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Abstract

Conventional Computed Tomography (CT) imaging
recognition faces two significant challenges: (1) There is
often considerable variability in the resolution and size
of each CT scan, necessitating strict requirements for the
input size and adaptability of models. (2) CT-scan con-
tains large number of out-of-distribution (OOD) slices.
The crucial features may only be present in specific spa-
tial regions and slices of the entire CT scan. How can
we effectively figure out where these are located? To deal
with this, we introduce an enhanced Spatial-Slice Feature
Learning (SSFL++) framework specifically designed for
CT scan. It aims to filter out OOD data within the en-
tire CT scan, enabling us to select crucial spatial slices for
analysis by reducing 70% redundancy totally. Meanwhile,
we proposed Kernel-Density-based slice Sampling (KDS)
method to improve the stability during training and infer-
ence stage, therefore speeding up the rate of convergence
and boosting performance. As a result, the experiments
demonstrate the promising performance of our model using
a simple EfficientNet-2D (E2D) model, even with only 1%
of the training data. The efficacy of our approach has been
validated on the COVID-19-CT-DB datasets provided by the
DEF-AI-MIA workshop, in conjunction with CVPR 2024.
Our code is available at https://github.com/ming053l/E2D.

1. Introduction
Computed Tomography (CT) [53]has become essential in
detecting and managing diseases. This technology excels
at revealing abnormalities within the body, such as ground-
glass opacities and bilateral patchy shadows, which are cru-
cial for the early detection and monitoring of diseases. In
diagnosing COVID-19, doctors rely on analyzing lung CT
scans of patients. However, since a single patient’s CT scan
can include hundreds of images, manual examination be-
comes a time-consuming task, especially when doctors have
to evaluate CT scans from dozens or hundreds of patients.

This may result in false negatives when dealing with numer-
ous scans.

With the rapid development of deep learning (DL), DL
methods [17, 18, 25, 26, 48, 51, 63] have gained promi-
nence for their ability to quickly and accurately identify
COVID-19 features while efficiently handling large vol-
umes of data. Furthermore, convolution neural networks
(CNNs) have proven to be more effective than methods
based on frequency-domain [49, 68] and low-level features
for CT image analysis [41].

To address the terribly spreading COVID-19, Kolliaz
et al. proposed the COVID-19-CT-DB dataset [2, 3, 34–
39], which encompasses a vast amount of labeled COVID-
19 and non-COVID-19 data, advancing the DL methodol-
ogy and tackling the challenge faced by the huge require-
ment of high quality dataset for DL-based analysis. Many
researchers have designed several methods to deal with
COVID-detection task [11, 29, 30, 66].

Despite the effectiveness of CT imaging as a tool for
detecting abnormalities, it suffers from varying resolutions
and quality due to different data servers and scanning ma-
chines. The resolution and number of slices in CT images
can differ based on the specific scanning machine used, po-
tentially compelling researchers to devise more complex
network architectures. Additionally, medical analysis for
COVID-19, unlike typical DL-based tasks that focus solely
on performance and applications, necessitates maintaining
the explainability of model predictions for security and
safety reasons [11, 12, 47].

Inspired by [57], Tran et al. presented that factorizing
the 3D convolution filters (R3D) into separate spatial and
temporal components (R(2+1)D) can yielding significantly
gains in accuracy for action recognition. Its effectiveness
have been demonstrated by several works on the fields of
Video Understanding (VU) [6, 20, 42, 44] and Human Ac-
tion Recognition (HAR) [58, 64]. One video may contains
huge redundant information, such as noise from the audio
track or each frame, and meaningless background, these
factors make it difficult to train the model well [7], resulting
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Figure 1. The brief illustration for SSFL++. It aim to reduce re-
dundancy in spatial and slice dimension on whole CT-scan to im-
prove model and data quality. (1)Left: original CT-scan. (2)Mid-
dle: after reduction at spatial. (3)Right: after reduction at slices.

in a significant increase in potential costs for data collect-
ing. Likewise, CT scans can be regarded as a special case
of video, it also contains various noise resulted from ma-
chine aging, and non-important spatial-slice pattern due to
its imaging process [53]. Therefore, the different convolu-
tion methods on CT-scan is worthy of discussion.

