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Abstract

To make a more accurate diagnosis of COVID-19, we
propose a straightforward yet effective model. Firstly, we
analyze the characteristics of 3D CT scans and remove the
non-lung parts, facilitating the model to focus on lesion-
related areas and reducing computational cost. We use
ResNeSt-50 as the strong feature extractor, exploring var-
ious pre-trained weights and fine-tuning methods. After a
thorough comparison, we initialize our model with CMC v1
pre-trained weights which incorporate COVID-19-specific
prior knowledge, and perform Visual Prompt Tuning to
reduce the number of training parameters. The superi-
ority of our model is demonstrated through extensive ex-
periments, showing significant improvements in COVID-
19 detection performance compared to the baseline model.
Among 12 participating teams, our method ranked 4th in
the 4th COVID-19 Competition Challenge I with an aver-
age Macro F1 Score of 94.24%.

1. Introduction
The outbreak of COVID-19 has led to widespread health
crises and fatalities. Early detection is crucial for control-
ling and preventing the spread of the virus. As shown in
Fig. 1, Chest CT scans have been extensively utilized for
diagnosing and monitoring COVID-19 patients, due to their
ability to provide detailed insights into lung involvement’s
extent and severity. However, the vast number of CT im-
ages generated necessitates a significant workload for ra-
diologists and medical practitioners, making the diagnosis
process challenging.

In recent years, deep learning has been widely applied
in the automatic detection of COVID-19 [7, 9, 19]. Xu
et al. [29] utilized a 3D deep learning model to iden-
tify potential infection areas in CT scans and built upon
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Figure 1. Samples of non-COVID-19 and COVID-19 from the
COV19-CT-DB database.

this with a location-attention model for accurate COVID-
19 detection. Kolliaz et al. introduced the COV19-CT-DB
dataset [16, 17], containing a large volume of labeled data
for both COVID-19 and non-COVID-19 cases. This initia-
tive significantly advances the field by addressing the press-
ing need for comprehensive datasets, which are vital for the
application of deep learning in the fight against COVID-
19. Hou et al. [6] developed a methodology for diagnosing
COVID-19 that leverages contrastive representation learn-
ing to capture the intra-class similarity and inter-class dif-
ference. They also implemented an adaptive joint training
strategy combining multiple types of losses, including clas-
sification, mixup, and contrastive losses, to refine the learn-
ing process. However, COVID-19 is a novel disease that
requires models to have a high degree of specialized med-
ical knowledge. Moreover, computer-aided diagnostic sys-
tems place high demands on the real-time capabilities and
computational efficiency of models. These factors present
challenges for current COVID-19 diagnostics.

To address the issues mentioned, we first preprocess 3D
CT scans by removing non-lung slices that are irrelevant to
the diagnosis of COVID-19. This encourages the model to
concentrate on lesion-related areas and reduces computa-
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tional cost to some extent. We employ ResNeSt-50 as the
strong feature extractor. Considering that training a model
from scratch leads to poor results, we attempt three different
pre-trained weights, i.e., ImageNet [5], MIS-FM [27] and
CMC v1 [6]. ImageNet is based on natural images; MIS-
FM is trained on CT scans of various human body parts,
i.e., neck and abdomen; CMC v1 is derived from chest
CT scans, enriched with COVID-19-specific prior knowl-
edge, providing a valuable foundation for models targeting
this novel disease. Furthermore, given the real-time perfor-
mance and computational demands of computer-aided di-
agnostic systems, we experiment with three distinct fine-
tuning approaches, i.e., Full Fine-tuning, Linear Classifi-
cation and Visual Prompt Tuning. Full Fine-tuning offers
the highest accuracy while at the cost of increased parame-
ters. Linear Classification significantly reduces the number
of parameters during training, but it also leads to a consider-
able decrease in performance. Visual Prompt Tuning man-
ages to reduce the number of required parameters with only
a slight compromise on accuracy, meeting our criteria for
effectiveness and efficiency.

Our primary contributions are outlined as follows:
1. We analyze the characteristics of 3D CT scans and re-

move the non-lung parts, facilitating the model to focus
on lesion-related areas and reducing computational cost.

2. We utilize ResNeSt-50 as a strong feature extractor,
comparing various pre-trained weights and fine-tuning
methods, aiming to achieve a balance between effective-
ness and efficiency.

