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Abstract

Dynamic Contrast-Enhanced Magnetic Resonance Imag-
ing (DCE-MRI) is pivotal in delineating abnormal lesions
and cancerous regions in the anatomy of interest. How-
ever, DCE-MRI requires the injection of gadolinium (Gad)-
based contrast agents during acquisition which is known to
have potential toxic effects, posing radiological concerns.
Previous deep learning models employed for synthesizing
DCE-MRI images consider unimodal structural MRI inputs
lacking information about perfusion or perform early to late
response predictions requiring Gad-based MRI sequences
as input to drive the synthesis. In this work, we consider the
heterogeneity in (i) the multimodal MRI structural inputs
offering diverse and complementary anatomical features,
(ii) the scanner settings and acquisition parameters, and
(iii) the importance of incorporating the perfusion informa-
tion in Apparent Diffusion Coefficient (ADC) data, which is
essential to learn the hyperintense features for DCE-MRI
synthesis. We propose DCE-diff, a deep generative diffu-
sion model for multimodal image-to-image mapping from
non-contrast structural MRI sequences and ADC maps to
synthesize early and late response DCE-MRI images to cir-
cumvent Gad contrast injection to patients. Comparative
studies using ProstateX and Prostate-MRI datasets against
previous methods show that our model demonstrates
(i) better synthesis quality with improvement margins of
+0.85 dB in PSNR, +0.04 in SSIM, -22.8 in FID, and -0.02
in MAE (ii) better adaptability to different scanner data
with deviated settings, showcasing a +8.7 dB improvement
in PSNR, +0.22 in SSIM, -40.4 in FID, and -0.1 in MAE,
and (iii) the importance of ADC maps in the DCE-MRI
synthesis.

Keywords - Dynamic Contrast-Enhanced MRI, Diffusion
models, Prostate, Multimodal Image-to-Image translation

1. Introduction

Dynamic Contrast-Enhanced Magnetic Resonance Imag-
ing (DCE-MRI) is a medical image scanning system that
measures perfusion, blood flow, and tissue characteristics,
and highlights the cancerous lesions with hyperintensity. It
captures the increased tissue perfusion and permeability by
use of a Gadolinium-based (Gad) contrast agent. DCE-MRI
consists of early-phase and late-phase contrast-enhanced
images that accentuate the contrast uptake over time during
acquisition. However, Gad retention [1] is still one of the
biggest radiological concerns due to contraindications like
Nephrogenic Systemic Fibrosis (NSF) and hypersensitivity
reactions [2]. Various deep learning methods [3, 4] have
been proposed to synthesize DCE-MRI images to overcome
the toxic effects caused by Gad-based imaging.

Typically, DCE-MRI protocol is characterized by the ac-
quisition of multiple heterogeneous MRI sequences which
provide diverse and complementary perspectives to aid
radiological decision-making. Among these sequences, the
Apparent Diffusion coefficient (ADC) image is of prime
importance in DCE-MRI as it contains essential informa-
tion about the perfusion of contrast in the organ of interest.
Moreover, DCE-MRI demonstrates many variations arising
from cross-scanner patient demographics, devices, and ac-
quisition parameters [5]. For example, the b-values of Dif-
fusion Weighted Imaging (DWI) sequences from the Philips
Achieva scanner might be vastly different from those of
the Siemens Magnetron scanner [6, 7]. These differences
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Figure 1. A) Generalized concept diagram of GANs and DCE-diff.
ADC is incorporated into the input to effectively capture perfusion
information and generate DCE-MRI images. All the models were
trained on the ProstateX dataset and tested on ProstateX and, also
on Prostate-MRI to analyze their performance in the presence of
data diversity. B) Comparison of various aspects between DCE-
diff and other models.

create heterogeneity in the ADC data distribution across
scanners. Existing methods primarily focus on DCE-MRI
late-response image synthesis from early-response DCE
images, relying on Gad contrast injection [8], and use
unimodal structural MRI inputs for synthesis [9]. In this
work, we consider the data heterogeneity by effectively
utilizing the multimodal non-contrast images to harness
the anatomical information from structural MRI sequences
and perfusion information from ADC images to synthesize
early- and late-phase DCE-MRI.

One of the approaches to generate early- and late-
response DCE-MRI images is to use Generative Adversar-
ial Networks (GAN) to learn their conditional distribution
given the multimodal non-contrast inputs - T2-Weighted
(T2W) MRI, Proton Density (PD), T1 pre-contrast images
and ADC maps. GANs have the potential to generate
high-fidelity outputs and support efficient sampling. How-
ever, training GANs can be challenging as they might lead
to mode collapse if the hyper-parameters and regularizers
aren’t carefully selected [10].