In this work, we introduce a Spatial-Slice Feature
Learning (SSFL++) method, an unsupervised approach de-
signed to reduce computational complexity by effectively
removing out-of-distribution (OOD) slices and redundant
spatial information. Furthermore, previous works [11, 30]
have struggled to identify the most influential slices while
considering global sequence information. Based on this ob-
servation, we believe there is room for improvement. There-
fore, we propose the Kernel-Density-based Slice Sam-
pling (KDS) strategy, which leverages Kernel Density Es-
timation to simultaneously achieve both objectives. Experi-
mental results have demonstrated our 2D model’s outstand-
ing performance, even in the face of data insufficiency.

Our novelties and contributions can be briefly divided
into two parts as following mentions:
• Improved spatial-slice feature learning module:

SSFL++ is a morphology-based approach for CT scans
that removes redundant areas in both spatial and slice di-
mensions. This significantly reduces computational com-
plexity and efficiently identifies the Regions of Interest
(RoI) without the need for complicated designs or con-
figurations. Remarkably, we were able to eliminate 70%
of the area in the COVID-19-CT-DB datasets without any
degradation in performance.

• The comparison between 2D, (2+1)D, and 3D for CT-
scan is discussed: To facilitate the development of re-
lated research, we conducted a thorough discussion on
the use of 2D, 2+1D, and 3D convolutions for CT scan
data in COVID-19 detection. Based on experimental re-
sults, we believe that the 2D convolutional architecture
holds more potential for future applications compared to
3D and 2+1D convolutions.

• Density-aware slice sampling method: Coupled with
SSFL++’s ability to adaptively remove redundant spa-

tial areas and slices, KDS further adaptively samples the
most crucial slices while preserving global sequence in-
formation. This approach enhances data efficiency and
strengthens the model’s few-shot capabilities. Experi-
mental results have shown that our E2D model maintains
strong and robust performance under scenarios with few
CT scans and slices.

2. Related Work
In this section, we introduce the related works on COVID-
19 recognition in recent years, along with traditional
spatial-temporal feature learning for Video Understanding
(VU) and Human Action Recognition (HAR). The philoso-
phy behind these approaches is important for analyzing CT-
Scans.

2.1. Region of Interests for Computed Tomography

Background. CT [53] harnesses X-rays, which encircle a
specific plane of the human body, while detectors on the
opposite side capture the resultant signals. This technique
exploits the differential attenuation of X-rays by various tis-
sues, combined with signals obtained from multiple irradia-
tion angles traversing the body, to compile a sinogram. This
sinogram facilitates the reconstruction of cross-sectional
imagery [4, 5]. Nonetheless, the CT imaging paradigm, ne-
cessitating multi-angular signal acquisition for reconstruc-
tion, engenders scans replete with extraneous data, poten-
tially escalating labor costs.

Although this technology has been around for a long
time, designing a robust and reliable Region of Interest
(RoI) selection algorithm for CT scans remains an open
problem. Noise and redundancy harm model performance.
In recent years, most researchers have still focused on en-
hancing the feature extraction pipeline [45], or improving
the quality of image reconstruction [27], to address the
aforementioned challenges. Cobo et al. [14] suggested that
standardizing medical imaging workflows could improve
the performance of radiomics and deep learning systems.
Jensen et al. [32] proposed enhancing the stability of CT ra-
diomics with parametric feature maps. Gaidel et al. [23] in-
troduced a greedy forward selection-based method for lung
CT images, but its development was limited due to a lack of
robustness against data shifting and noise.

2.2. COVID-19 Recognition

In recent years, substantial progress has been achieved in
developing methods for COVID-19 recognition. Kollias et
al. [34] have contributed to this field by analyzing the pre-
diction results of deep learning models based on latent rep-
resentations. Chen et al. [11] integrated maximum like-
lihood estimation with the Wilcoxon test, adopting a sta-
tistical learning perspective to adaptively select slices and
design models with explainability.
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Furthermore, Hou et al. proposed a method based
on contrastive learning to enhance feature representation.
Turnbull et al. applied a 3D ResNet [28] for COVID-19
severity classification. Hsu et al. [29] introduced a two-step
model that combines 2D feature extraction with an LSTM
[19] and Vision Transformer [16]. They presented a 2D and
(2+1)D approach [30], achieving outstanding results in the
AI-MIA 2023 COVID-19 detection competition.