3. Based on the CMC v1 pre-trained weight and the Vi-
sual Prompt Tuning, we achieve a Macro F1 score of
93.55% on the validation set of Challenge I, surpassing
the baseline by 15.55%, while reducing the number of
training parameters to 1.03M, which is 1/50 of the Full
Fine-tuning method.

2. Related Work

2.1. COVID-19 Detection

In recent years, numerous advanced methods have emerged
for COVID-19 detection. Song et al. [24] developed a deep
learning-based CT diagnostic system that can accurately
identify COVID-19 patients, distinguishing them from 100
bacterial pneumonia cases and 86 healthy individuals. Xu
et al. [29] utilized a 3D deep learning model to segment po-
tential infection areas from lung CT scans and introduced a
location-attention model to differentiate between COVID-
19, Influenza-A viral pneumonia, and healthy cases. Ar-
senos et al. [1] introduced the COV19-CT-DB dataset, con-
taining a large volume of labeled data for both COVID-19
and non-COVID-19 cases, offering a solid foundation for
enhancing model performance. Furthermore, they devel-
oped a CNN-RNN based classification model for COVID-

19 detection, leveraging the strengths of both convolutional
and recurrent neural networks to effectively handle the com-
plexities of COVID-19 detection in CT scans. Hsu et al.
[10] proposed a slice selection method for each CT dataset
to filter out uncertain slices and a spatial-slice feature learn-
ing technique that employs a conventional and efficient
backbone model for slice feature training. Hou et al. [6]
designed a COVID-19 diagnosis approach with contrastive
representation learning to effectively capture the intra-class
similarity and inter-class difference. Besides, an adaptive
joint training strategy was used to integrate classification
loss, mixup loss, and contrastive loss.

2.2. Transfer Learning

As neural networks grow deeper and the number of param-
eters increases, transfer learning has become a pivotal study
area for vision tasks. Transfer learning of pre-trained mod-
els can be categorized into three main types: Full Fine-
tuning, Head-oriented, and Backbone-oriented. Full Fine-
tuning means updating all backbone and classification head
parameters of the pre-trained model. Although this method
can achieve high accuracy, it involves a large number of
parameters, and each single task has its own unique set of
parameter weights. To address this, a popular method is to
only fine-tune a subset of parameters, typically the classi-
fier head, known as Head-oriented tuning [4, 11, 21]. Addi-
tionally, Backbone-oriented approaches [22, 31] fine-tune
the pre-trained model by adding extra residual blocks or
adapters to the backbone, offering an alternative strategy for
model adaptation. The methods mentioned above fine-tune
the pre-trained model itself, and some approaches [12, 32]
choose to adjust the input. Jia et al. [12] proposed Visual
Prompt Tuning to modify the input to the model, which in-
troduces a small amount of task-specific learnable parame-
ters into the input space while freezing the entire pre-trained
backbone during downstream training, achieving good re-
sults with minimal parameters. Visual Prompt Tuning has
also been applied in the medical field, Zhang et al. [32] en-
hanced it by incorporating a wide range of biomedical tex-
tual prompts, leading to adapt foundation models towards
pathological image understanding.

The potential of transfer learning on COVID-19 detec-
tion has also been explored in some research works. For
example, Subramanian et al. [25] used models pre-trained
on ImageNet [5] and introduced the Learning without For-
getting (LwF) framework to boost the model’s generaliza-
tion across both known and new data. Li et al. [20] in-
troduced a model pre-trained on the Chest X-ray14 dataset
[28], enabling it to distinguish COVID-19 samples by lever-
aging its existing understanding of conventional pneumo-
nia. Hou et al. [8] incorporated 3D weights pre-trained on
video datasets, i.e. k400 [3], equipping the model with the
capability to capture temporal information in 3D data.
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Figure 2. Overview of our framework for COVID-19 detection.

The aforementioned methods have achieved promising
results in COVID-19 detection, but they still face some
issues. The introduced pre-trained weights lack medical
domain knowledge and are unaware of the novel disease
COVID-19. Additionally, they all involve Full Fine-tuning,
resulting in a large number of parameters and lengthy train-
ing times. Based on this, we explore more suitable pre-
training weights and fine-tuning methods that simultane-
ously consider both effectiveness and efficiency, aiming to
advance COVID-19 detection in 3D CT scans.

