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Abstract

Due to limitations on the amount of available data from
a single source, combining data from different sources can
significantly improve the statistical analysis of fMRI im-
ages. However, because the training and target sources are
usually different, applying a deep learning model trained
on the source domain leads to inconsistent results when ap-
plied to the target domain, especially on 3D MRI images
due to variations in bias across scanners. While Harmo-
nization methods and Domain Adaptation (DA) are popular
approaches for handling multi-site MRI data, Domain Gen-
eralization (DG) is less studied and may offer some unique
benefits.

In this study, we explore the impact of DG, and com-
pare data harmonization on brain age prediction using 3D
fMRI images from the OpenBHB dataset. The dataset con-
sists of 3D T1 brain MRI scans aggregated from 10 pub-
licly available datasets, comprising N = 3985 individuals
and acquired on more than 70 different scanners. We focus
on the Big Healthy Brains (BHB) dataset, utilizing Voxel-
Based Morphometry (VBM) images and performing a split
into training, out-of-domain validation, and out-of-domain
test sets based on site metadata. Our experiments involve
training models based on the architecture introduced in [§],
extending it as per [9], and evaluating various generaliza-
tion techniques on both harmonized and non-harmonized
data and their differences. Our findings highlight that har-
monization increases the Mean Absolute Error (MAE) for
all methods. DA and DG methods reliably improve per-
formance on out-of-domain tests, with Domain Adversarial
Neural Network (DANN) exhibiting the best performance.
This paper reports the complex interplay between data har-
monization and model generalization, providing insights
into the selection and application of generalization tech-
niques in neuroimaging.
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1. Introduction

In the field of neuroscience machine learning, models need
to be both effective and reliable, meaning they should be
sensitive to biological factors while remaining unaffected
by non-biological variables such as site or instrument vari-
ations. Magnetic Resonance Image (MRI) is a classic tool
with many applications [3]. However, the process ol ac-
quiring these scans and the difference between devices can
affect the appearance of healthy and abnormal tissues. Con-
volutional Neural Networks (CNNs) have outstanding re-
sults on many medical imaging tasks but they are sensitive
to the differences in Imaging protocols. In other words, a
CNN model trained on a particular imaging protocol is less
effective on the images from other imaging sources because
of domain shift [12]. In neuroimaging research, addressing
the challenges posed by domain (scanner) shifts in 3D fMRI
brain images is important for the development of robust and
reliable models.

To address these challenges, many different solutions
have been introduced including Domain Adaptation (SDA)
which needs both the labeled source domain and labeled tar-
get domain. Practically this method is not effective because
it is not possible to have all of the required information
from different sites and devices, thus accessing the labeled
information from the target domain is not a realistic ap-
proach. Another method is Unsupervised Domain Adapta-
tion (UDA) where the access to the target domain is limited
to unlabeled data. This method is more practical than SDA
but it is also not applicable to the Medical Imaging Analysis
field (MedIA) because the access to target domain is often
impossible. For example, where we want to use prediction
model on a new installed device from a new site. Finally,
the last method is Domain Generalization, in this scenario,
there is no access to the target domain data (labeled or unla-
beled). This method uses different ways to predict the effect
of target domain constrains using multiple source domain
data. This method is more practical in many ways. First,
it can generalize the model to any unseen target domain.

4915



Thus, the final model can be used to predict the required in-
formation on any data from unseen domains. Additionally,
harmonization techniques primarily involve preprocessing
input image data from various domains to produce altered
images that appear more alike, yet still retain the important
attributes/information necessary for distinguishing predic-
tion outcomes. The issue with harmonization methods is
that they must be reapplied to new images from any source,
and this process can alter key image attributes in a way that
potentially increases prediction error.

In this context, domain shifts refer to differences in scan-
ners and image protocols across different sites. Some ex-
amples of domain shift include flip angle, acquisition ori-
entation, and slice thickness. Therefore, MRI may differ in
many aspects from center to center or study to study. Deal-
ing with these parameters is impossible in many scenarios
where we don’t have the details of each scanner and proto-
col.

