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Abstract

The paper presents the DEF-AI-MIA COV19D Compe-
tition, which is organized in the framework of the ’Domain
adaptation, Explainability, Fairness in AI for Medical Im-
age Analysis (DEF-AI-MIA)’ Workshop of the 2024 Com-
puter Vision and Pattern Recognition (CVPR) Conference.
The Competition is the 4th in the series, following the first
three Competitions held in the framework of ICCV 2021,
ECCV 2022 and ICASSP 2023 International Conferences
respectively. It includes two Challenges on: i) Covid-19
Detection and ii) Covid-19 Domain Adaptation. The Com-
petition use data from COV19-CT-DB database, which is
described in the paper and includes a large number of chest
CT scan series. Each chest CT scan series consists of a
sequence of 2-D CT slices, the number of which is be-
tween 50 and 700. Training, validation and test datasets
have been extracted from COV19-CT-DB and provided to
the participants in both Challenges. The paper presents
the baseline models used in the Challenges and the perfor-
mance which was obtained respectively, together with the
best corresponding performances of the methods submitted
and evaluated in the Challenges.

1. Introduction

In the past few years, Deep Learning (DL) techniques have
made rapid advances in many medical image analysis tasks.
In pathology and radiology applications, they managed to
increase the accuracy and precision of medical image as-
sessment, which is often considered subjective and not op-
timally reproducible. This is due to the fact that they can ex-
tract more clinically relevant information from medical im-
ages than what is possible in current routine clinical practice

by human assessors. Nevertheless, considerable develop-
ment and validation work lies ahead before AI-based meth-
ods can be fully integrated ad used in routine clinical tasks.

Of major importance is research on domain adaptation,
fairness and explainability in AI-enabled medical image
analysis. This research constitutes the main target of the
Domain adaptation, Explainability and Fairness in AI for
Medical Image Analysis (DEF-AI-MIA) Workshop, held in
the 2024 Computer Vision and Pattern Recognition (CVPR)
International Conference. The DEF-AI-MIA workshop
aims to foster discussion and presentation of ideas to tackle
these challenges in the field, as well as identify research op-
portunities in this context. It is the fourth in the AI-MIA
series of Workshops, which includes the Workshops held at
IEEE ICASSP 2023, ECCV 2022 and ICCV 2021 Confer-
ences.

This Workshop’s focus is also motivated by recent ac-
tions and regulatory policies developed in Europe and con-
sidered worldwide. GRNET, the Greek National Infrastruc-
tures for Research and Technology, has implemented the in-
tegration of public hospital units in GRNET academic net-
work, to support research and clinical activities in medicine
and biology, also providing an archiving service for data
produced by the imaging devices of the hospitals at the GR-
NET health data centers. At the European level, EU has
been regulating a European Health Data Space, which: a)
fosters a genuine single market for electronic health record
systems, relevant medical devices and high risk AI systems
(primary use of health data), b) generates a consistent, trust-
worthy and efficient set-up for the use of health data for
research and innovation (secondary use of health data; GR-
NET is involved in the implementation of this set-up). The
above are linked to the recent EU AI-Act regulatory frame-
work for AI, which classifies AI systems used in different
applications according to the risk they pose to users. These
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are under consideration, by the public and the private sector,
in Europe, USA and other countries all over the world.

Topics covered in the workshop are domain adaptation,
explainability, fairness, for trustworthiness in AI-enabled
medical imaging which include a digital pathology and ra-
diology images; use of self-supervised and unsupervised
methods to enforce shared patterns emerging directly from
data, develop strategies to leverage few (or partial) annota-
tions, promoting interpretability in both model development
and/or results obtained, ensure generalizability to data com-
ing from multi-centers, multi-modalities or multi-diseases,
in edge, or cloud frameworks, and robustness to out of dis-
tribution data.