Diffusion models, on the other hand, overcome the above
disadvantages and demonstrate the ability to generate high-
quality images. They possess favorable characteristics such
as comprehensive distribution coverage, consistent training
objective, and scalability. Employing a method of gradually
reducing noise from images, their training objective can be
represented as a re-weighted variational lower bound [10].

Inspired from these merits and the benefits offered in
various image-to-image mapping tasks [11], we propose
a diffusion model for synthesizing early and late dynamic
contrast MRI images from multimodal MRI inputs. Lever-
aging the benefits of a common architecture and avoiding
the use of task-specific losses (shown in Figure 1), our
approach differs from these methods [11, 12] by incorpo-
rating multi-modal inputs (T2, PD, ADC, T1 pre-contrast)
to synthesize early and late DCE images, investigating the
applicability of diffusion models in many-to-many image
translation problems in MRI. Our contributions are summa-
rized as follows:
• We propose DCE-diff, an image-to-image diffusion

model for generating early- and late- DCE-MRI im-
ages from multimodal non-contrast MRI images, namely
T2-W, PD, ADC, and T1-pre-contrast.

• Our approach demonstrates the importance of using ADC
images in the DCE MRI image synthesis process, by
utilizing the perfusion information provided by the
computed ADC maps.

• Extensive experiments comparing against three GAN-
based approaches, a sequence-based convLSTM model,
and a transformer-based image translation benchmark
show that our proposed model generates early- and late-
response images with notable improvement margins of
(i) +0.64 dB and +0.85 dB in PSNR, +0.03 and +0.04
in SSIM, -0.01 and -0.02 in MAE, -21.87 and -22.8 in
FID for ProstateX dataset and (ii)+6.8 dB and +8.7 dB in
PSNR, +0.17 and +0.22 in SSIM, -0.1 and -0.11 in MAE,
-52.37 and -40.4 in FID when evaluated on Prostate-MRI
dataset without retraining, highlighting the robustness of
our model across diverse scanner settings and imaging
domains.

2. Related Work

2.1. Medical image-to-image translation

Generative adversarial networks, a class of neural
network architecture, have shown great potential in
performing image-to-image translation, super-resolution,
and in-painting tasks since their inception. The pioneering
technique Pix2Pix [13], utilizing conditional GANs, is
designed to tackle image-to-image translation across
diverse tasks. Similarly, CycleGAN [14] demonstrates
unpaired image translation between two domains through
cycle consistency loss. However, both methods have been
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Figure 2. Diffusion Model for DCE-MRI. a) Diffusion process: The forward diffusion process q (left to right) gradually adds Gaussian
noise to the target image. The reverse inference process p (right to left) iteratively denoises the target image conditioned on a source image
x. q(yt|yt−1) is forward process whereas p(yt−1|yt, x) is the denoising reverse process. yt; t = 0, ..., T are the noisy early and late
response DCE images in the diffusion process. b) The denoising U-Net has skip connections and self-attention layers and is conditioned
with multi-model input x (T2W, PD, ADC, T1 pre-contrast).

noted to exhibit limitations in the diversity of translated
outputs, and their performance may not reach opti-
mal levels, as shown in [15]. Specifically, generative
models are gaining traction in medical image-to-image
translation due to their capacity to tackle challenging
medical image analysis problems such as medical im-
age de-noising [16], reconstruction [17], segmentation
[18], detection [19], and classification. MedGAN [20]
demonstrates PET to CT translation, denoising, and mo-
tion correction using a combination of non-adversarial,
style transfer, and perceptual loss. However, it suffers
from a reliance on pixel-paired training. Based on loss-
correction theory, Reg-GAN [15] employs a registration
framework along with the generator to translat multi-
modal images, driven by a deformable registration loss.
Another recent method ResViT [9] uses a vision
transformer as the backbone to generate the missing modal-
ity in structural MRI. A conditional GAN-based method in
[8] synthesizes late-response from early-response in breast
DCE-MRI optimized through a contrast enhancement loss.
TSGAN [21] synthesizes contrast-enhanced images from
pre-contrast in breast DCE-MRI with the help of a
local discriminator and segmentation mask as guidance. All
of the above methodologies rely on GANs, each carrying
its inherent limitations stemming from the dual-network
training procedure. Additionally, GANs frequently

encounter training challenges such as mode collapse and
struggle with generalization across diverse datasets.