This study aims to thoroughly investigate the applica-
bility and performance of well-known domain adaptation
and generalization methods on both harmonized and non-
harmonized data. By comparing these methods against each
other and against the current state-of-the-art approach, we
seek to provide insights into their efficacy in handling do-
main shifts in heterogeneous datasets.

2. Background

Many Studies have shown the impact of different techniques
on the prediction of target values (such as age, cancer, etc.)
in different medical domains. H.Guan, and M.Liu [6],
summarized many domain adaptation techniques in Medi-
cal Image Analysis (MedIA). As mentioned by them, there
is not too much task-specific research on this topic. Al-
though many of these researches try to show the improve-
ment of their adaptation method based on the source and
target domain data on 2D images, there is few studies that
work with 3D fMRI images. Another problem mentioned
by them is the "Multi-Source/Multi-Target Domain Adap-
tation” problem. Current domain adaptation (DA) methods
typically concentrate on adapting from a single source do-
main, meaning they train a model using data from one do-
main. However, in practical scenarios, there could be sev-
eral source domains (such as various imaging centers).

Many other research studies work on DG methods. As
mentioned by [21], these studies primarily use data from
the source domain to adapt the model, enhancing its perfor-
mance on unseen domains without requiring any data from
those domains. These methods are more practical on real
neuroimaging tasks because while they don’t use any data
from the target domain, these methods mainly use multiple
source domain data.

There are many different approaches on UDA like
discrepancy-based approaches such as Deep Adaptation

Network (DAN) and Correlation Alignment (CORAL) [18],
adversarial-based approaches such as Domain Adversarial
Neural Network (DANN) [17] and Adversarial Discrimina-
tive Domain Adaptation (ADDA) [19], moment matching
approaches like Moment Matching for Multi-Source Do-
main Adaptation (M3SDA) [15], Domain Genrelaization
(DG) such as Domain Adversarial Neural Network with
Cooperative Examples (DANNCE) [17] and Harmonization
techniques such as Combat [4, 10].

Many researches state that the challenges in domain gen-
eralization stem from various factors including the diffi-
culty of achieving domain invariance across unseen do-
mains, which can lead to increased prediction errors when
the invariance achieved on training domains does not gen-
eralize well. Furthermore, assumptions made by algo-
rithms about domain invariance and the relevance of chosen
datasets might not accurately reflect real-world scenarios,
complicating the evaluation of these methods. The lack of a
standardized framework for model selection and evaluation
poses additional hurdles, as it becomes challenging to fairly
compare different methods or to choose the best hyperpa-
rameters without a suitable validation set. Additionally, the
strong performance of Empirical Risk Minimization (ERM)
compared to more complex domain generalization strate-
gies, when combined with modern architectures and care-
ful tuning, questions the necessity of domain-specific ap-
proaches over enhancements to in-distribution generaliza-
tion techniques [5, 7, 13, 14].

3. Methodology

The core of our research lies in the exploration of gener-
alization methods from the Stanford WILDS package [11,
16]. It includes Empirical Risk Minimization (ERM), In-
variant Risk Minimization (IRM) [2], Domain Adversar-
ial Neural Network (DANN) [17], Deep Correlation Align-
ment (deepCORAL) [18]. Additionally we evaluated Do-
main Adversarial Neural Network with Cooperative Ex-
amples (DANNCE) which is a generalization method pre-
sented by A.Sicila [17]. We have implemented all of the
above methods on harmonized and non-harmonized data,
to predict brain age from fMRI images. For this task, we
use the ComBat harmonization technique which is a well-
known fMRI image harmonization in MedIA [4, 10]. We
adopt a model architecture introduced in [8], further ex-
tended as per [9], to capture spatial information from 3D
fMRI images. Our objective is to assess the effectiveness
of these methods in handling domain shifts and improving
the generalizability of brain age prediction models across
diverse datasets.