Technologies and topics addressed in the DEF-AI-
MIA Workshop include the following: explainable 2-D
& 3D-CNN, CNN-RNN, transformer, foundation models,
multimodal Large Language Models, unsupervised, self-
supervised Machine Learning (ML) models for medical di-
agnosis; sensing “salient features” of AI/ML models related
to decision-making, in spatial (images), temporal (video),
volumetric (3-D) data; optimal visualization of salient fea-
tures and areas in the input data; Low/Middle/High level
feature extraction & analysis for model interpretatability
and explainability; explanation of which features and at
what time, or slice, or respective intervals, are the most
prominent for the provided decision in temporal and 3-
D data; explainable data correlations for predictions in
data streams of multimodal data; joint optimization of
positive and negative saliencies; global and local models
for prediction or classification; attention and self-attention
mechanisms in DL/AI approaches; interpretability at train-
ing time through adversarial regularization; learning new
data (from multiple sources) by leveraging knowledge al-
ready extracted and codified, through domain adaptation;
generalizable ML/DL methods when the training medi-
cal image datasets are small; generalizable ML/DL meth-
ods in cases of images with potential domain shift; un-
supervised, weakly supervised and semi-supervised model
adaptation; uncertainty estimation and quantification, self-
training; adaptation and prompt engineering in Foundation
Models (e.g., LLMs) for explainable decisions and predic-
tion; algorithmic fairness; zero/one shot learning, avoidance
of catastrophic forgetting.

2. The 4th COV19D Competition
A variety of technologies have been developed for early di-
agnosis of Covid-19, based on medical image analysis, es-
pecially focusing on 3-D chest CT scans. Special interest
has been given to combined segmentation and classification
approaches [23], targeting detection of abnormalities, in-
cluding consolidation, ground-glass opacities, interlobular
septal lung thickening, mostly under pleura.

The 4th COV19D Competition is the 4th in the series of

COV19D Competitions following the first 3 Competitions
we organized in the framework of ICCV 2021 [13], ECCV
2022 [16] and ICASSP 2023 [15] Workshops respectively.
It includes two Challenges: i) Covid-19 Detection Chal-
lenge and ii) Covid-19 Domain Adaptation Challenge.

Both Challenges are based on the COV19-CT-DB
database, briefly described next, including 3-D chest CT
scan series. Each chest CT scan series consists of a se-
quence of 2-D CT slices, the number of which is between
50 and 700.

2.1. Covid-19 Detection Challenge

Many CT scans have been aggregated, each one of which
has been manually annotated in terms of Covid-19 and non-
Covid-19 categories. The resulting dataset is split into train-
ing, validation and test partitions. The training and valida-
tion sets along with their annotations have been provided to
the Competition participating teams to develop AI/ML/DL
models for Covid-19 and non-Covid-19 prediction. Perfor-
mance of the different approaches have been evaluated on
the test set in terms of the ‘macro’ F1 score.

2.2. Covid-19 Domain Adaptation Challenge

CT scans have been aggregated from various hospitals and
medical centres. Each CT scan has been manually an-
notated with respect to Covid-19 and non-Covid-19 cate-
gories. The resulting dataset is split into training, validation
and test partitions. Participants have been provided with a
training set that consists of: i) the annotated data of the 1st
Challenge which are aggregated from some hospitals and
medical centres (case A); ii) a small number of annotated
data and a larger number of non-annotated data (case B), all
of which are aggregated from other hospitals and medical
centres and their distribution is different from that of case
A. Participants have been also provided with a validation set
that consists of a small number of annotated data of case B.
The participating teams have developed AI/ML/DL mod-
els for Covid-19 prediction. Performance of the different
approaches have been evaluated on a test set (that contains
data of case B) in terms of the ‘macro’ F1 score.