3. Methodology
The overall framework of our model is shown in Fig. 2.
Given a minibatch of N randomly sampled CT scans and
their pneumonia-type labels {(xi, yi)}i=1,...,N , we first pre-
process the 3D CT scans by removing slices unrelated to
the lungs. Specifically, we find that each 3D CT volume
contains some slices that do not contribute to COVID-19
detection, i.e., the neck area at the start and the abdominal
region towards the end. Therefore, we remove the first 15%
and the last 15% of slices from each xi ∈ R1×D×H×W

to obtain x̃i ∈ R1×D′×H×W , directing the model’s focus
towards areas relevant to lesion detection and simultane-
ously reducing computational cost. Here, H,W denote the
height, and width of a CT slice, respectively. D represents
the original number of slices, and D′ denotes the quantity
after pre-processing.

After obtaining the x̃i, we utilize ResNeSt-50 [30] as our
feature extractor, which presents a modular split-attention
block within the individual network blocks to enable atten-
tion across feature-map groups. Considering that training a
model from scratch leads to poor results, we employ trans-
fer learning. We attempt three different pre-trained weights
and three different fine-tuning methods, aiming to advance
more effective and efficient COVID-19 detection.

We utilize three distinct pre-trained weights, each serv-
ing a unique purpose. (1) ImageNet [5]. In transfer learn-
ing, it is a common practice to initialize the model on down-
stream tasks with weights pre-trained on a large-scale Ima-

geNet dataset. ImageNet is good for learning general image
features, i.e., color and shape. (2) MIS-FM [27]. We adopt
MIS-FM, which is trained on three different scales of CT
datasets, including CT scans from various parts of the hu-
man body, i.e., neck, abdomen and lungs. The pre-trained
weights provided by MIS-FM incorporate medical knowl-
edge relevant to CT imaging and are beneficial for compen-
sating the limited training data. (3) CMC v1 [6]. We intro-
duce the pre-trained weights based on CMC v1, specialized
for lung characteristics and including COVID-19-specific
prior knowledge.

We also employ different fine-tuning paradigms. The or-
ange and blue colors represent learnable and frozen param-
eters, respectively.
Full Fine-tuning. As shown in Fig. 3(a), during Full Fine-
tuning, the entire backbone and head are updated:

ri = Backbone(x̃i), (1)
ỹi = Head(ri), (2)

where ri ∈ Rde is the representation vector in the de-
dimensional latent space, and ỹi is the predicted probability
of the sample x̃i.
Linear Classification. As shown in Fig. 3(b), we adopt the
Head-oriented approach, where only the classification head
is trained:

ri = Backbone(x̃i), (3)
ỹi = Head(ri). (4)

Visual Prompt Tuning. As shown in Fig. 3(c), we explore
the Visual Prompt Tuning approach, where a trainable vec-
tor P is concatenated onto the input x̃i:

ri = Backbone([x̃i, P ]), (5)
ỹi = Head(ri). (6)

We consider two concatenation methods: below and pad.
Below means concatenating P and x̃i along the channel di-
mension, resulting in x̃

′

i ∈ R(1+l)×D′×H×W . Pad means
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Figure 3. Different fine-tuning paradigms.

Table 1. Statistics of the Challenge I dataset.

Split COVID-19 Non-COVID-19 Total
Training 703 655 1358

Validation 156 170 326
Testing - - 1413

concatenating P and x̃i along the D, H , and W dimen-
sions, resulting in x̃

′

i ∈ R1×(D′+l)×(H+l)×(W+l). Here, l
denotes the token length of prompt vector P .

Finally, the standard cross-entropy loss is utilized for bi-
nary classification training, which is defined as:

Lcls =
1

N

N∑
i=1

Li
ce, (7)

Li
ce = −y⊤i log ỹi, (8)

where yi denotes the one-hot vector of ground truth label.

4. Datasets
We evaluate our proposed approach on the COV19-CT-
DB database [19]. The COV19-CT-DB contains chest CT
scans, collected in various medical centers. The database
includes 7,756 3D CT scans, where 1,661 are COVID-19
samples, whilst 6,095 refer to non-COVID-19 ones. In total,
724,273 slices correspond to the CT scans of the COVID-
19 category and 1,775,727 slices correspond to the non-
COVID-19 category class [1, 2, 14–18].