Our study conducts a comparative analysis of general-
ization methods on the OpenBHB dataset, with an emphasis
on the harmonization process’s influence. Previous studies
show that harmonization methods normally decrease accu-

4916



racy or increase the error. As mentioned by some researches
[1, 20], while harmonization techniques like ComBat and
c¢VAE can effectively reduce dataset differences to pool
MRI data from multiple sources, they may inadvertently
also remove biologically relevant information. This loss of
information could be detrimental to the models trained on
the harmonized data, potentially leading to increased pre-
diction errors in tasks such as predicting Mini-Mental State
Examination (MMSE) scores and clinical diagnoses. Our
results also indicate an overall increase in MAE, suggest-
ing the potential loss of predictive variance. We use multi-
source, multi-target domain dataset to measure the perfor-
mance of known DG methods. we comparc MAE from
different generalization methods on prediction of brain age
from fMRI images. The domain generalization methods
that we use in this work are:

Empirical Risk Minimization (ERM): In the context of
domain generalization, ERM involves combining data from
multiple source domains and training a model to minimize
this combined empirical risk, with the hope that it general-
izes well to unseen domains. The primary focus of ERM is
on achieving the lowest possible error on the training data,
often without explicitly considering the variability or differ-
ences between domains. This approach is straightforward
and widely used, but it can be limited by its reliance on the
assumption that minimizing empirical risk on the source do-
mains will ensure generalization to target domains, poten-
tially overlooking the domain-specific nuances that might
not generalize well.

Invariant Risk Minimization (IRM): The goal of IRM
is to identify and leverage the underlying causal structures
within the data that remain constant across domains, thus
enabling the model to generalize better to unseen domains.
This is achieved through an optimization process that not
only minimizes the empirical risk but also imposes con-
straints to ensure the invariance of the model’s predictions
across domains. Unlike ERM, which primarily focuses on
aggregate loss, IRM specifically targets the robustness and
transferability of learned features by enforcing that the opti-
mal predictor should perform consistently across all known
environments. This focus on invariance to domain shifts
makes IRM particularly suited for situations where domain
variability is significant and where uncovering causal rela-
tionships is crucial for generalization.

Domain Adversarial Neural Network (DANN): The
core idea behind DANN is to train a model in a way that
makes it difficult to distinguish between source domain data
(on which the model is trained) and target domain data
(on which the model is tested), thereby minimizing do-
main discrepancy. This is achieved through a unique ar-

chitecture that combines a feature extractor, a task-specific
predictor, and a domain classifier in an adversarial train-
ing framework. The feature extractor learns to generate
domain-invariant features, while the domain classifier tries
to distinguish between the source and target domain fea-
tures. Simultaneously, the task-specific predictor focuses
on the primary learning task (e.g., classification or regres-
sion). Through backpropagation and gradient reversal lay-
ers, the model is encouraged to find feature representations
that are both useful for the main task and indistinguishable
by the domain classifier, thus promoting domain invariance
and enhancing the model’s ability to generalize from the
source to the target domain.

Deep Correlation Alignment (deepCORAL): deepCO-
RAL focuses on aligning the second-order statistics (i.e.,
covariance) of source and target domain feature distribu-
tions to reduce the domain shift. The essence of Deep
CORAL lies in its ability to minimize the discrepancy be-
tween the source and target domains by adjusting the deep
neural network’s features such that the correlation matri-
ces of the two domains are brought closer. This is accom-
plished through a loss function that quantifies the difference
in covariance between features extracted from the source
and target domains, encouraging the network to learn repre-
sentations that are invariant across domains. By integrating
this alignment objective with the standard task-specific loss
(e.g., classification or regression loss), Deep CORAL effec-
tively guides the network to not only perform well on the
source domain task but also to generalize better to the target
domain by mitigating the impact of domain-specific vari-
ations. This approach leverages the deep learning frame-
work’s capacity for feature extraction and representation
learning, making it a powerful tool for domain adaptation
challenges where the goal is to bridge the gap between dif-
ferently distributed datasets without requiring explicit do-
main labels during training.