3. The COV19-CT-DB Database

COV19-CT-DB [14], which we have developed, contains
3-D chest CT scans, collected in various medical cen-
ters. The database includes 7,756 3-D CT scans; 1,661 are
COVID-19 samples, whilst 6,095 refer to non COVID-19
ones. There are about 2,500,000 images included in these
datasets. All have been anonymized. 724,273 images refer
to the COVID-19 class, whilst 1,775,727 slices belong to
non COVID-19 class [1].

Table 1 presents a summary of the main elements of
COV19-CT-DB.
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Figure 1 analyzes the length of the CT scan series, pre-
senting their histogram. This shows the differences regard-
ing the length of 3-D CT scans in COV19-CT-DB; these are
caused by various reasons, including the requested resolu-
tion analysis, or the specific features of the used equipment.

Figure 1. COV19-CT-DB: 3-D scan length histogram

It should be mentioned that for explainability purposes
[9, 11, 12], an anchor set was generated for the COV19-
CT-DB database [14]. This included 11 anchors, each rep-
resenting a respective 3-D CT scan obtained through an
appropriate clustering procedure. 7 of them corresponded
to COVID-19 cases, with the rest corresponding to non
COVID-19 cases. Justification is provided for the respec-
tive diagnosis, as shown in Table 2.

Figure 2 shows a series of slices from a COVID-19
case, whereas Figure 3 shows a series of slices from a non
COVID-19 case.

The first Challenge on COVID-19 detection is based on
extract of this database. The training set contains, in total,
1358 3-D CT scans. The validation set consists of 326 3-D
CT scans. The number of COVID-19 and of Non-COVID-
19 cases in each set are shown in Table 3.

The second Challenge on COVID-19 Domain Adapta-
tion is also based on extract from this database. The CT
scans utilized have been sourced from a variety of hospi-
tals and medical centers, providing a diverse range of data
for analysis. The dataset has been partitioned into distinct
training, validation and test subsets.

239 3-D CT scans have been annotated and provided as
training set to the participants, with 178 3-D CT scans con-
stituting the validation set. In addition, 494 3-D CT scans
have been provided without annotations, as shown in 4 so

Table 1. COV19-CT-DB: main elements

Elements Values

number of 3-D CT scans
1,661 COVID

6,095 non-COVID

number of 2-D images
724,273 COVID

1,775,727 non-COVID
number of images in scan series 50 - 700

size of images 512× 512

that they can be used by the participants in the adaptation
process.

4. The baseline configurations
4.1. COVID-19 detection & domain adaptation

baselines

The baseline architecture adopted for both Challenges,
namely the COVID-19 Detection Challenge and the Covid-
19 Domain Adaptation Challenge, is a CNN-RNN architec-
ture [2, 10, 14, 17].

The input 3-D CT scans have been padded to achieve
a uniform length t, ensuring that every 3-D CT scan con-
tains t slices. The entire unsegmented sequence [21] of 2-D
slices from a CT scan is then fed into the CNN component.
This CNN component conducts localized analysis on a per-
2D-slice basis, primarily extracting features from the lung
regions. The objective is to facilitate diagnosis using the en-
tire 3-D series of CT scans, mirroring the annotations pro-
vided by medical experts.

Subsequently, the RNN component analyzes the CNN
features of the complete 3-D CT scan, sequentially travers-
ing from slice 0 to slice t − 1. The outputs of the RNN
component are forwarded to a Fully Connected layer and
subsequently to an output layer utilizing a softmax activa-
tion function to provide the COVID-19 diagnosis. We also
include a Dropout layer before the Fully Connected one.

