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Abstract

Understanding the severity of conditions shown in im-
ages in medical diagnosis is crucial, serving as a key
guide for clinical assessment, treatment, as well as evalu-
ating longitudinal progression. This paper proposes Con-
PrO: a novel representation learning method for severity
assessment in medical images using Contrastive learning-
integrated Preference Optimization. Different from conven-
tional contrastive learning methods that maximize the dis-
tance between classes, ConPrO injects into the latent vector
the distance preference knowledge between various severity
classes and the normal class. We systematically examine the
key components of our framework to illuminate how con-
trastive prediction tasks acquire valuable representations.
We show that our representation learning framework offers
valuable severity ordering in the feature space while out-
performing previous state-of-the-art methods on classifica-
tion tasks. We achieve a 6% and 20% relative improvement
compared to a supervised and a self-supervised baseline,
respectively. In addition, we derived discussions on severity
indicators and related applications of preference compari-
son in the medical domain.

1. Introduction

Recent advances in supervised [12, 27, 29, 35] and self-
supervised contrastive learning [5, 9, 38, 41] offer a strong
foundation for image understanding and interpretation, in-
cluding in medical applications. Crucially, latent vectors
are acquired from data to capture increasing amounts of
contextual information within an image and across contex-
tual classes. Self-supervised contrastive learning attempts
to exploit domain knowledge by bringing ‘positive’ sam-
ples closer together in the embedding space while pushing
‘negative’ samples apart. A positive pair often consists of

(a) Conventional (b) Proposed ConPro

Figure 1. Conventional (a) and target (b) representation for sever-
ity modeling in latent space. A darker color represents a higher
severity level, and ‘0’ represents normality. Our proposed method
targets to embed distance relation to severity classes in represen-
tation space

augmented versions of the same sample and negative pairs
are created using the anchor and randomly selected samples
from the data batch. On the other hand, supervised con-
trastive learning (SupCon) studies cross-class relations by
grouping embeddings from the same class to the same clus-
ter and pushing different clusters far from each other.

Conventionally, supervised contrastive learning treats
all classes equally and maximizes inter-class distance, as
shown in Fig. 1a. However, this approach ignores the
different level of similarity between classes, some classes
should be further away than others. For instance, class
“dog” should have a closer relation to “wolf” than “ta-
ble.” Similarly, in the medical domain (Fig. 1b), the condi-
tions of similar severity should have a smaller distance than
those of large severity differences. Furthermore, bridging
the gap from the non-medical images to the medical do-
main presents a distinct challenge since medical images are
burdened by label sharpness [14], experts’ annotation bi-
ases [22, 39], weak labels [13, 36], and noise from various
imaging modalities [17]. These challenges may degrade the
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(a) Learning Framework (b) Desired latent space

Figure 2. ConPro learning framework (a) includes contrastive learning and preference optimization to get the desired latent space (b)

learned knowledge within the latent representation of med-
ical images.

Despite playing an essential role in clinical practice,
severity disparity in medical images has not been investi-
gated well in the computer vision literature. A common
approach is to explore image-derived clinical severity as
a multi-class classification problem [4, 6, 7, 24, 32, 43],
where each class corresponds to a different (quantized)
severity level. The classifier then learns to distinguish
attributes/traits that are probabilistically different between
severity classes. However, a higher severity level may still
share some traits or attributes with lower severity levels.
Thus, another proposed approach was to rank images with
respect to severity scores. In [30], the authors introduced
the concept of severity ranking for fundus photography.
Following this idea, [11, 18, 24, 42, 43] improved that work
by incorporating multi-scoring, multitasking learning, and
experts’ agreement. However, an undesirable outcome of
current severity ranking methods is that all outputs can “col-
lapse” to a constant value. Thus, a single score for the sever-
ity of the entire image is a significant loss of information
and interpretability. Our work addresses this challenge by
introducing ranking loss in the representation space.