Domain Adversarial Neural Network with Cooperative
Examples (DANNCE): DANNCE differs from DANN
primarily in its approach to addressing domain general-
ization challenges. While DANN focuses on minimizing
domain discrepancies through adversarial training to learn
domain-invariant features for domain adaptation, DANNCE
goes further by enhancing source diversity and tackling the
broader challenges of domain generalization. Specifically,
DANNCE implements a strategy to generate examples that
target the weaknesses of the feature extractor, aiming to de-
ceive the domain discriminator in a way that promotes coop-
erative adaptation. This results in a more diversified source
representation, pushing the model towards learning features
that are inherently more generalizable across various unseen
domains. By actively manipulating source domain data to
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better align with the domain discriminator’s goals, DAN-
NCE not only seeks domain invariance like DANN but also
enhances the model’s adaptability and performance across
different domains by enriching the representation of source
domain features. This approach marks a significant strate-
gic shift, focusing on the dynamic enrichment of source data
to overcome domain generalization challenges more effec-
tively.

Although DANN and deepCORAL are known as DA
techniques, meaning they access the data from the target
domain, in this work, we split the training dataset into
two parts such that both labeled and unlabeled datasets for
DANN and deepCORAL are from the training dataset. this
means that in our work, we use DANN and deepCORAL as
domain generalization techniques because none of the do-
mains are shared between the training, validation, and test
datasets. Also, the domain between labeled and unlabeled
datasets is not shared.

Additionally, we investigate the effectiveness of Com-
Bat harmonization, a powerful post-processing technique
designed to remove technical between-scanner variation.
ComBat successfully removes inter-site technical variabil-
ity as demonstrated in recent papers [4, 10].

3.1. Dataset

We use the Big Healthy Brains (BHB) dataset, a compre-
hensive aggregation of 3D T1 brain MRI scans from healthy
controls (HC). This dataset encompasses data from 70 dif-
ferent scanners, comprising N = 3985 individuals and uni-
fying various preprocessing techniques, including VBM.
For our experiments, we exclusively use VBM images
from the BHB dataset. To simulate domain shifts, we
perform a split into three categorics: training, out-of-
domain validation, and out-of-domain test sets. This split is
achieved by selecting sites, ensuring 70% of the data points
for training, 15% for validation, and 15% for testing Tab. 1.
The training dataset is divided into two parts for bet-
ter comparison between DA (DANN and deepCORAL) and
others. As you can see in Tab. 1, we divided the training
data into T1 as labeled for all generalization methods and
T2 for methods that accept unlabeled data. T1 has 40% of
all data while T2 has 30%. To make a fair comparison be-
tween all generalizations, we compare all methods in two
situations, the first situation assumes that all of the meth-
ods are using the whole training dataset (T1 plus T2), while
the second comparison uses only T1 as the labeled data for
generalization methods that only accept labeled data (ERM,
IRM, DANNCE) and for DANN and deepCORAL, we use
T1 as labeled and T2 and unlabeled data. We do all of these
comparisons on both harmonized and non-harmonized data.
Each dataset has different domains (sites). Table 1 shows
T1 images are from 16 first sites while T2 includes 34 to
36, 46 to 64, and site 69. validation dataset sites are in the

range of 15 to 33 and test sites are from 37 to 45 plus 65. we
did this division to make sure that the total number of data
points for each dataset is as close as possible to the division
percentage previously mentioned.