Table 2. Description of COV19-CT-DB anchors

Cluster ID Description
0 Bilateral shadows ground-glass that become more com-

pact locally in lower lung lobes with an image of pneu-
monia due to COVID-19; severe category

1 Bilateral shadows ground-glass as in pneumonia due to
COVID-19; moderate category

2 Minimal shadows ground-glass in left upper lung lobe.
Severe thickening shadows, dense atelectasis of lower
lung lobes. Minimal pleural fluid on the right. Possi-
ble microbial cause; critical category

3 Bilateral shadows ground-glass mainly in lower lung
lobes as in pneumonia due to COVID-19 in rather mild
condition; mild category

4 Bilateral shadows ground-glass that occupy more than
75 % of the pulmonary parenchyma as in pneumonia
COVID-19 of critical condition; critical category

5 Bilateral shadows ground-glass that occupy about 50 %
of the pulmonary parenchyma as in pneumonia COVID-
19 of critical condition; severe category

6 Bilateral shadows ground-glass that occupy more than
75 % of the pulmonary parenchyma as in pneumonia
COVID-19 of critical condition; critical category

7 Bilateral emphysematous lesions as in chronic obstruc-
tive pulmonary disease. Dense atelectasis in paraverte-
bral right lung; mild category

8 Normal CT scan
9 Normal CT scan

10 Normal CT scan
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Figure 2. Slices from a COVID-19 case in COV19-CT-DB

Figure 3. Slices from non COVID-19 case in COV19-CT-DB

Table 3. Data samples in each Set in Covid-19 Detection Chal-
lenge

Set Training Validation
COVID-19 703 170

Non-COVID-19 655 156

Table 4. Data samples in each Set in Covid- 19 Domain Adaptation
Challenge

Set Training Validation
COVID-19 120 65

Non-COVID-19 119 113
Non-annotated 494 -

In the second Challenge (Covid-19 Domain Adaptation),
we employed Monte Carlo Dropout to assess uncertainty
while training the CNN-RNN architecture using data from
both case A (annotated) and case B (annotated). Monte
Carlo Dropout is a technique that involves performing mul-

tiple forward passes through the network with dropout acti-
vated during inference, allowing us to capture the model’s
inherent uncertainty. Subsequently, we annotated the non-
annotated data from case B based on the model’s predic-
tions, specifically considering COVID instances where the
model exhibited a high confidence level. This approach en-
abled us to leverage the model’s uncertainty estimates to
adapt to the non-annotated data of case B.

4.2. Pre-Processing & Implementation Details

In the pre-processing stage, all 2-D CT slices have been ex-
tracted from respective DICOM images. Next, voxel in-
tensity values were computed through a window of 350
Hounsfield units (HU)/−1150 HU; they were then normal-
ized in the range [0, 1]. Data augmentation was also per-
formed, including random rotation in [-10◦, 10◦] and hori-
zontal flip [8, 25] to extract region of interests, such as lung
areas in the 2-D images.

As far as implementation of the baseline approach is con-
cerned, the following models have been used: i) we adopted
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Table 5. Performance of baseline models over Validation sets

Challenge ’macro’ F1 Score
COVID-19 Detection 0.78

COVID-19 Domain Adaptation 0.73

the CNN ResNet50 model; on top of it we included a global
average pooling, as well as a batch normalization layer and
dropout (with keep probability 0.8), ii) we used a single
one-directional GRU RNN layer comprising 128 neurons.
The model input consisted of the 3-D CT scans. Each 2-
D image was resized from its size of 512 × 512 × 3 to
224× 224× 3. We selected a confidence threshold of 70%
to determine high-confidence annotations for non-annotated
data in the Domain Adaptation Challenge.

Batch size was equal to 5 (i.e, at each iteration our model
processed 5 CT scans) and the input length ’t’ was 700
(the maximum number of slices found across all CT scans).
We utilized the softmax cross entropy as loss function for
training both baseline methods. Adam optimizer was used
with learning rate 10−4. Training was performed on a Tesla
V100 32GB GPU.

5. Experimental Results

5.1. Baseline Model Performance

This section describes a set of experiments evaluating the
performance of the baseline configurations.

Table 5 shows the performance of the network over the
validation sets in both Challenges, after training with the
training datasets, taking into account that there exists only
a single label for the whole CT scan and no labels for each
CT scan slice [14].