In this paper, we inject severity information into a latent
space vector using contrastive learning-integrated prefer-
ence optimization (ConPrO). Not only does ConPrO show a
reliable representation arrangement, but it also outperforms
state-of-the-art (SOTA) algorithms on classification tasks.
The contributions of this paper are summarized below:

• We propose ConPrO: a novel representation learn-
ing method that incorporates class severity information
within the latent space. ConPrO performs better in the
F1 score, by a relative 20% compared to SimCLR (self-
supervised) and 6% compared to SupCon (supervised).

• We introduce an evaluation metric, Mean Absolute Ex-
ponential Error (MAEE), for a specific problem (severity
classification). MAEE penalizes incorrect prediction at
higher severity classes in case of data imbalance.

• We show that increasing the number of reference vectors

helps reduce MAEE and offer discussion on the poten-
tial application of preference comparison in the medical
domain.

2. Related Works
Visual Contrastive Learning. The fundamental concept of
contrastive learning is to push the latent vectors of different
classes far apart from each other while pulling latent vectors
within the same class closer. This method was introduced
in representation learning as a self-supervised [5, 9, 38, 41]
or supervised way [12, 27, 29, 35] to inject relative infor-
mation to embeddings in the latent space. Shekoofeh et al.
[1] show that contrastive learning improves the robustness
and data efficiency of medical imaging tasks. Furthermore,
the authors suggest that visual representation learning is a
key component for building large (foundation) vision mod-
els. Moreover, recent works [8, 9, 33] have made efforts to
relate the success of contrastive learning from the perspec-
tives of mutual information, choices of feature encoder, and
loss function.
Preference comparison. Originating from learning to rank
problems [3, 37] in recommendation systems, several works
[18, 30] have used preference comparison for ranking dis-
ease severity. Yu [40] proposed Relative Distance Ranking
Loss, which measures the similarity between image patches
and their reference image. Recently, preference comparison
was re-introduced in Large Language Models (LLMs) as a
way to optimize preference of generative pairs of answers
given an input. RLHF [20] learns the reward function from
pairwise comparisons of output text and optimizes it via
reinforcement learning. More recently, Direct Preference
Optimization (DPO) [26] simplifies RLHF by optimizing a
language model directly to align with human preferences
without relying on explicit reward modeling or reinforce-
ment learning. DPO updates parameters by maximize pref-
erences likelihood between pair of samples, which can be a
potential approach toward severity ranking in latent spaces.

We note that none of the previous works investigate med-
ical, image-driven preference with respect to severity, nor
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relative distance between classes. As such, severity-level
dependency (Figure 1b) brings up a new problem in repre-
sentation learning. We also note that although the individ-
ual components of our framework have been presented in
prior research, the innovation of our framework is its com-
bination to solve severity ranking problems with particular
choices of reward/loss function.

3. Method
The framework, as shown in Fig. 2a, contains two main
consecutive phases including binary contrastive learning
(‘Con’ step) and preference optimization (‘PrO’ step). In
the ‘Con’ step, we maximize the latent distance between
the normal and the abnormal class. In the ‘Pro’ phase, we
re-arrange the relative distance of severity levels within ab-
normal classes with respect to reference vectors in the nor-
mal class. The detailed implementation and loss function of
both steps are presented in the following.

3.1. Contrastive Learning

We group severity classes into a single abnormal class and
perform binary contrastive learning between normal1 and
abnormal samples. The motivation for this phase is to group
the positive samples in a cluster that is well-separated from
the abnormal cluster in the latent space. Subsequently, the
normal cluster is used as an anchor for preference compari-
son. The framework contains a feature extractor f(·) which
is a convolutional neural network that encodes images to la-
tent vectors. The contrastive head g(·) maps those vectors
to the contrastive space.
Supervised Contrastive Objective. For simplicity, we use
margin contrastive loss (although there are multiple attrac-
tive options such as NT-Xent, XT-Logistic [5])

LCon(ci, cj , yij) = E[yij dcos(ci, cj) + ...