For Challenge I, the training set contains 1358 3D
CT scans (655 non-COVID-19 cases and 703 COVID-19
cases). Based on this, we further enrich our training set
with annotated data from Challenge II (120 non-COVID-
19 cases and 120 COVID-19 cases), aiming to enhance the
model’s learning capacity and its ability to generalize across
diverse cases of COVID-19 detection. The validation set
consists of 326 3D CT scans (170 non-COVID-19 cases and
156 COVID-19 cases). The testing set includes 1413 scans
and the labels are not available during the challenge.

5. Experiments
5.1. Data Pre-Processing

Our data pre-processing procedure is as follows. All 2D
chest CT scan series are composed into a 3D volume of
shape (D,H,W ), where D,H,W denotes the number of
slice, height, and width, respectively. Then, each 3D vol-
ume is resized to dimensions of (128, 256, 256). Finally,
we transform the CT volume to the interval [0, 1] for inten-
sity normalization.

5.2. Implementation Details

We utilize 3D ResNeSt-50 as the backbone of our model.
For training, data augmentations include random resized
cropping on the transverse plane, random cropping on the
vertical section to 64, rotation, and color jittering. We use
Adam algorithm [13] as our optimizer, setting the learning
rate to 1e− 4 and the weight decay to 1e− 5. Our model is
trained 100 epochs on 4 RTX 3090 GPUs with a batch size
of 2 per GPU. When doing Visual Prompt Tuning, the token
length of prompt vector P is set to 5.

5.3. Evaluation Metrics

Macro F1 score is adopted as the evaluation metric, which
calculates the F1 score for each category separately and then
averages these scores to assess overall performance. The F1
score for the i-th class is defined as:

F1-Scorei = 2× Recalli × Precisioni
Recalli + Precisioni

. (9)

The Macro F1 score is an average of the F1 Score for
COVID-19 and the F1 Score for non-COVID-19, which can
be formulated as:

Macro-F1 =
1

2
(F1-Scorec19 + F1-Scoren−c19). (10)

5.4. Ablation Study

Impact of different pre-trained weights. As shown in Ta-
ble 2, we conduct transfer learning on three different pre-
trained weights, corresponding to IDs 2-4. Among them,
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Table 2. The results on the validation set of COVID-19 detection challenge.

ID Method Pre-trained Params Accuracy Macro F1 F1
Non-COVID-19 COVID-19

Full Fine-tuning
1 Baseline - - - 78.00 - -
2 ResNeSt-50 ImageNet 50.40M 88.34 88.34 88.42 88.27
3 PCT-Net MIS-FM 43.22M 88.96 88.93 88.39 89.47
4 ResNeSt-50 CMC v1 50.40M 93.87 93.86 93.63 94.08
5 ResNeSt-50 + mix CMC v1 50.40M 93.25 93.25 93.08 93.41
6 ResNeSt-50 + mix + con CMC v1 54.65M 93.87 93.86 93.71 94.01

Linear Classification
7 ResNeSt-50 CMC v1 0.003M 92.64 92.64 92.55 92.73

Visual Prompt Tuning
8 ResNeSt-50 + below CMC v1 20.04M 93.56 93.56 93.42 93.69
9 ResNeSt-50 + pad CMC v1 1.030M 93.56 93.55 93.29 93.80
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Figure 4. Overall performance comparison.

fine-tuning based on ImageNet weights yields the lowest
results due to its lack of knowledge in the medical domain.
Fine-tuning with MIS-FM weights results in a relatively mi-
nor increase of 0.5% in Macro F1 score compared to the
former. Note that, as MIS-FM is trained based on PCT-
Net [27], we use PCT-Net as the backbone. Fine-tuning
with CMC v1 weights provides a significant boost to the
model, achieving 93.86% on Macro F1 score, which is more
than 5% higher than the previous two. This indicates that
the COVID-19-specific knowledge introduced in CMC v1
is highly beneficial for the model to learn lesion features
and accurately classify them.
Impact of different fine-tune methods. Focusing on the
results of IDs 4, 7-9 in Table 2, ID 4 fine-tunes the entire
backbone and head, achieving the highest Macro F1 score
of 93.86%. However, it also has the highest number of train-
ing parameters, totaling 50.40M. On the other hand, ID 7
utilizes the Linear Classification strategy, training only the
head, resulting in a significantly smaller number of param-
eters, almost close to zero. However, this approach also
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Figure 5. The confusion matrix of ID 9 model’s prediction.

