognitive Normal state.

Model Explainability. Class Activation Mapping
(CAM) is a technique used for explaining the decisions
made by deep learning models, in image classification tasks.
In the context of AD diagnosis using MRI scans, Grad-
CAM [13] helps to highlight the regions of the brain that the
model considers important for making its prediction. The
process begins with a pre-trained deep learning model that
has been trained to classify MRI scans as either healthy or
Alzheimer-affected. Grad-CAM specifically focuses on the
final convolutional layer of this model. This layer captures
high-level features that are crucial for making the classifica-

tion decision, making it a suitable starting point for analysis.
It analyzes the gradients flowing into the final convolutional
layer. These gradients represent the rate of change of the
loss function concerning the model’s parameters.

Grad-CAM computes the gradient of the predicted class
score concerning the feature maps of the last convolutional
layer. By analyzing these gradients, it determines how
much each pixel in the feature maps influences the final pre-
diction. Next, it averages the gradients across the channels
within each neuron in the last convolutional layer. This re-
sults in feature importance maps that highlight which parts
of the feature maps are most relevant for the classification
task. These importance maps are initially low-resolution,
so Grad-CAM up-samples them to match the dimensions
of the input MRI scan. For a specific class, such as AD,
Grad-CAM calculates importance scores for each feature
map. These scores reflect how much each feature map con-
tributes to the prediction of that class. By combining these
importance scores with the feature map activations, Grad-
CAM generates a heatmap as shown in Fig. 9. Brighter re-
gions in the heatmap correspond to features deemed crucial
for the Alzheimer’s prediction, potentially indicating areas
of the brain exhibiting atrophy or other disease signatures.
Healthcare professionals can use this heatmap to understand
which regions of the brain are influencing the model’s pre-
diction of Alzheimer’s disease, aiding in their diagnosis and
understanding of the model’s behavior.

Figure 7. Model Explainability using Class Activation Maps

4. Experimental Results and Analysis
The approach was implemented using the PyTorch library,
running on a GPU with 12 GB RAM. Training of the
3D-CNN-BRNN model was conducted end-to-end, utiliz-
ing the Adam optimizer for parameter optimization. Af-
ter extensive exploration of hyperparameter configurations,
we adopted a learning rate of 0.00027. Stratified cross-
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validation (CV) was employed in each fold to ensure bal-
anced batches during training. The number of epochs
was set at 100, corresponding to the point where the loss
reached its minimum value in each fold during the 5-fold
CV process. Multiple experiments leveraging multimodal
data sources were conducted, investigating various combi-
nations of the 3 modalities - MRI data, cognitive scores, and
demographic information, different fusion strategies such
as Early and Late Fusion, and comparing our results with
SOTA works.

Standard metrics like accuracy, precision, recall, and F1-
score were used for assessing the performance of the pro-
posed approach. Accuracy measures the overall correctness
of the model’s predictions, which is the ratio of correctly
classified instances to the total instances in the dataset. This
is computed as per Eq. (1), where, TPAD denotes true pos-
itives for AD, TNCN denotes true negatives for cognitively
normal, FPCN denotes false positives for cognitively nor-
mal, and FNAD denotes false negatives for AD.

Accuracy =
TPAD + TNCN

TPAD + TNCN + FPCN + FNAD
(1)

Precision quantifies the accuracy of positive predictions
made by the model, indicating the proportion of correctly
predicted AD instances out of all instances predicted as AD
(Eq. 2). Recall, also known as sensitivity or true positive
rate, measures the ability of the model to correctly identify
AD instances, indicating the proportion of correctly pre-
dicted AD instances out of all actual AD instances (Eq. 4).
The F1-score is the harmonic mean of precision and recall,
providing a balanced measure that considers both false pos-
itives and false negatives. It is particularly useful when the
class distribution is imbalanced (Eq. 4).

Precision =
TPAD

TPAD + FPAD
(2)

Recall =
TPAD

TPAD + FNCN
(3)

F1-score = 2× Precision × Recall
Precision + Recall

(4)

Table 2. Performance for different combinations of modalities.

Data Modality Accuracy Precision Recall F1-score
MRI 83.34 0.8511 0.8386 0.8448
MRI + Demographic 85.66 0.8529 84.75 0.8502
MRI + CS 89.12 0.8777 0.8687 0.8782
MRI + CS + Demographic 92.65 0.9047 0.9139 0.9093

Table 2 presents the evaluation metrics for different com-
binations of modalities used in our Alzheimer’s detection
model, including MRI (Magnetic Resonance Imaging), CS
(Cognitive Scores), and Demographics. The results indicate

that combining all three modalities together yields a bet-
ter performance in terms of accuracy, precision, recall, and
F1 score compared to individual modalities. By combining
these modalities, the model can leverage a more compre-
hensive set of features, capturing both structural and bio-
chemical changes alongside demographic risk factors. Con-
sequently, the performance of the model improves signifi-
cantly when all three modalities are integrated, highlighting
the importance of multimodal approaches in Alzheimer’s
detection using deep learning models.