(1− yij)max(0,m− dcos(ci, cj))]
(1)

where m is maximum margin, ranging from 0 to 2 (here we
choose m = 2) and dcos denotes the cosine distance

dcos(ci, cj) =
c⊤i cj

∥ci∥ ∥cj∥
(2)

between a pair of vectors (ci, cj).

3.2. Preference Optimization over Latent Space

Inspired by current advances in learning to rank algorithms
as well as preference optimization algorithms in Natu-
ral Language Processing (NLP) such as RLHF [20] and
DPO [26], our objective is to present a simple approach for
severity comparison over the representation space.

1The term “normal” in this paper refers to non-abnormal cases; e.g.,
images categorized as “normal” with respect to a specific pathology may
not necessarily indicate healthy condition

Algorithm 1 ConPro Pseudocode

Require: Pre-defined f, g, h, contrastive loader C, prefer-
ence loader P
for (xi, xj , yij) in C do ▷ ‘Con’ step

zi, zj ← f(xi), f(xj)
ci, cj ← g(zi), g(zj)
Calculate LCon(ci, cj , yij) ▷ Eq. (1)
Update network f and g to minimize LCon

end for
for (ci, cj , π0, yij) in P do ▷ ‘PrO’ step

νi, νj ← h(ci), h(cj)
Draw π0 from P
Calculate LPrO(νi, νj , π0, yij) ▷ Eq. (4)
Update network f, g and h to minimize LPrO

end for
return encoder network f and discard g, h

Preference Comparison Objective. Both RLHF and DPO
use Bradley-Terry preference model [2] to construct the loss
function. Given some prior knowledge π0, the Bradley-
Terry model calculates the preference likelihood over a pair
of samples with respect to labelers’ severity measurement,
denoted as νi > νj |π0, where νi and νj are the preferred
and dispreferred completion amongst (νi, νi) respectively.
The preferences are assumed to be generated by some pre-
defined reward model r∗. In this work, we choose the re-
ward function r∗ = dcos as the cosine distance from sever-
ity to normality. Intuitively, we try to pull the less severe
latent vectors closer to the “normality” anchor while push-
ing more severe cases far apart. We define the “normality”
anchor as a vector or set of vectors belonging to the normal
class. Under the Bradley-Terry model, we derive a simpli-
fied probability measure for pairwise severity comparison:

p∗(νi > νj |π0) = σ(r∗(νi, π0)− r∗(νj , π0))

=
1

1 + exp[dcos(νi, π0)− dcos(νj , π0)]
(3)

where x0 represented normality and dcos is the cosine dis-
tance. We can then formulate the problem in hand as binary
classification and use the negative log-likelihood loss to re-
parameterize the feature space:

LPrO(νi, νj ,π0, yij |r∗ = dcos)

= E[log(σ(r∗(νi, π0)− r∗(νj , π0)))]
(4)

4. Experiments
Datasets and Preprocessing. We study two real-world
datasets that contain severity labels: Papilledema and
VinDr-Mammogram. The first two datasets contain discrete
class labels while VinDr measures symptom severity on a
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Table 1. Multiclass classification results. SupCon-n denote n-classes supervised contrastive learning and SupCon-2 is the first stage of
ConPro. ImageNet denotes a pre-trained model on ImageNet dataset. For MAEE score, the lower, the better

Papilledema VinDr-Mammo

Methods Macro F1 Recall MAEE Macro F1 Recall MAEE
Multiclass classification task:
ImageNet 38.7 ± 4.2 39.8 ± 3.1 6.4 ± 0.40 17.9 ± 2.0 20.6 ± 0.9 2.9 ± 0.06
SupCon-2 46.3 ± 5.5 47.4 ± 4.7 5.2 ± 0.30 34.9 ± 0.7 33.6 ± 1.1 2.4 ± 0.03
SupCon-n 45.5 ± 4.1 46.9 ± 3.6 5.0 ± 0.26 20.8 ± 1.5 23.1 ± 1.2 2.9 ± 0.03
SimCLR 40.3 ± 3.9 43.8 ± 3.0 4.8 ± 0.26 25.1 ± 1.4 25.7 ± 1.2 2.7 ± 0.05
ConPrO (ours) 48.5 ± 3.8 49.4 ± 4.1 4.8 ± 0.25 35.6 ± 0.8 34.7 ± 1.0 2.4 ± 0.03