In both Challenges the performance of the baseline
methods were evaluated in terms of the macro F1 score.
The macro F1 score is defined as the unweighted average
of the class-wise/label-wise F1-scores, i.e., the unweighted
average of the COVID-19 class F1 score and of the non-
COVID-19 class F1 score.

5.2. The COV19D Competition Results

21 Teams participated in the 4th COV19D Competition
(COVID19 Detection Challenge and COVID19 Domain
Adaptation Challenge). 12 Teams submitted their results
to the COVID19 Detection Challenge; 10 Teams submit-
ted their results to the COVID19 Domain Adaptation Chal-
lenge. 6 and 4 Teams scored higher than the baseline
and made valid submissions, respectively; their results are
shown in the leaderboards presented in Table 6 and Table 7.

It is worth mentioning that in the COVID-19 Detection
Challenge, the top four performing teams had up to 0.65 %
difference in their performance.

Moreover, in the COVID-19 Domain Adaptation Chal-
lenge, the top two performing teams had only 0.34 % dif-
ference in their performance.

In particular, the MDAP approach, which was developed
and used in both Challenges, preprocessed the CT scans to
segment the lungs, as well asthe output volumes with the
lungs, individually and together. It then trained 3D ResNet
and Swin Transformer models on these data and used them
for COVID-19 detection. It then annotated the unlabeled
CT scans using an ensemble of these models and chose
the high-confidence predictions, as pseudo-labels for fine-
tuning the models and apply them for COVID-19 Domain
Adaptation.

The Deep adaptation method centered on lung seg-
mentation and COVID-19 infection segmentation, employ-
ing the CNN-based segmentation architecture PDAtt-Unet,
which simultaneously segmented lung regions and infec-
tions. It then concatenated the input slice (grayscale)
with segmented lung and infection, generating three in-
put channels akin to color channels. In addition, it em-
ployed three 3-D CNN backbones—customized Hybrid-
DeCoVNet, along with pretrained 3D-Resnet-18 and 3D-
Resnet-50 models—to train COVID-19 detection and adap-
tation models for both challenges. In this framewerk, it
explored ensemble approaches and testing augmentation to
enhance performance.

The FDVTS approach used different methods in the two
Challenges. In the Detection Challenge, firstly, it analyzed
the characteristics of the 3D CT scans and removed the
non-lung parts, facilitating the model to focus on lesion-
related areas and reducing computational cost. It then used
ResNeSt50 as a strong feature extractor, initializing it with
pretrained weights from COVID-19-specific prior knowl-
edge. In the Domain Adaptation Challenge, it applied a
two-stage framework that leveraged pseudo labels for do-
main adaptation so as to enhance the detection of COVID-
19 from CT scans. By utilizing annotated data from one
domain and non-annotated data from the other, the model
overcame the problems of data scarcity and variability, gen-
erating pseudo labels and iteratively refined its learning pro-
cess, thereby improving its accuracy and adaptability.

The ACVLAB approach adopted an advanced Spatial-
Slice Feature Learning framework, specifically tailored for
3-D CT scans. It targeted to filter out out-of-distribution
(OOD) data within the entire 3-D CT scan, allowing the
selection of essential spatial-slice features for analysis by
reducing data redundancy by 70 %. Additionally, it in-
troduced a Kernel-Density-based slice Sampling method
to enhance stability during training and inference phases,
thereby accelerating convergence and enhancing overall
performance, while using a simple EfficientNet-2D model.