Table 3. Performance evaluation of different fusion strategies

Fusion technique Accuracy Precision Recall F1-score
Early Fusion 89.57 0.8866 0.8857 0.8861
Late fusion 92.65 0.9047 0.9239 0.9093

For assessing the performance of models when features
from multiple modalities are to be utilized, we used two
feature fusion approaches – Early Fusion and Late Fusion.
Early Fusion involves combining the features from different
modalities at the input level, whereas Late Fusion integrates
the predictions from the model trained on each modality.
In Table 3, the performance metrics are presented for both
Early Fusion and Late Fusion using the combination of all
three modalities. The results show that both fusion strate-
gies perform well, with Late Fusion slightly outperforming
Early Fusion across all metrics, including Accuracy, Preci-
sion, Recall, and F1 Score. By processing predictions from
individual modality-specific models and combining them at
the decision-making level, late fusion enables the model
to leverage the specialized information extracted by each
modality. This approach allows for a more comprehensive
consideration of the diverse features captured by different
modalities, leading to improved performance. Late fusion
also offers flexibility in decision making, adaptively weigh-
ing the contributions of each modality’s prediction based
on their reliability. Additionally, late fusion helps mitigate
overfitting by preventing the model from relying too heav-
ily on a single modality or feature representation, resulting
in more robust and generalizable predictions.

Table 4 compares the performance metrics of the pro-
posed methodology with state-of-the-art works which are
described in Section 2. The proposed methodology demon-
strates a slightly superior performance across all metrics
compared to the base paper, indicating the effectiveness
of the developed Alzheimer’s detection model. Addition-
ally, the Confusion Matrix (Fig. 8) can be referenced to
gain insights into the model’s classification performance for
each class. With 37 true positives, the model effectively
identifies individuals with Alzheimer’s disease, demonstrat-
ing its capability to accurately classify positive cases. Ad-
ditionally, the high count of 152 true negatives indicates
the model’s proficiency in correctly recognizing individu-
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Table 4. Benchmarking the proposed approach with State-of-the-art works

Work Techniques used Modality Accuracy Precision Recall F1-score
Shaker et al. [8] CNN-BiLSTM 6 timesteps of MRI, cognitive

scores, demographic data
90.8 -∗ -∗ -∗

Liangxiu et al. [19] Residual Self-Attention Deep Neu-
ral Network + Grad-CAM

MRI and demographic data 91 -∗ -∗ -∗

Tong et al. [16] Deep learning model MRI 86 0.86 0.87 0.86

Our Work 3DCNN-LSTM + Grad-CAM 5 timesteps MRI, demographic
data, cognitive scores

92.65 0.9047 0.9139 0.9093

∗Not reported

als without Alzheimer’s.

Figure 8. Confusion Matrix for the proposed approach

To enable model explainability, the Grad-CAM model
was adapted for the visualization of the prediction regard-
ing the progression of Alzheimer’s Disease. This was gen-
erated based on five prior MRI scans, which yielded insight-
ful results (depicted in Fig. 9). The heatmaps generated by
Grad-CAM provided a clear indication of the regions within
the brain that significantly influenced the model’s decision-
making process. By highlighting specific areas of activa-
tion or importance within the MRI scans, the visualization
offered valuable insights into the neural correlates associ-
ated with Alzheimer’s progression. Overall, the Grad-CAM
based visual attention plots enhanced the interpretability of
the model’s predictions, shedding light on the intricate rela-
tionship between neuro-imaging data and Alzheimer’s dis-
ease progression.

5. Conclusion and Future Work
In this article, a comprehensive approach to Alzheimer’s
prediction utilizing a multimodal framework integrating
MRI scans, cognitive scores, and demographic features
across multiple patient visits was presented. Through the
utilization of a 3D CNN model for spatial feature extrac-

Figure 9. Visualization of heatmap overlayed on MRI scan slice

tion from MRI data followed by LSTM for temporal fea-
ture extraction, combined with cognitive and demographic
data, we achieved promising results in distinguishing be-
tween Alzheimer’s and cognitively normal individuals, out-
performing state-of-the-art works by a margin of upto 6%.
The incorporation of Grad-CAM for heatmap visualization
facilitated the identification of crucial regions contribut-
ing to predictions, enhancing interpretability. Furthermore,
early and late fusion strategies were investigated, which re-
vealed that late fusion yields superior performance com-
pared to early fusion, underscoring the importance of inte-
grating information at later stages. Moreover, a comparative
analysis demonstrated the efficacy of leveraging all three
modalities - MRI, cognitive scores, and demographic fea-
tures, highlighting the significance of a holistic approach in
Alzheimer’s prediction.

As part of extended work, we intend to subject our ap-
proach to a detailed validation study with subject matter ex-
perts to verify the model’s accuracy while also prioritizing
transparency and interpretability. Our future endeavors in-
volve meticulous examination of explainability techniques,
aiming not only to provide precise predictions but also to of-
fer transparent insights into the decision-making processes
of the deep learning model. This collaborative approach is
crucial for real-world applications, particularly in sensitive
domains like healthcare, and for gaining trust in the model’s
outputs and facilitating its potential integration into clinical
decision-making processes.
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