continuous scale. Details of the statistics and preprocessing
of each dataset are described below.
• Papilledema is a controlled dataset comprising 331 pe-

diatric fundus images obtained clinically from 105 sub-
jects from 2011 to 2021. The dataset contains a five-
level severity rating for Papilledema. De-identified clin-
ical datasets were uploaded to the HIPAA-compliant Re-
search Electronic Data Capture (REDCap) database.

• VinDr-Mammo [19] is a public Vietnamese collection of
full-field digital mammography comprising 5,000 four-
view examinations with breast-level evaluations and an-
notated findings between 2018 and 2020. These exami-
nations underwent independent double readings, with any
disagreements resolved through third-party radiologist ar-
bitration. The authors state that there are no ethical con-
cerns. Approval was granted by the Institutional Review
Boards of Hanoi Medical University Hospital and Hospi-
tal 108 to release de-identified data. The VinDr-Mammo
dataset assesses the Breast Imaging-Reporting and Data
System (BI-RADS) for breast level. It has 7 categories
from 0 to 6 and be used as a risk evaluation and quality as-
surance tool. The datasets only contain the mammograms
with BI-RADS from 1 to 5. In this work, we used this as-
sessment to estimate the severity of the targeted breast.

Evaluation. We evaluate the final image representation us-
ing standard protocols [5, 38]. This involves training a lin-
ear classifier on the frozen-weight feature encoder, using
the validation F1 score to choose the best model. That
model is then used to compute the final scores on the test
set. We evaluate the representation vector via classification
tasks and use several evaluation metrics including Top-1 F1
scores (macro F1), Recall and Mean Absolute Exponential
Error (MAEE). We proposed to used MAEE as a variant
of Mean Absolute Error (MAE) for severity classification
problems. MAEE is computed as

MAEE =
1

n

n∑
i

e|yi−ŷi| (5)

Both MAE and MAEE measure the error between predic-
tions and true levels of severity. However, while MAE eval-

uates regression problems with a linear penalty, MAEE as-
signs exponential penalties for incorrect severity level pre-
dictions.
Experimental Setup. We trained all datasets on a GTX
3090 with a batch size of 16. Our choice of feature encoder
is Resnet-50. If not stated otherwise, our explorations uti-
lize the following settings.
• Data splitting: Since each subject may have multiple vis-

its or images have multiple views, we split train/val/test
by 70/15/15 for Papilledema dataset and 72/8/20 for
VinDr-Mammo by subject IDs to avoid data leakage. We
chose pairs for preference optimization by randomly se-
lecting 105 pairs with replacements for training and 104

for evaluation.
• Optimizer: We use stochastic gradient descent (SGD)

with momentum 0.9. We update the ResNet-50 encoder
with a learning rate of 10−3 and the projection head with
a learning rate of 0.01 for both Supervised Contrastive
Learning (Con) and Preference Comparison (PrO).

• Projection Head: Resnet-50 outputs 2048-d vectors. The
projection head g(·) is a fully-connected (FC) layer with
a 256-d output. In the ‘PrO’ step, the projection head h(·)
of preference comparison is an FC layer that keeps the
preference vectors on the same dimension with normality.

• Prediction Head: We use a 2-layer MLP with a hidden di-
mension of 256. The activation function is ReLU, and we
use 10% dropout. For fine-tuning, since both datasets are
unbalanced, we use Cross Entropy with estimated class
weights as the loss function.