2.2. Diffusion models

Recently, Diffusion models [22] have received a surge of
interest and emerged with impressive results in image
generation [23], super-resolution [10], and image editing
[24] applications. Conditional diffusion models [25] are
extended upon these by conditioning on inputs such as
images, text, and audio. Diffusion models are appre-
ciated for their mode coverage, quality of sample gen-
eration, and robustness to out-of-distribution data [26].
DDPM [27] demonstrates the effectiveness of diffusion
models in high-quality image generation tasks. Conversely,
UNIT-DDPM [12] proposes unpaired image translation to
learn a joint distribution of domains. However, it leads
to undesired artifacts and sub-optimal translation quality
compared to paired approaches. The DDIM-based
diffusion model in [28] performs MRI-to-CT translation
volumetrically, encompassing the full three-dimensional
structure of the imaging data. SynDiff [29] proposes a
novel adversarial conditional diffusion model for unpaired
medical datasets. However, its performance is limited
due to its dependency on Cyclegan results for training the
diffusion model. Besides, Palette[11] a conditional
diffusion model operating in image space utilizes the
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advantages of self-attention mechanisms and shows
extensive results on various image restoration tasks.
Nevertheless, previous approaches have primarily explored
single-modality conditions to constrain the training process.
In this work, we present a conditional diffusion model that
leverages multimodal inputs to generate highly convincing
contrast translations in DCE-MRI images.

3. Methodology
Diffusion models involve forward and reverse processes.
The forward process gradually adds noise to the input data
until it is transformed into pure Gaussian noise. In the
reverse process, a denoising network predicts the noise at
each time step. Given a noisy image ỹ, the denoising model
learns a reverse process that inverts the forward process.
The goal is to recover the target image y0 from ỹ.

ỹ =
√
γy0 +

√
1− γϵ, ϵ ∼ N (0, I) (1)

We parameterize our neural network model fθ(x, ỹ, γ)
to condition on the input x, a noisy image ỹ, and the cur-
rent noise level γ. So, given a training output image y, we
generate a noisy version ỹ and train the neural network fθ
to denoise ỹ given x and a noise level indicator γ.The loss
function (Lsimple )[27] is defined as follows:

Lsimple (θ) := E(x,y)Eϵ,γ

∥∥∥fθ(x,√γy0 +
√
1− γϵ︸ ︷︷ ︸

ỹ

, γ)−ϵ
∥∥∥p
p
,

(2)
Learning involves optimizing this objective to predict the
noise vector ϵ. Here p = 2, i.e L2 Norm.

Image-to-image diffusion models are conditional diffu-
sion models of the form P (y|x), where both x and y are
images; in our case, x is a multi-modal input images and y is
the target DCE contrast image. In our approach, both early
response and late response DCE MRI images of the target
modality are combined and fed into the forward process
of the diffusion model, as illustrated in Figure 2. During
this forward process, noise is added to the target modality
images. Subsequently, in the reverse process, the denois-
ing model receives four input images (T2, PD, ADC, T1
pre-contrast) concatenated with two randomly generated
noisy images. The model then predicts the noise present
in the target modalities (early response and late response).
During inference, sampling occurs over 1000 steps,
generating the target images from the Gaussian noise
given the input images and the random noise images.
U-Net architecture is used for the denoising model. The
U-Net design incorporates a series of residual layers and
downsampling convolutions, succeeded by another series
of residual layers featuring upsampling convolutions. Skip
connections are employed to link layers with the same

spatial dimensions. Furthermore, a global attention layer
at the 16×16 resolution with a single head is integrated,
along with a timestep embedding projection in each
residual block. The training and inference algorithm is
given in Section 8 (Appendix). Thereby, our model utilizes
a multi-modal input image (x) and generates the target DCE
contrast image (y) (both early and late response DCE MRI
images).

4. Dataset Description and Implementation
Details

We have used the ProstateX [6] dataset obtained from
Siemens 3T scanner, comprising studies of 346 patients
acquired without an endo-rectal coil, totaling 5520 images.
Out of these, 4416 and 1104 images were used for
training and testing respectively. Each patient data
consists of T2W, ADC, T1 pre-contrast, PD, and DCE-MRI
images. To ensure alignment across modalities, we have
registered the images using the SimpleITK rigid registration
framework. The prostate organ is cropped to a dimension of
160 × 160 × 16.