Though DANN and deepCORAL are well-known DA
techniques and these methods should have access to the un-
labeled target domains, this site distinction makes sure that
these methods are being used as generalization methods in
this study. because there is no intersection between D, gy,
D5, and D, in other words:

Dyrain N Diest = Dyrain mDval = Dyes N Dval =0 (1)

4. Results

Our comprehensive investigation into the effectiveness of
generalization methods on the mixed VBM dataset, sourced
from the extensive Big Healthy Brains (BHB) dataset, high-
lights significant findings. Leveraging the sophisticated ar-
chitecture introduced by Gupta et al. [8], the study under-
scores the model’s adeptness at navigating domain shifts
and saleguarding spatial data integrity.

The model has been trained for 50 epochs, with a cali-
brated learning rate of 0.01 and a weight decay parameter
of 0.001. Employing the Mean Squared Error (MSE) as
the loss criterion and the Adam optimization algorithm, we
evaluated model performance, employing the Mean Abso-
lute Error (MAE) as our primary metric.

A evaluation approach was adopted to assess the com-
parative quality of DANN/deepCORAL against other do-
main generalization (DG) methodologies, demand the ex-
ploration of two distinct scenarios. In the first scenario, a
comprehensive labeling of the T1 and T2 datasets ease a di-
rect comparison across all DG methods, integrating DANN
and deepCORAL within this framework (Fig. 1, Fig. 2).
The subsequent scenario introduced a presentation between
labeled (T1) and unlabeled (T2) datasets, a configuration
that uniquely positioned DANN and deepCORAL to lever-
age unlabeled data, thus simulating a more complex domain
adaptation challenge (Fig. 3, Fig. 4).

4.1. First Scenario (T1 plus T2 as labeled)

In this scenario, the entire dataset, comprising both T1 and
T2, is treated as labeled, providing a comprehensive ba-
sis for evaluating the effectiveness of various DG meth-
ods under uniform labeling conditions. This setup offers
a unique vantage point for assessing each method’s capa-
bility in leveraging labeled data for domain adaptation and
prediction.

Our first line of investigation under this scenario fo-
cused on non-harmonized data. This analysis was essen-
tial in understanding how each generalization method copes
with data diversity without any harmonization efforts to
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Table 1. Data and Site Distribution among Train, Validation, and Test dataset

Data Distribution | Train Subset 1 (40%) | Train Subset 2 (30%) | Validation (15%) | OOD Test (15%) | Total
Sites 0-14 34-36, 46-64, 69 15-33 37-45, 65 70
Data 1589 1207 594 594 3984
minimize domain shifts. Remarkably, all DG methods val train test
IRM (Without T2) 10.489749 | 6.085962 9.575923

demonstrated superior performance compared to the base-
line method (ERM) across the testing dataset, indicating
their inherent strength in extracting and utilizing domain-
specific information from labeled data effectively.

Among the evaluated methods, DANN emerged as the
standout performer, achieving the lowest MAE values
across training, validation, and testing datasets (Fig. 1).
This outcome not only highlights DANN’s proficiency in
domain adaptation using labeled data but also underscores
its capacity to detect and grasp domain-specific distinctions
more cffectively than its counterparts. Contrarily, DAN-
NCE, while not utilizing the full spectrum of the training
dataset for domain prediction tasks, adeptly generates addi-
tional examples from subsets of the training data, enhancing
its domain discrimination capabilities.

The exploration extends into the domain of harmonized
data, where the effects of data uniformity on model perfor-
mance are meticulously scrutinized (Fig. 2). Within this
context, DANN maintains its position as the method with
the lowest MAE for the training dataset. However, a notable
shift occurs in the performance dynamics during validation
and testing phases, where DANN exhibits increasing MAE
values over epochs, signaling a tendency towards overfitting
in a harmonized data environment.

In stark contrast, DANNCE demonstrates remarkable re-
silience against overfitting, quickly stabilizing its perfor-
mance and outpacing other methods in adapting to harmo-
nized data. This stability can be attributed to DANNCE’s
strategic use of generated examples for domain prediction,
a technique that proves particularly effective in navigating
the reduced inter-domain variability characteristic of har-
monized datasets.