2.3. Spatiotemporal Feature Learning for Video

Video analysis is crucial for computer vision, as videos con-
tain far more information than single images. This analysis
focuses on extracting spatiotemporal features, with tradi-
tional methods relying on optical flow [8, 55] and trajectory
analysis [50, 67]. With the advent of deep learning (DL),
a strategy employing 2D Convolution Neural Networks
(CNNs) was proposed [22, 65]. This strategy includes tem-
poral feature pooling to aggregate features from different
frames for classification. Subsequently, approaches com-
bining CNNs with Recurrent Neural Networks (RNNs) and
Long Short-Term Memory (LSTM) networks [1] were in-
troduced, aiming to capture the long-range dependencies
across various frames. 3D convolution kernels (C3D [56],
I3D [9]) are used in video understanding, capturing channel
interactions and local interactions simultaneously. How-
ever, they lead to a computational burden and have been
regarded as an inefficient approach.

Subsequently, strategies offering greater efficiency were
introduced, such as the Non-local network [59], S3D [62],
CoST [43], SlowFast [21], and CSN [58]. These methods
more efficiently learn the spatiotemporal features of videos
by either reducing the number of sampled frames or replac-
ing the use of 3D convolution with (2+1)D convolution. The
prevailing consensus has moved away from the necessity
of utilizing a large number of video frames or 3D convo-
lution as the optimal approach for learning spatiotemporal
features. Similarly, considering the resemblance between
CT scans and videos, it is plausible to learn the feature rep-
resentation of CT scans using only a small number of slices,
without relying on 3D CNNs.

3. 2D, (2+1)D, 3D Convolutions for CT Scan
In this section, we discuss the three types of convolutions
within framework of COVID-19 detection. The detailed ar-
chitecture is described in Section 5-1.

2D: 2D Convolution over the sampled slices. The use
of 2D convolution networks for extracting spatio-temporal
features from 3D-cube data faces certain limitations, such
as the requirement for strong spectral band or temporal con-
tinuity. Without these prerequisites, 2D convolutions may
struggle to perform effectively due to their focus on spa-
tial features and a lack of comprehensive sequence model-
ing. In applications involving CT scans, 2D convolutions

are generally considered less effective compared to archi-
tectures like 2+1D convolutions, CNN-LSTM, or CNN-
RNN, which are capable of capturing spatiotemporal fea-
tures more efficiently. However, previous 2D CNN ap-
proaches often involve pre-processing, where crucial slices
are selected and sampled to serve as inputs for the network.
This sampling process tends to be overly simplistic, for in-
stance, by manually selecting slices with the least artifacts
or best quality, or randomly selecting a few slices to train
a 2D CNN model. This limits the network’s potential for
global sequential modeling.

(2+1)D: 1D Convolution over the extracted features
on different dimension. The 2+1D model is widely re-
garded as the greatest solution for CT analysis due to its ex-
ceptional performance and lower computational costs com-
pared to 3D models. Typically, the 2+1D model performs
best as it first extracts features on the spatial scale before
modeling the sequences of these extracted features, effec-
tively achieving both. However, according to our experi-
ments, it tends to be less robust in situations with limited
samples. This is because CT scans vary greatly in terms
of resolution or the number of slices, making the 2+1D
model more sensitive to the quantity of training data com-
pared to 2D models. Additionally, we believe a potential
concern with the 2+1D model is its difficulty in augmenta-
tion since spatial features are encoded into the latent space,
the implicit learning approach limits its scalability and in-
terpretability in clinical applications.

3D: 3D Convolution over the contiguous slices. Com-
pared with 2D and 2+1D, 3D is a heavy computational
resource burden for COVID-19 detetion. The differences
between CT scans and conventional videos lie in several
key aspects. Firstly, videos typically contain a significantly
larger number of frames compared to the number of slices in
a CT scan. Secondly, videos enhance their spatio-temporal
coherence through frame rates (FPS), whereas the spatial re-
lationships between slices in CT scans are relatively weaker.
Lastly, slices in CT scans often exhibit redundancy at the
beginning and end, which does not substantially contribute
to analysis.

In conclusion, the advantages and weaknesses of these
three methods can be itemized as follows:
• 2D: Training and testing pipeline are simple. The model

is robust no matter when few-scan or few-slice. Easy to
augment. There are multiple methods which provide an
explaniability for 2D model’s prediction, such as Grad-
CAM++ [10], SHAP [46]. Uneasy to capture sequential
information unless dedicated design.