For the evaluation of unseen data, we have utilized the
Prostate-MRI [7] dataset sourced from scans acquired with
a Philips 3T Achieva scanner employing an endorectal coil.
This dataset comprises 26 patients, each registered and
cropped to the same dimension as ProstateX. We have fixed
the middle time point and the last time point sequence as the
early- and late-response images in the series of DCE-MRI
acquisitions.

For GAN-based methods, all models are trained for 200
epochs with a batch size of 4 and a learning rate of 0.0001.
For DCE-diff, we employ the standard Adam optimizer
with a consistent learning rate of 1e-4 and incorporate a
linear learning rate warmup schedule spanning 10k steps.
We train the diffusion model for 260k iterations. During
training, we employ a linear noise scheduler ranging from
1e-6 to 0.01 over 2000 time-steps. Additionally, we utilize
1000 refinement steps with a linear scheduler ranging from
1e-4 to 0.09 during inference. All Models are implemented
in PyTorch v1.12 on a 24GB RTX 3090 GPU.

Evaluation Metrics: For benchmarking and compari-
son with existing methods, we present several automated
metrics. Specifically, we provide Fréchet Inception
Distance (FID), Mean Squared Error (MSE), Peak Signal-
to-Noise Ratio (PSNR), and Structural Similarity Index
(SSIM) for quantitative comparison.

5. Results and Discussion
5.1. Comparison analysis with other methods for

DCE-MRI synthesis

To ensure a comprehensive evaluation of our model,
we conducted extensive experiments with various
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Figure 3. Visualization of the synthesized early & late DCE-MRI timepoints between DCE-diff & other models for ProstateX dataset.
Row 2 and row 4 correspond to residue images between ground truth (GT) and predicted output. Note that our model able to reconstruct
finer structural details and contrast uptake better than other baselines. Yellow and pink boxes represent the region of interest.

Table 1. Quantitative Comparison of the generated early- and late-response DCE-MRI images between DCE-diff and other models, for
ProstateX dataset

Model EARLY RESPONSE LATE RESPONSE
PSNR↑ SSIM↑ MAE↓ FID↓ PSNR↑ SSIM↑ MAE↓ FID↓

ConvLSTM 14.92 ± 1.50 0.23 ± 0.04 0.13 118.70 15.27 ± 2.56 0.23 ± 0.06 0.13 115.48
Pix2Pix 15.21 ± 5.49 0.28 ± 0.18 0.11 65.86 15.29 ± 1.36 0.25 ± 0.07 0.12 32.85
RegGAN 20.56 ± 0.02 0.59 ± 0.02 0.05 23.79 20.09 ± 0.02 0.58 ± 0.02 0.06 22.61
TSGAN 21.16 ± 3.50 0.62 ± 0.10 0.06 23.75 20.46 ± 2.64 0.59 ± 0.09 0.07 24.66
ResViT 21.46 ± 0.04 0.63 ± 0.04 0.06 32.46 20.88 ± 0.04 0.62 ± 0.05 0.06 30.06
DCE-diff(ours) 22.10 ± 1.79 0.67 ± 0.05 0.04 10.59 21.73 ± 1.95 0.65 ± 0.06 0.05 7.26

baseline methods, including GAN-based approaches such
as Pix2Pix [13], RegGAN [15], and TSGAN [21], as well
as transformer-based GAN (ResViT) [9] and traditional
ConvLSTM [30] models. Our experimental setup includes
(i) a comparative analysis against baseline GAN methods
for contrast translation, (ii) a comparative assessment of the

proposed model and other baseline methods on a different
dataset, and (iii) an analysis of the significance of ADC
images in generating the early- and late-DCE-MRI images.
The quantitative comparison of our proposed approach
with other baseline methods is presented in Table 1. Our
findings reveal the following observations: Our model
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Figure 4. Visualization of the synthesized early & late DCE-MRI timepoints between DCE-diff & other models for Prostate-MRI dataset.
Our model excels in capturing temporal contrast enhancement patterns, even when presented with unseen data. Yellow and pink boxes
represent the region of interest.

consistently outperforms all other baseline methods across
all evaluation metrics for early- and late-response images.