5. Results
Classification task performance. The baseline is Resnet-
50 pre-trained on the ImageNet dataset. Other SOTA
methods include self-supervised (SimCLR) and supervised
(SupCon-n) models. For all baselines we freeze the Resnet
pre-trained weights and only fine-tune the prediction head
on our target task. Table 1 shows that ConPro outperforms
the ImageNet baseline, SimCLR, and SupCon-n (SupCon-
2 is the “Con” step of our method) on all metrics in both
datasets. ConPrO reaches the highest macro F1 score of
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(a) SupCon-5 Train-set (b) SupCon-2 Train-set (c) ConPrO Train-set (d) SupCon-5 Test-set (e) SupCon-2 Test-set (f) ConPrO Test-set

Figure 3. T-SNE visualization of representation vectors of (a) training and (b) test set after supervised contrastive learning (c) training
(d) test set after preference optimization. The plots are samples from the Papilledema dataset. All figures use cosine distance. Label ’0’
denotes normality, and “1-5” denotes increasing level of severity.

(a) SupCon-5 Train-set (b) SupCon-2 Train-set (c) ConPrO Train-set (d) SupCon-5 Test-set (e) SupCon-2 Test-set (f) ConPrO Test-set

Figure 4. T-SNE visualization of representation vectors of (a) training and (b) test set after supervised contrastive learning (c) training (d)
test set after preference optimization. The plots are 2000 random samples from the VinDr-Mammo dataset. All figures use cosine distance.
Label ’0’ denotes normality, and “1-4” denotes increasing level of severity.

48.55% and 35.6%, respectively, in the Papilledema dataset
on the 6-class classification task and the VinDr-Mammo
dataset on the 5-class classification task. Compared to the
“Con” step, the “PrO” step injects useful information from
the “Con” step to latent space, boosting the performance by
4.8% and 2% on both datasets.

ConPrO better represents severity in feature space. As
shown in Fig. 3 and 4, we qualitatively evaluate the feature
representations of our method on both datasets. Comparing
the ‘PrO’ (Fig. 3b and 4b) step with the ‘Con’ step (Fig.
3c and 4c), we show that the preference optimization suc-
cessfully re-arranges the abnormal samples with respect to
severity classes. The same behavior can be seen in the test
set. Moreover, SupCon-5 (Fig. 3a) shows discrimination of
severity classes, but the positions of the embeddings are not
relative to the severity scores, which is not ideal for severity
interpretation.

MAE versus MAEE. Different from the F1 score that cap-
tures exact classification prediction, MAE and MAEE take
prediction error into account. Fig. 5 represents two con-
fusion matrices having the same F1 score. While Fig. 5b
shows a better MAE score, Fig. 5a presents a greater value
of MAEE. MAEE shows more sensitivity to incorrect pre-
dictions that deviate significantly from the ground truth,
such as misclassifications between severity labels ‘3’ and
‘4’ as ‘0’. This study opts to utilize MAEE as it helps us
identify potential serious incorrect predictions in severity
classification since there is no distinct boundary between

(a) MAE = 0.88 and MAEE = 5.05 (b) MAE = 0.86 and MAEE = 5.24

Figure 5. Confusion matrices of same setting on two independent
run. Two matrix have the same F1 score but different in MAE and
MAEE

severity classes. For instance, ophthalmologists usually
group classes as mild {1,2}, moderate {3}, and severe {4,5}
since the finer annotation scale by experts also tends to have
uncertainty. For mammogram examination, the BI-RADS
score is also grouped into normal {1}, benign {2,3}, and
malignant {4,5}.
Choices of normality indicator. To calculate the reward
function in equation 4, we need to compute the distance
from each vector in pairs with respect to the normal class.
Thus, “normality” is abstract and represented by a cluster
of vectors. We randomly chose n vectors in the normal
class to get the mean of these vectors to get a single an-
chor representation for representing “normality” (with re-
spect to lack of severity). Table 2 shows how F1 scores and
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MAEE change when varying the number of referenced vec-
tors. Interestingly, by increasing the number of reference
vectors, the framework lowers MAEE error across classes.
As a trade-off, the macro F1 score will fall. The intuition
is that by updating model parameters in the “Pro” step, we
also update the normality anchor. By choosing the mean
of multiple normal vectors as an anchor, we attempt to em-
pirically lower the effect of model updating (no theoretical
proof is derived in this work and is left for future work).