4.2. Second Scenario (T1 Labeled, T2 Unlabeled )

In this scenario, we divide the train dataset into two dis-
tinct parts: T1, comprising labeled data, and T2, containing
unlabeled data. This division sets the stage for a different
evaluation, particularly for DANN and deepCORAL. These
methods, designed for domain adaptation, uniquely accept
unlabeled data, presuming such data originates from the tar-
get domain—a notion not entirely applicable in our experi-
mental setup.

Our initial experiments in this scenario explored the dy-
namics of non-harmonized data, meticulously capturing the
performance of various generalization methods across train-
ing, validation, and testing phases. Specifically, DANN

ERM (Without T2) 9.557683 | 3.154767 9.537376
DANNCE (Without T2) 9.797408 | 3.057051 9.448741
DANN (T2 as Unlabeled) 9.437050 | 0.831619 9.535244

deepCORAL (T2 as Unlabeled) | 10.529750 | 5.890404 9.528206

Table 2. Harmonized Data Average MAE Over Last 20 epochs

demonstrated remarkable efficiency, securing the lowest
MAE values across all datasets, thereby underscoring its
robustness in imposing available labeled data for domain
prediction. Conversely, deepCORAL struggled, manifest-
ing the highest MAE values, even lagging behind the es-
tablished baseline approach (ERM). This outcome was no-
table, given deepCORAL'’s access to unlabeled data, sug-
gesting potential limitations in its data utilization strategy.
Meanwhile, DANNCE showcased comparable efficacy to
DANN, albeit without relying on any unlabeled data, hint-
ing at its adeptness in maximizing the utility of labeled data
alone (Fig. 3).

For a more better comparison on harmonized data, we
focused towards analyzing the average MAE over the con-
cluding 20 epochs. The outcomes, detailed in Tab. 2, reveal
a layered narrative of methodological performance on the
harmonization process.

Within this framework, DANN consistently outper-
formed other methods in the realms of training and val-
idation, showcasing its adeptness at navigating the dif-
ficulties of harmonized data without resulting to overfit-
ting—a common pitfall observed in the previous scenario.
This resilience is particularly noteworthy, given the identi-
cal volume of data leveraged in both harmonized and non-
harmonized contexts, underscoring DANN’s strategic em-
ployment of unlabeled data predominantly for domain dis-
crimination purposes (Fig. 4).

Table 2 shows these findings, presenting a view of each
method’s average performance across the last 20 epochs on
harmonized data. Here, DANN and DANNCE are as par-
ticularly robust, demonstrating minimal performance fluc-
tuations and well stability across validation and testing
phases—attributes indicative of their enhanced adaptabil-
ity and the strategic foresight embedded within their opera-
tional paradigms.
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Figure 1. MAE performance on Non-Harmonized Data Figure 2. MAE performance on Harmonized Data

4.3. General Compare Between Scenarios

Upon comparing the outcomes from both scenarios, sev-
eral interesting findings emerge, showing the efficacy of DG
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Figure 3. MAE performance on Non-Harmonized Data (Second Figure 4. MAE performance on Harmonized Data (Second Sce-
Scenario) nario)
methods in handling 3D MRI images under varied condi- not only illuminates the inherent adaptability of these meth-
tions of data labeling and harmonization. This comparison ods but also offers valuable insights into their operational
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dynamics across different data processing landscapes.

* DANNCE’s Performance with Less Data: An obser-
vation from the analysis is DANNCE’s improved per-
formance in the harmonized test dataset within the sec-
ond scenario, despite utilizing a lesser volume of training
data. This finding challenges the conventional sugges-
tions that an increased quantity of training data invariably
leads to better model performance. DANNCE’s ability to
achieve lower MAE with fewer data points underscores
the method’s efficiency in extracting and leveraging criti-
cal domain-specific information, suggesting that the qual-
ity of data and strategic data usage can significantly influ-
ence model efficacy.