Quantitative results reveal that our model surpasses the
second best-performing baseline model (ResViT [9]) by
an improvement margin of -21.87 in FID score, +0.64 dB
in PSNR, +0.04 in SSIM, and -0.02 in MAE for early-
response and -22.8 in FID score, +0.85 dB in PSNR, +0.036
in SSIM and -0.017 in MAE metrics for late-response
synthesis. This superiority of performance is further illus-
trated in the visual results depicted in Figure 3. The residue
images, where darker hues indicate lesser error, in rows 2
and 4 represent the difference between the ground truth and
the predicted image. Our model DCE-diff, exhibits the least
residual error, especially in the region of interest (bounded
by a pink box) than other models. The generated image
from our model effectively retains structural information
and hyper-intensity patterns of the contrast-enhanced image
compared to other baseline models, demonstrating superior
performance for both early and late responses. We note that

conditioning the diffusion process using anatomical MRI
sequence together with the perfusion MRI images, namely
ADC, controls the generation process by providing addi-
tional information with desired attributes or characteristics.

5.2. Evaluation on Deviated Data Domain

Prostate-MRI shows a domain shift from ProstateX in
terms of the perfusion information given by the different
b-values of the corresponding Diffusion-weighted images
(refer Section 4). Table 2 shows the performance of various
models evaluated on the Prostate-MRI dataset. From the
table, we observe that the proposed diffusion model demon-
strates superior adaptation capabilities compared to other
models. The results reveal that our model surpasses the
second best-performing baseline model (RegGAN [15] ) by
an improvement margin of -52.37 in FID score, +6.89 dB
in PSNR,+0.1 in SSIM, and -0.1 in MAE for early-response
and -40.4 in FID score, +8.78 in PSNR, +0.22 in SSIM,
and -0.11 in MAE for late-response. The visual results
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Table 2. Quantitative Comparison of the generated early- and late-response DCE-MRI images between DCE-diff and other models, for
Prostate-MRI dataset. Note that the models are trained on the ProstateX dataset and evaluated on the Prostate-MRI dataset.

Model EARLY RESPONSE LATE RESPONSE
PSNR↑ SSIM↑ MAE↓ FID↓ PSNR↑ SSIM↑ MAE ↓ FID↓

ConvLSTM 9.31 ± 2.7 0.14 ± 0.05 0.19 90.51 11.71 ± 2.34 0.18 ± 0.05 0.14 94.66
TSGAN 10.74 ± 3.0 0.32 ± 0.11 0.16 104.40 7.62 ± 2.27 0.22 ± 0.07 0.24 93.85
Pix2Pix 11.41 ± 3.31 0.19 ± 0.07 0.15 119.42 10.03 ± 3.58 0.15 ± 0.06 0.17 136.39
ResViT 12.99 ± 1.68 0.34 ± 0.08 0.19 94.99 14.54 ± 2.67 0.42 ± 0.12 0.14 82.21
RegGAN 14.96 ± 1.73 0.43 ± 0.08 0.14 84.79 14.54 ± 1.68 0.42 ± 0.08 0.14 66.29
DCE-diff(ours) 21.79 ± 2.47 0.60 ± 0.08 0.04 32.425 23.32 ± 2.58 0.64 ± 0.08 0.03 25.83

Table 3. Ablative study on the importance of ADC

DCE Response ADC comparison PSNR SSIM MAE

Early Response w/o ADC 21.64 0.65 0.05
with ADC 22.09 0.67 0.04

Late Response w/o ADC 21.15 0.64 0.06
with ADC 21.71 0.65 0.05

illustrated in Figure 4, show that the model can synthesize
DCE-MRI images under drifts in the perfusion information.

A key factor contributing to this robustness is the
utilization of conditional inputs in the diffusion model
architecture indicating its ability to effectively learn
complementary and reusable features from multimodal
conditioning information. The conditional inputs pro-
vide additional contextual information related to perfusion
using the ADC images. Furthermore, the diffusion model’s
unique training objective, which gradually reduces noise
from images, enhances its capability to capture under-
lying patterns and features. This, coupled with its
comprehensive distribution coverage and consistent training
objective, enables more efficient adaptation to variations in
data distribution. The combination of these attributes em-
phasizes the diffusion model’s superior performance on the
Prostate-MRI dataset, showcasing its effectiveness in ad-
dressing domain shift and achieving better results than other
models.

5.3. Ablative study on ADC

We conduct an ablative study to assess the importance of
ADC maps in enhancing DCE MRI predictions so that they
contain the tissue perfusion information necessary for clin-
ical studies. The qualitative results, shown in Figure 5,
illustrate a noticeable enhancement in the prediction qual-
ity with the least residual error. Quantitative results, from
Table 3 show improved PSNR and SSIM metrics with ADC
as a part of the input. These findings indicate the impor-
tance of considering ADC in the learning process, where
the model can learn the correlation observed between DCE-
MRI and ADC images.