leads to some performance decrease, with a 1.2% decrease
in Macro F1 score compared to ID 4. Meanwhile, IDs 8-
9 employ the Visual Prompt Tuning approach to balance
model performance and efficiency. In this approach, below
indicates that the trainable prompt vector P is concatenated
along the channel dimension of the input x̃i, while pad
means the prompt is wrapped around the input x̃i. Based on
pad-based Visual Prompt Tuning, only 1/50 of the parame-
ters of Full Fine-tuning are utilized to achieve comparable
results, with only a 0.3% decrease in Macro F1. Therefore,
we consider the Visual Prompt Tuning-based transfer learn-
ing approach suitable for COVID-19 detection tasks that re-
quire both accuracy and speed. Fig. 5 shows the confusion
matrices for the pad-based Visual Prompt Tuning method.
Impact of other techniques. In addition to experimenting
with different pre-trained weights and fine-tuning methods,
we explore some techniques that have been proven effective
in previous work [6, 8]. As shown in IDs 5-6 in Table 2, mix
represents the data augmentation method mixup, and con
represents the contrastive learning method for COVID-19
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Figure 6. The t-SNE visualizations of encoded image representa-
tions on the training set.

detection introduced by Hou et al. [6]. In our experiments,
the incorporation of these two techniques does not lead to an
increase in Macro F1 score. This is likely that the primary
motivation behind these techniques is to assist the model
in more effectively learning the characteristics of COVID-
19 lesions when data availability is limited. However, the
CMC v1 pre-trained weights we introduced are robust and
have alleviated this issue to a certain extent.

Fig. 4 illustrates the overall performance comparison
of these methods, highlighting the superior performance
achieved by Visual Prompt Tuning based on the pre-trained
CMC v1 weights in both effectiveness and efficiency.

5.5. Visualization Results

We present the t-SNE [26] plots in Fig. 6 to visualize the
feature embeddings of the images of Challenge I. The left
plots feature embeddings of the images encoded with Im-
ageNet weights, while the right utilizes CMC v1 weights.
Notably, CMC v1 effectively clusters different categories,
introducing robust prior knowledge to assist our model in
learning meaningful disease-level semantic information for
COVID-19 and non-COVID-19.

To further demonstrate the model’s mechanism, we em-
ployed the Gradient-weighted Class Activation Mapping
(Grad-CAM [23]) method to create heatmaps which high-
light areas the model focuses on. As shown in Fig. 7, se-
lecting three COVID-19 CT scans from the COV19-CT-DB
dataset’s validation set, the model successfully highlights
the COVID-19 lesion areas in the lungs, suggesting clear
interpretability of our model’s diagnostic results. These
heatmaps could potentially serve as a basis for COVID-19
diagnosis in clinical practice.

5.6. Results on Challenge I Leaderboard

Table 3 shows the results of our method and other partici-
pants on the testing set of the 4th COVID-19 detection chal-
lenge. Our team secures the 4th position, with a 0.65% dif-
ference in Macro F1 score from the 1st place. In our future
work, we aim to focus on more refined data preprocessing

Table 3. The competition results on the testing set of the COV19-
CT-DB database.

Rank Teams Macro F1 F1(NC) F1(C)
1 MDAP 94.89 95.97 93.81
2 Deep-Adaptation 94.60 95.53 93.66
3 ACVLAB 94.39 95.52 93.26
4 FDVTS (Ours) 94.24 95.41 93.07
5 ViGIR Lab 93.63 94.97 92.29
6 M2@Purdue 90.14 92.06 88.22
7 baseline 85.11 87.48 82.74

and adopting a more effective method for lung region ex-
traction. Moreover, we will explore stronger backbones and
training strategies to enhance our model’s performance.

6. Conclusion
In this paper, we propose a straightforward yet effective
model for COVID-19 detection. Firstly, we analyze the
characteristics of 3D CT scans, removing non-lung regions
from the entire volume. This approach not only facilitates
the model to focus on lesion-related areas but also reduces
computational cost. We choose ResNeSt-50 as the fea-
ture extractor, utilizing transfer learning instead of train-
ing the model from scratch. We initialize our model with
pre-trained weights from CMC v1 to incorporate COVID-
19-specific prior knowledge. Based on the aforementioned
techniques, our model achieves a Macro F1 score of 93.55%
on the validation set of Challenge I, surpassing the baseline
by 15.55%, while reducing the number of training parame-
ters to 1.03M, which is 1/50 of the full fine-tune method.
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