The ViGIRLab method used EfficientNet, but with an
added Attention Mechanism, resulting in EfficientNet-AM.
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Table 6. COVID19 Detection Challenge Results: F1 Score in %; the best performing submission is in bold

Teams Submission # Macro F1 F1 (NON-COVID) F1 (COVID) Github

MDAP [22]

1
2
3
4
5

93.80
92.56
94.30
94.84
94.89

95.06
94.21
95.50
95.88
95.97

92.53
90.91
93.09
93.79
93.81

link

Deep-Adaptation [4]

1
2
3
4
5

93.30
93.50
92.75
93.67
94.60

94.40
94.63
93.86
94.71
95.53

92.20
92.37
91.64
92.63
93.66

link

ACVLAB [7]

1
2
3
4
5

93.88
94.19
92.96
94.37
94.39

95.10
95.32
94.27
95.57
95.52

92.66
93.06
91.65
93.17
93.26

link

FDVTS [19]

1
2
3
4
5

93.59
93.60
94.24
93.11
93.67

94.86
94.86
95.41
94.39
94.91

92.32
92.33
93.07
91.84
92.44

link

ViGIR Lab [5]

1
2
3
4
5

92.91
92.91
93.12
93.21
93.63

94.36
94.36
94.55
94.58
94.97

91.45
91.45
91.70
91.84
92.29

link

M2@Purdue [20] 1 90.14 92.06 88.22 link
baseline [18] 1 85.11 87.48 82.74

Table 7. COVID19 Domain Adaptation Challenge Results: F1 Score in %; the best performing submission is in bold

Teams Submission # Macro F1 F1 (NON-COVID) F1 (COVID) Github

FDVTS [24]

1
2
3
4
5

77.55
76.27
76.96
77.07
76.05

96.97
96.57
96.79
96.75
96.42

58.14
55.97
57.14
57.39
55.68

link

MDAP [22]

1
2
3
4
5

70.47
76.58
74.22
75.91
77.21

94.76
96.78
96.09
96.56
96.82

46.17
56.37
52.36
55.27
57.60

link

Deep-Adaptation [4]

1
2
3
4
5

74.96
73.67
64.74
74.33
63.23

96.52
96.10
92.48
96.23
91.50

53.39
51.25
37.00
52.44
34.97

link

M2@Purdue [20] 1 65.79 91.92 39.66 link
baseline [18] 1 60.16 86.67 33.65
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Unlike other pipelines, which relied on a pre-processing
step, the used pipeline used the raw input images, only ap-
plying an image-selection step to reduce the number of CT
images required for training and/or testing. A computation-
ally efficient pipeline was used, without incorporating a de-
coder to segment the lungs, nor combining different back-
bones, or an RNN with a backbone.

The M2@Purdue approach was applied to both Chal-
lenges. It used a lightweight detector, leveraging a frozen
CLIP image encoder and a trainable multilayer perception.
This was enhanced with Conditional Value at Risk for ro-
bustness and a loss landscape flattening strategy for im-
proved generalization. Furthermore, it integrated a teacher-
student framework to capitalize on the vast amounts of un-
labeled data.

6. Conclusions and Future Work

In this paper we presented the 4th COV19D Competition
and particularly the two Challenges that it contained: the
first on COVID-19 detection and the second on COVID-
19 domain adaptation. We provided a short description of
the COV19-CT-DB, extracts from which were used in the
two Challenges. We also presented the developed baseline
approaches and their performance in the Challenges.

We also provided a comparison of the performance of
all methods that outperformed the baselines in both Chal-
lenges. It can be seen that four approaches provided a
Macro F1 score higher than 94 % in the COVID-19 De-
tection Challenge. Moreover two of them also provided a
performance with Macro F1 score higher than 77 % in the
COVID-19 Domain Adaptation Challenge.

These results illustrate the ability of the deep learning
enabled methods to detect COVID-19 based on 3-D chest
CT scans with high accuracy. Moreover, they illustrate that
Domain Adaptation and Generalization [3] can be a valu-
able approach for tackling the diversity of datasets obtained
across different hospitals and medical centers; they show
that this research direction is of high importance and further
improvement can be achieved in the future. Deployment of
a recently developed solution has been developed for medi-
cal usage [6].