¢ Impact of Harmonization on MAE: The harmoniza-
tion process, intended to minimize inter-domain variabil-
ity, unintentionally leads to the obscuration of vital pre-
dictive information. This effect is evidenced by the in-
creased MAE values post-harmonization, indicating a po-
tential compromise in the predictive integrity of the mod-
els. Moreover, the harmonization reduces the relative im-
pact of the training data volume on model performance.
The lack of significant differences in the test dataset MAE
across scenarios, despite a considerable disparity in train-
ing data volume, highlights the reduction on the returns
of increased data volume in the context of harmonized
datasets.

e Data Volume and Non-Harmonized Data Results:
The quantity of training data exerts a pronounced influ-
ence on model performance with non-harmonized data.
For instance, in the first scenario, where the training
dataset is larger, DANNCE and DANN exhibit an aver-
age MAE of 4 to 5 on the test dataset. On the contrary,
in the second scenario, with a reduced data volume, the
average MAE increases to between 6 and 7. This varia-
tion distinctly illustrates the significance of data volume
in enhancing model performance, particularly when deal-
ing with non-harmonized data.

¢ Comparative MAE of DANN and DANNCE: Another
insightful observation is the elimination of the difference
in test dataset MAE between DANN and DANNCE as
more labeled data is employed for both methods in non-
harmonized conditions. This convergence suggests that
the gap in performance between these methods narrows
with the availability of more comprehensive labeled data,
highlighting the potential for data volume to mitigate per-
formance discrepancies between different DG methods.

¢ Improvements in Prediction Tasks: Both experimental
scenarios demonstrate the generalization methods’ effec-
tiveness in improving prediction tasks on non-harmonized
data. This effectiveness is particularly pronounced in the
context of 3D MRI images, where DG methods show a
remarkable capacity to adapt to and leverage the inherent
complexity and variability of the data for enhanced pre-

dictive accuracy.

o Stability of DANN and DANNCE: The analysis fur-
ther reveals that DANN and DANNCE exhibit less fluc-
tuation in average MAE during the validation and testing
processes. This stability observed even with fewer data
points, suggests that these methods have inherent robust-
ness and adaptability, enabling them to maintain consis-
tent performance levels across different phases of model
evaluation.

5. Conclusion

Our study compares different ways to make fMRI data work
well for predicting images, whether the data is harmonized
or not. We found that DANN is better than other methods
because it can create features that work across different ar-
eas without getting confused by changes in the data. DANN
and its version, DANNCE, use a special kind of training to
do this, which is better than just matching data statistics
or adapting to new data on the fly. These methods, espe-
cially DANN, are also good because they don’t need new,
unlabeled data from the target area, which is hard to get
for fMRI studies. While harmonization needs to be redone
for every new image and domain adaptation struggles with-
out enough relevant data, DANN and DANNCE stand out
for their ability to predict accurately across different do-
mains. Our results suggest using DANN and DANNCE
more in fMRI prediction is a promising path for future re-
search, showing they offer clear advantages over traditional
Domain Adaptation and Harmonization methods.

6. Future Work

Our research provides valuable insights into the efficacy of
these methods, particularly in the context of brain age pre-
diction, it also opens several avenues for future research.

Feature Attribution Analysis: Using advanced meth-
ods like SHAP and LIME to understand which image fea-
tures impact model predictions can reveal site-specific pat-
terns alfecting data consistency. This helps in creating
stronger methods for generalizing across different sites.

Deep Learning for Feature Discovery: Using unsu-
pervised and semi-supervised models like autoencoders and
GANSs could help discover hidden features in MRI images,
revealing complex patterns not seen with standard analysis.

Cross-Site Variability Analysis: By doing a sys-
tematic variability analysis across different imaging sites
and equipment could help pinpoint specific attributes (e.g.,
intensity profiles, geometric distortions, texture patterns)
that lead to significant inter-domain variations.  Un-
derstanding these attributes would enable targeted im-
provements to mitigate their impact, such as specialized
data augmentation techniques or domain adaptation strate-
gies.
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