• (2+1)D: The performance is optimal when there is
enough training data and the length of the CT slice se-
quence is sufficiently large, allowing it to capture sequen-
tial information. However, it becomes unstable with only
a few scans or slices; the pipeline is complicated. It is
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Figure 2. The illustration of spatial steps in proposed SSFL++.

also difficult to explain and augment.
• 3D: Training and testing pipeline are simple. Can cap-

ture sequential information. Worst performance. Highest
computational complexity. Unstable when few-scan and
few-slice. Hard to explain and augment.
We believe 2D-CNNs have the potential to become

mainstream for COVID-19 detection tasks. To enhance the
ability of 2D-CNNs to learn sequence information from CT
scans, we have designed the KDS method. This approach
helps overcome the limitations of 2D-CNNs in this regard,
with details to be introduced in Section 4.2.

4. Methodology

4.1. Spatial-Slice Feature Learning

In this section, we introduces our proposed SSFL++, which
aim to figure out the RoIs in spatial and slice dimension,
mainly based on the simple but effective computed mor-
phology method and formulation of optimization problem.

Spatial Steps. The most importance concern is that CT-
scan alway exists large black area between every single CT
slice’s background, and it will distort the RoI area when
resizing to fixed shape to neural network, leading to feature
vanish. In order to deal with this, a low-pass filter with
a window size of k × k is applied to all CT slices Z to
eliminate a noises. The low-pass filtering operator can be
defined as:

Zfiltered(i, j) =

∑k
p=−k

∑k
q=−k w(p, q)× Z(i+ p, j + q)∑k
p=−k

∑k
q=−k w(p, q)

(1)
where w(p, q) represents the weight at position (p, q) in the
filter kernel. The above formula can determine the segmen-
tation Mask of the filtered slices by a threshold t:

Figure 3. The illustration of slice steps in proposed SSFL++. The
line graph in the bottom right corner represents the area of each
slice in a CT scan. The blue area denotes OOD data that have been
removed, while the red area represents the CT slices that have been
selected.

Mask[i, j] =

{
0, ifZfilter[i, j] < t

1, ifZfilter[i, j] >= t
(2)

where i, j denote as an pixel for every single CT slice Zc,
which resolution is x × y. A Cropped region Zc

crop can be
calculated by:

min(Zc
crop(x)) = min{i | Mask[i, j] = 1,∀i}

max(Zc
crop(x)) = max{i | Mask[i, j] = 1,∀i}

min(Zc
crop(y)) = min{j | Mask[i, j] = 1,∀j}

max(Zc
crop(y)) = max{j | Mask[i, j] = 1,∀j}

(3)

Zc
crop is yielded accordingly, we can further resize the

resolution of Zc
crop to H×W for the slice steps and as an

input of neural network. Spatial Steps in proposed 4SFL
effectively filter out non-lung tissue regions (also known as
RoIs in spatial dimension), and reduce computational com-
plexity, as the Figure 2 illustrated.

Slice Steps. To find the lung tissue region in the CT scan,
we used the binary dilation algorithm [61] to obtain the
filled result Maskfilled. The difference between the Mask
and filled mask Maskfilled represents the lung tissue region.
The above method can be summarized as the following for-
mula:

Area(Z) =
∑
i

∑
j

Maskfilled(i, j)−Mask(i, j). (4)

After the above technique, we can finally obtain a range
where s and e denote the starting and ending indexes, re-
spectively, and nc is the constraint of the number of slices
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Figure 4. The GradCAM++ [10] visualization before and after
proposed SSFL++. By reducing redundancy on the spatial scale,
we can implicitly enhance the visual effectiveness of Explainable
AI, thereby facilitating clinical applications.

for a single CT scan to select most importance RoIs in slice
dimension with proportion α. The optimization problem
can be formulated as following:

maximize
s, e

e∑
i=s

Area(Zi),

subject to e− s ≤ nc,∑e
i=s Area(Zi)∑nc

i=1 Area(Zi)
≥ α.

(5)

It is worth noting that we sort all CT slices according
to their slice numbers nc, as illustrated in the bottom-right
corner of Figure 3.

The spatial and slice steps of proposed SSFL++ follow
unsupervised learning manner, which only follow the prior
knowledge of lung-CT-scan. It can be generalize to other
organs or body parts CT-scan. However, it may require
parameter adjustments based on their specific characteris-
tics. Additionally, with the SSFL++, the visual explanation
method can also look RoI more concentrated, as shown in
Figure 4.