Figure 5. Qualitative results for the significance of ADC. Visual
results prove that the generated images are close to the ground
truth when ADC is included as a part of the input.

6. Conclusion

We propose, DCE-diff, an image-to-image diffusion model
for generating early and late DCE-MRI images from multi-
modal non-contrast MRI images. Our experiments show-
case better improvement margins in the qualitative and
quantitative studies against other GAN-based, sequence-
based, and transformer-based methods, better reusability
of our model to cross-scanner data, and the importance of
using ADC perfusion maps in the synthesis process.

The sampling strategy of diffusion models leads to
longer inference time and this remains an area of concern.
We are investigating these aspects and extending our work
to include more clinical scenarios like application-driven
synthesis.
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8. Appendix
From [31], we adapt the diffusion model training and infer-
ence.

The forward diffusion process is a Markovian process
that adds noise to the image y0 ≡ y over T iterations. At a
time step t, the addition of noise is given by:

q
(
yt+1 | yt

)
= N

(
yt−1;

√
αtyt−1, (1− αt) I

)
(3)

q (y1:T | y0) =

T∏
t=1

q
(
yt | yt−1

)
(4)

where αt are noise schedule hyper-parameters. At t =
T,yT is Gaussian Noise. The forward process can be
marginalizable at each step and is given by

q (yt | y0) = N (yt;
√
γty0, (1− γt) I) (5)

where γt =
∏t

t′ α
′
t.

q
(
yt−1 | y0,yt

)
= N

(
yt−1 | µ, σ2I

)
(6)

where µ =
√
γt−1(1−αt)

1−γt
y0 +

√
αt(1−γt−1)

1−γt
yt and

σ2 = (1−γt−1)(1−αt)
1−γt

.

During reverse Process:

ỹ =
√
γy0 +

√
1− γϵ, ϵ ∼ N (0, I) (7)

E(x,y)Eϵ,γ∥fθ(x,
√
γy0 +

√
1− γϵ︸ ︷︷ ︸

ỹ

, γ)− ϵ∥pp (8)

Inference: The model performs inference via the
learned reverse process. Since the forward process is con-
structed so the prior distribution p (yT ) approximates a
standard normal distribution N (yT | 0, I), the sampling
process can start at pure Gaussian noise, followed by T
steps of iterative refinement.

The neural network model fθ is trained to estimate ϵ,
given any noisy image ỹ, and yt. Thus, given yt, we ap-
proximate y0 as

ŷ0 =
1
√
γt

(
yt −

√
1− γtfθ (x,yt, γt)

)
(9)

Substitute the estimate ŷ0 into the posterior distri-
bution of q

(
yt−1 | y0,yt

)
to parameterize the mean of

pθ
(
yt−1 | yt,x

)
as

Algorithm 1 Training a denoising model fθ
repeat
(x, y0) ∼ p(x, y)
γ ∼ p(γ)
ϵ ∼ N (0, I)
Take a gradient descent step on
∇θ

∥∥fθ (x,√γy0 +
√
1− γϵ, γ

)
− ϵ

∥∥p
p

until converged

Algorithm 2 Inference in T iterative refinement steps

yT ∼ N (0, I)
for t = T, . . . , 1 do
z ∼ N (0, I) if t > 1, else z = 0

yt−1 = 1√
αt

(
yt − 1−αt√

1−γt
fθ (x,yt, γt)

)
+
√
1− αtz

end for
return y0

µθ (x,yt, γt) =
1
√
αt

(
yt −

1− αt√
1− γt

fθ (x,yt, γt)

)
(10)

The variance pθ
(
yt−1 | yt,x

)
is set to (1− αt), a de-

fault. Now, each iteration of the reverse process can be writ-
ten as

yt−1 ←
1
√
αt

(
yt −

1− αt√
1− γt

fθ (x,yt, γt)

)
+
√
1− αtϵt

(11)
where ϵt ∼ N (0, I). This resembles one step of

Langevin dynamics for which fθ provides an estimate of
the gradient of the data log density.

5183


	. Introduction
	. Related Work
	. Medical image-to-image translation
	. Diffusion models

	. Methodology
	. Dataset Description and Implementation Details
	. Results and Discussion
	. Comparison analysis with other methods for DCE-MRI synthesis
	. Evaluation on Deviated Data Domain
	. Ablative study on ADC

	. Conclusion
	. Acknowledgements
	. Appendix