References
[1] Anastasios Arsenos, Dimitrios Kollias, and Stefanos Kol-

lias. A large imaging database and novel deep neural ar-
chitecture for covid-19 diagnosis. In 2022 IEEE 14th Im-
age, Video, and Multidimensional Signal Processing Work-
shop (IVMSP), pages 1–5. IEEE, 2022. 2

[2] Anastasios Arsenos, Andjoli Davidhi, Dimitrios Kollias,
Panos Prassopoulos, and Stefanos Kollias. Data-driven
covid-19 detection through medical imaging. In 2023 IEEE
International Conference on Acoustics, Speech, and Signal

Processing Workshops (ICASSPW), pages 1–5. IEEE, 2023.
3

[3] Anastasios Arsenos, Dimitrios Kollias, Evangelos Petrong-
onas, Christos Skliros, and Stefanos Kollias. Uncertainty-
guided contrastive learning for single source domain gener-
alisation. In ICASSP 2024-2024 IEEE International Confer-
ence on Acoustics, Speech and Signal Processing (ICASSP),
pages 6935–6939. IEEE, 2024. 7

[4] Fares Bougourzi, Feryal Windal Moula, Halim Benhabiles,
Fadi Dornaika, and Abdelmalik Taleb-Ahmed. Ensembling
and test augmentation for covid-19 detection and covid-
19 domain adaptation from 3d ct-scans. arXiv preprint
arXiv:2403.11338, 2024. 6

[5] Ramy Farag, Parth Upadhyay, and Guilhermen DeSouza.
Covid-19 detection from ct scans using efficientnet and at-
tention mechanism. arXiv preprint arXiv:2403.11505, 2024.
6

[6] Demetris Gerogiannis, Anastasios Arsenos, Dimitrios Kol-
lias, Dimitris Nikitopoulos, and Stefanos Kollias. Covid-
19 computer-aided diagnosis through ai-assisted ct imaging
analysis: Deploying a medical ai system. arXiv preprint
arXiv:2403.06242, 2024. 7

[7] Chih-Chung Hsu, Chia-Ming Lee, Yang Fan Chiang, Yi-
Shiuan Chou, Chih-Yu Jiang, Shen-Chieh Tai, and Chi-
Han Tsai. Simple 2d convolutional neural network-
based approach for covid-19 detection. arXiv preprint
arXiv:2403.11230, 2024. 6

[8] Lu Huang, Rui Han, Tao Ai, Pengxin Yu, Han Kang, Qian
Tao, and Liming Xia. Serial quantitative chest ct assessment
of covid-19: a deep learning approach. Radiology: Cardio-
thoracic Imaging, 2(2):e200075, 2020. 4

[9] Ilianna Kollia, Andreas-Georgios Stafylopatis, and Stefanos
Kollias. Predicting parkinson’s disease using latent informa-
tion extracted from deep neural networks. In 2019 Interna-
tional Joint Conference on Neural Networks (IJCNN), pages
1–8. IEEE, 2019. 3

[10] Dimitrios Kollias, Athanasios Tagaris, Andreas Stafylopatis,
Stefanos Kollias, and Georgios Tagaris. Deep neural archi-
tectures for prediction in healthcare. Complex & Intelligent
Systems, 4(2):119–131, 2018. 3

[11] Dimitrios Kollias, N Bouas, Y Vlaxos, V Brillakis, M Se-
feris, Ilianna Kollia, Levon Sukissian, James Wingate, and
S Kollias. Deep transparent prediction through latent repre-
sentation analysis. arXiv preprint arXiv:2009.07044, 2020.
3

[12] Dimitris Kollias, Y Vlaxos, M Seferis, Ilianna Kollia, Levon
Sukissian, James Wingate, and S Kollias. Transparent adap-
tation in deep medical image diagnosis. In International
Workshop on the Foundations of Trustworthy AI Integrat-
ing Learning, Optimization and Reasoning, pages 251–267.
Springer, 2020. 3