4.2. Density-aware Slice Sampling

Background. The SSFL proposed by Hsu et al. [30] em-
ploys a random sampling method to select slices, which
were used for the detection of COVID-19 using 2D and
2+1D CNNs. However, random sampling may potentially
introduce bias and instability when training and inference,
and it does not efficiently identify the most representative
CT slices, as shown in Figure 5.

In order to address this, we propose a Kernel-Density-
based Slice Sampling (KDS). It performs kernel density es-
timation (KDE) on the selected slices-set [Ze,Zs], adap-
tively and wisely sampling the most crucial CT-slices.
Meanwhile, it also keeps the sequence information globally
and alleviates the instability during training and inference
stage.

Definition. KDE is a classic method to estimate the
probability density function (PDF) of a random variable in
a non-parametric manner. It can be defined as:

f̂h(x) =
1

s

s∑
i=1

Kh(x− xi) =
1

sh

s∑
i=1

K

(
x− xi

h

)
(6)

K(x, x′) = exp

(
−∥x− x′∥2

2σ2

)
, (7)

where h is the bandwidth constant, calculated by Scott-rule
[52], K is a Gaussian kernel, s is a smooth factor of es-
timated density function, (the higher the smoother, we set
it to 100). For a given KDE, we can create several sub-
intervals by calculating its Cumulative Distribution Func-
tion (CDF), where the length of each sub-interval adaptively
changes with its p-percentile. The CDF of KDE and its p-
percentile can be calculated as following formulas:

F (x) =

∫ x

−∞
f̂h(t)dt, F (qp) = p (8)

In the proposed KDS method, we determine the prob-
ability of slices being selected in each interval based on
the density from KDE, while also ensuring that each sub-
interval has at least one sample selected. This method cap-
tures the global sequential information and increases the
probability of selecting the most crucial CT slices.

5. Experiment
Dataset description. In our experiments, we used a to-

tal of 1,684 COVID-19-CT-DB data, provided by Kollias
et al. [40]. The dataset information have shown in Table
2. Our loss function is binary cross-entropy. In order to
ensure stability and fairly check performance during the ex-
periments, group-5-fold-cross-validation is used. Data aug-
mentation and hyperparameters are kept consistent in all ex-
periments.

Hyperparameter settings. The Adam [33] optimizer
was used with a learning rate of 1e− 4 and a weight decay
of 5e− 4. The batch-size is set to 16.

Data Augmentation. In our experiments, we utilized
common augmentation strategy like HorizontalFlip, Ran-
domScaleShifting to prevent overfitting and enlarge feature
space. Additionally, we find that HueSaturationValue, Ran-
domBrightnessContrast and CoarseDropout [15] are also
used.

Evaluation Metric. We mainly used F1-score in the ex-
periments for model evaluation. F1-score is a metric used
to determine the accuracy of a binary classification model.
It combines the harmonic mean of Precision and Recall.

f1-score = 2× precision × recall
precision + recall

, (9)
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Figure 5. The comparison between random sampling, systematic sampling, and the proposed KDS method is noteworthy. As illustrated,
random sampling fails to uniformly sample CT slices of varying area sizes, tending to select larger areas while neglecting global informa-
tion. This results in greater bias and randomness during training and inference. On the other hand, systematic sampling divides the area into
equally lengthened sub-intervals before randomly selecting samples from them. Although this approach can capture global information, it
is ineffective at sampling the most crucial CT slices. Our proposed KDS method combines the advantages of both methods without their
drawbacks, achieving a better balance. KDS can implicitly improve data efficiency, thereby enhancing the model’s few-shot capability.