Table 2. F1 Scores and MAEE versus the number of referenced
vectors per pairs in the “PrO” step. For MAEE score, the lower,
the better

Number of reference vectors

Metric 1 10 20
Macro F1 46.3 ± 5.7 45.2 ± 5.1 43.7 ± 6.3
MAEE 5.4 ± 0.52 5.4 ± 0.42 5.2 ± 0.39

6. Discussion
Explainable AI for Severity Ranking. Definitive reasons
for the success of contrastive learning still remain incom-
plete in published literature. On the theoretical front, some
[33] argue that the success is attributed to maximizing mu-
tual information, while others emphasize the importance of
the loss function [8, 9]. However, in terms of explainabil-
ity, it remains an open question what attributes contribute
to positive pairs and what distinguishes negative pairs. The
majority of literature [10, 15, 16, 23] uses contrastive (coun-
terpart) methods to explain Deep Learning models. Yet,
there are limited works [31, 34] that focus on interpreting
representations in contrastive learning. In this paper, we
inject clinical condition severity knowledge into medical
imaging representations, but we do not know what knowl-
edge the latent space learned in deciding which sample is
more severe. Thus this problem remains a topic for future
investigation.

Subject matter expert-centric explanations, such as clin-
ical judgments, may differ from what an AI model learns
[21]. Performance of image-driven explainable AI (XAI) in
clinical settings tends to degrade under three major patho-
logical characteristics [28]: multiple instances (pathology
has multiple possible instantiations of interest and it is
ranked variably by the preference of experts), size vari-
ety (instance size may vary between subjects, heterogeneity
of clinical presentation, variability in severity between pa-
tients, and longitudinal changes in clinical manifestations
that may be more important for diagnostic consideration
than the severity of pathology at presentation), and pathol-
ogy shape complexity. Reconciling user-centric and expert-
centric explanations is a yet to be fully solved research prob-
lem wherein preference optimization can be advantageous.

Severity Indicator in Medical Domain. In interpreting
ophthalmologic images, physicians frequently use compar-
isons in making diagnoses. For instance, in evaluating for
glaucoma, asymmetry in the cup-to-disc ratio between two
eyes of the same patient has predictive value for glaucoma
diagnosis [25]. Thus, it is easier for ophthalmologists to
compare two fundus images to decide which one has more
asymmetry, rather than assign a class label for each image.
For that reason, preference comparison may play an impor-
tant part in improving diagnosis. This also bring up multiple
challenge including
• Severity indicators on multiple perspective of diagnosis:

In glaucoma diagnosis, assessments often rely on either
fundus photos or results from visual field tests. It’s cru-
cial to recognize that the severity reflect from fundus
photo different from severity of visual field test although
there may be a strong correlation. There is often discrep-
ancy between metrics of structure (photos) and function
(visual field tests) in ophthalmology (and other fields of
medicine). Some patients with glaucoma have normal vi-
sual fields (pre-perimetric glaucoma).

• Severity preference on multiple pathologies: One im-
age may endure multiple conditions (e.g. VinDr-Mammo
dataset represent 15 types of pathologies and each im-
age may contain more than one type). The challenge
lies in comparing and prioritizing the severity of multi-
ple pathologies within the same image.

7. Conclusion
This paper presents a representation learning method to in-
ject severity information in the latent representation space.
We meticulously examine the components of the suggested
framework and show that (1) ConPrO not only demon-
strates a dependable representation via TSNE visualiza-
tion but also surpasses state-of-the-art algorithms in clas-
sification tasks by at least 6% in F1 score, (2) proposed
MAEE metric penalizes serious incorrect prediction which
fit well to the severity classification problem, (3) choosing
good “normality” anchor can help reduce MAEE score. Fi-
nally, we discuss several problems of preference compar-
ison and explainable AI as potential directions for future
work.
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