[13] Dimitrios Kollias, Anastasios Arsenos, Levon Soukissian,
and Stefanos Kollias. Mia-cov19d: Covid-19 detection
through 3-d chest ct image analysis. In Proceedings of the
IEEE/CVF International Conference on Computer Vision,
pages 537–544, 2021. 2

[14] Dimitrios Kollias, Anastasios Arsenos, and Stefanos Kollias.
A deep neural architecture for harmonizing 3-d input data

4913



analysis and decision making in medical imaging. Neuro-
computing, 542:126244, 2023. 2, 3, 5

[15] Dimitrios Kollias, Anastasios Arsenos, and Stefanos Kollias.
Ai-enabled analysis of 3-d ct scans for diagnosis of covid-19
& its severity. In 2023 IEEE International Conference on
Acoustics, Speech, and Signal Processing Workshops (ICAS-
SPW), pages 1–5. IEEE, 2023. 2

[16] Dimitrios Kollias, Anastasios Arsenos, and Stefanos Kollias.
Ai-mia: Covid-19 detection and severity analysis through
medical imaging. In Computer Vision–ECCV 2022 Work-
shops: Tel Aviv, Israel, October 23–27, 2022, Proceedings,
Part VII, pages 677–690. Springer, 2023. 2

[17] Dimitrios Kollias, Karanjot Vendal, Priyankaben Gadhavi,
and Solomon Russom. Btdnet: A multi-modal approach for
brain tumor radiogenomic classification. Applied Sciences,
13(21):11984, 2023. 3

[18] Dimitrios Kollias, Anastasios Arsenos, and Stefanos Kollias.
Domain adaptation, explainability & fairness in ai for medi-
cal image analysis: Diagnosis of covid-19 based on 3-d chest
ct-scans. arXiv preprint arXiv:2403.02192, 2024. 6

[19] Qingqiu Li, Runtian Yuan, Junlin Hou, Jilan Xu, Yuejie
Zhang, Rui Feng, and Hao Chen. Advancing covid-19 detec-
tion in 3d ct scans. arXiv preprint arXiv:2403.11953, 2024.
6

[20] Li Lin, Yamini Sri Krubha, Zhenhuan Yang, Cheng Ren, Xin
Wang, and Shu Hu. Robust covid-19 detection in ct images
with clip. arXiv preprint arXiv:2403.08947, 2024. 6

[21] Natalia Salpea, Paraskevi Tzouveli, and Dimitrios Kollias.
Medical image segmentation: A review of modern architec-
tures. In Computer Vision–ECCV 2022 Workshops: Tel Aviv,
Israel, October 23–27, 2022, Proceedings, Part VII, pages
691–708. Springer, 2023. 3

[22] Robert Turnbull and Simon Mutch. High-confidence pseudo-
labels for domain adaptation in covid-19 detection. arXiv
preprint arXiv:2403.13509, 2024. 6

[23] Shuai Wang, Bo Kang, Jinlu Ma, Xianjun Zeng, Mingming
Xiao, Jia Guo, Mengjiao Cai, Jingyi Yang, Yaodong Li, Xi-
angfei Meng, et al. A deep learning algorithm using ct im-
ages to screen for corona virus disease (covid-19). European
radiology, pages 1–9, 2021. 2

[24] Runtian Yuan, Qingqiu Li, Junlin Hou, Jilan Xu, Yuejie
Zhang, Rui Feng, and Hao Chen. Domain adaptation us-
ing pseudo labels for covid-19 detection. arXiv preprint
arXiv:2403.11498, 2024. 6

[25] Chuansheng Zheng, Xianbo Deng, Qing Fu, Qiang Zhou, Ji-
apei Feng, Hui Ma, Wenyu Liu, and Xinggang Wang. Deep
learning-based detection for covid-19 from chest ct using
weak label. MedRxiv, 2020. 4

4914