Spatial Area (K) Slice Length Spatial × Slice (M) Total
Before After ∆ (%) Before After ∆ (%) Before After ∆ (%)

Training 267.25 155.53 0.4184 285.32 142.91 0.4983 76.25 22.22 0.7085
Positive 266.42 157.69 0.4088 295.90 148.18 0.4985 78.83 23.36 0.7036
Negative 268.21 153.03 0.4296 273.97 137.26 0.4981 73.48 21.00 0.7141
Validation 265.62 155.23 0.4172 281.95 141.23 0.4984 74.89 21.92 0.7072
Positive 268.94 160.48 0.4061 280.53 140.55 0.4984 75.45 22.55 0.7010
Negative 262.12 149.69 0.4288 283.49 141.97 0.4984 74.30 21.25 0.7139
(T+V) Positive 267.25 155.53 0.4184 292.96 146.72 0.4985 78.29 22.81 0.7085
(T+V) Negative 267.01 152.37 0.4294 275.78 138.16 0.4982 73.64 21.05 0.7141
Total 266.94 155.47 0.4182 284.68 142.59 0.4983 75.99 22.16 0.7082
Testing 279.55 153.41 0.4520 309.39 154.67 0.5003 86.48 23.72 0.7256

Table 1. The reduction in redundant data achieved by the SSFL++ module is evaluated across three dimensions: spatial, slice, and overall.
This approach quantifies the efficiency of the SSFL++ module in reducing unnecessary information in CT scans, enabling more focused
analysis and processing. By minimizing data redundancy, the module enhances computational efficiency and potentially improves the
accuracy of subsequent analyses or models applied to the CT data.
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Figure 6. In terms of optimizing procedure, our proposed KDS
approach, compared to the random sampling used by Hsu et al.
[30], is more capable of learning the global information of CT
scans, thereby accelerating the convergence rate and enhancing the
model performance.

Type Positive Scan Negative Scan Total Scan
Training 703 655 1358

Valid 170 156 326
Total 873 811 1684

Testing - - 1413
Type Positive Slice Negative Slice Total Slice

Training 206608 178722 385330
Valid 46042 43679 89721
Total 252650 222401 475051

Testing - - 437185

Table 2. The number of data samples at the scan and slice level.

where precision and recall are computed for COVID and
non-COVID. The macro f1-score is the average of the f1-
scores for all classes:

macro f1-score =
1

N

N∑
i=1

f1-scorei (10)

where N is the number of classes, and f1-scorei is the f1-
score for the i-th class. These metrics provide a balanced
evaluation of the model’s ability to classify each class accu-
rately and its overall performance across all classes.

5.1. Model Details and Performance Comparison

To provide a more comprehensive comparison and im-
prove future research, we designed simple E2D, E2+1D,
E3D in our experiments. The backbones are all based on
EfficientNet-b3 [54, 60]. The baseline method and detailed
pipeline are as follows:

Baseline: The baseline method is presented in [40], Kol-
lias et al. adopted CNN-RNN to extract feature within all

CT-slice. First, all CT-slices are resized to 224 × 224 to
extract feature, then RNN (GRU [13] with 128 neurons) an-
alyzed the 2D-CNN (ResNet-50 [28]) features. The output
of the RNN element is then forwarded to a fully connected
layer. In addition, this also includes a dropout layer (the
dropout rate is set to 0.8) before the fully connected layer.

E2D: From the CT-scans processed by SSFL++, sub-
sequently, we use our proposed KDS. These sampled
slices are resized to 384 × 384 and extracted to high-
representation features.

E2+1D: Similar to E2D, firstly, the CT scans processed
by SSFL++ are resized to 384 × 384. And 100 slices are
selected to be encoded. therefore, we used 2D encoder to
get an encoded vectors. By doing so, the CT scans will be
encoded into latent feature queue, which size is 224 × 100.
Subsequently, we randomly sampled 50 features from latent
feature queue, and utilized a simple 1D convolution with
kernel size 1 × 1 in e or l dimensions to capture sequential
information.

E3D: We first utilized SSFL++ to remove OOD slices
and redundant spatial information, and then sample a cer-
tain number of CT slices for modeling.

The experimental results, as presented in Table 3, high-
light the E2D model’s exceptional performance when paired
with KDS on the COVID-19 database 2024 validation set.
It also showcases remarkable robustness in few-scan sce-
narios, delivering results that instill confidence. Compar-
atively, the E2D model utilizing KDS achieves a signif-
icant improvement in scan-level f1-score compared to its
counterpart that employs random sampling. This under-
scores the capability of 2D convolutions to implicitly cap-
ture global sequence information through an appropriate
sampling method. In contrast, the E3D model demands
a large sample size, resulting in limited performance and
higher computational requirements.

5.2. Ablation Study

To further analyze the impact of SSFL++ and KDS on
the COVID-19 detection task, the ablation study were con-
ducted, with results presented in Table 4. All experiments
are based on the E2D model, with all experimental hyper-
parameters kept constant. The results demonstrate that the
proposed SSFL++ significantly enhances performance, im-
plying the importance of spatial redundancy in CT scans
and efficient slice selection. On the other hand, KDS further
improves the model’s prediction ability at the slice-level and
makes significant progress at the scan-level, achieving con-
vincing performance. KDS effectively addresses the lack
of global sequential modeling capability in 2D-CNN when
analyzing CT images.
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Model type Scans Sampled slice
macro f1-score

(slice-level)
f1-score

(scan-level)
baseline [40] 100% - - 78.00

E3D 1% 33(random) - 32.55
50% 33(random) - 78.54

100% 33(random) - 86.76
100% 50(random) - 87.05
100% 80(random) - 90.24
100% 120(random) - 91.05

E(2+1)D 1% 8(random) 73.46 -
50% 8(random) 87.64 -

100% 8(random) 91.39 -
100% 16(random) 92.31 93.69

E2D 1% 8(random) 88.94 92.11
50% 8(random) 91.52 92.42

100% 8(random) 92.44 93.18
100% 16(random) 92.68 93.37

1% 4(KDS) 91.42 96.42
1% 8(KDS) 91.88 99.80

100% 8(KDS) 93.46 100.00
100% 16(KDS) 94.11 100.00

Table 3. Performance comparison between baseline provided by
Kollias et al. [40], and proposed E2D, E2+1D, E3D on COVID-
19-CT-DB validation set.

Spatial step Slice step KDS
marco f1-score

(slice level)
f1-score

(scan level)
80.41 81.26

✓ 88.01 88.04
✓ 90.32 90.48

✓ ✓ 92.68 93.37
✓ ✓ ✓ 94.11 100.00

Table 4. The ablation study of proposed SSFL++ and KDS on
COVID-19-CT-DB validation set.

macro-F1 F1(NONCOVID) F1(COVID)
baseline [40] 85.11 87.48 82.74
E2D (Ours) [31] 94.39 95.52 93.26

Table 5. The results on COVID-19-CT-DB testing set.

6. Generalizability

Our proposed SSFL++ not only excels in performance on
the COVID-19-CT-DB [40] but also demonstrates com-
mendable efficacy on CT scans from various views and
body parts. We showcased the versatility of SSFL++ by
selecting four distinct types of data, with the results de-
picted in Figure 7. From top to bottom, the figures represent
the different views or body parts before and after SSFL++.
Specifically, (a) (c) (d) are lung CT scans from the COVID-
19-CT-DB dataset, featuring the axial, sagittal, and coronal
views. Meanwhile, (b) involves a dataset provided by [24],
aimed at identifying acute appendicitis from CT scans of
acute abdomen cases.

Additionally, it is important that when using SSFL++ on
CT slices of different body parts or from different views,

Figure 7. CT slices from different views and body parts, as well as
the results after processing through the spatial step in our proposed
SSFL++, are presented. From left to right, the sequence represents
the process of CT imaging, where OOD data tend to concentrate at
the beginning and the end. The middle section represents the RoI
area. As shown in the figure, SSFL++ performs well under various
conditions.

its hyperparameters may need specific adjustments. For in-
stance, in the case of (b), the original settings might select
OOD slices rather than the RoI slices.

7. Conclusion

We conducted a comprehensive analysis of the COVID-19
detection task, noting that CT scans often contain a large
amount of redundant information, which limits the perfor-
mance of models. To address this issue, we introduced a
simple morphology-based method for CT images, named
Spatial-Slice Feature Learning (SSFL++), designed to effi-
ciently and adaptively locate the Region of Interest (RoI).
This method effectively reduces redundancy across both
spatial and slice dimensions. Furthermore, to inspire future
research, we analyzed the advantages and disadvantages of
2D, 2+1D, and 3D convolutions on CT data. After extensive
experimentation, we believe that 2D-CNNs hold the great-
est potential in the wild.

To overcome the limitations previously encountered by
2D-CNN in research, we combined SSFL++ with the
further designed KDS, thereby addressing the instability
brought about by random sampling during the training and
inference. Moreover, through the global sequence model-
ing, we activated the potential of 2D-CNNs. Finally, our
method demonstrated promising results on the validation
and testing sets provided by the DEF-AI-MIA workshop.
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