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Abstract

Fetal electrocardiogram (ECG) analysis plays an impor-
tant role in assessing fetal heart rate, rhythm, and detect-
ing potential cardiac anomalies. However, obtaining fetal
ECG remains challenging due to its inherently low ampli-
tude and susceptibility to maternal signal interference. In
this paper, we propose a novel approach for robust fetal
ECG extraction using a Conditional Generative Adversar-
ial Network (cGAN) that operate on time-frequency domain
of abdominal ECG signals instead of raw 1D abdominal
ECG signals. By utilizing the frequency domain, our model
is able to capture intricate time-varying patterns often ob-
scured by noise and interference in the time domain. More-
over, cGAN leverages prior knowledge about fECG signal
structures, enhancing the accuracy of fECG reconstruction.
Experimentations on real-world ECG dataset validates the
efficacy of our model in accurately extracting fECG sig-
nals, achieving high structural similarity score (SSIM) and
low mean squared error (MSE) when compared with cor-
responding ground truth test sets. The approach shows su-
periority over conventional methods, demonstrating robust-
ness to noise and interference. All in all, this work presents
a promising avenue for advancing non-invasive fECG ex-
traction techniques and its potential applications in clinical
settings.

1. Introduction
Monitoring fetal health during pregnancy is of utmost im-
portance to ensure a safe delivery and healthy newborn. One
way of assessing fetal well-being is by analyzing the fetal
electrocardiogram (fECG) signal [5] which provides essen-
tial insights into fetal heart rate, rhythm, and cardiac anoma-
lies, enabling early intervention and improved outcomes.
However, obtaining fECG signals can be challenging due
to its low amplitude and interference from maternal abdom-
inal signals [29]. Directly measuring the fECG signal using
invasive procedures is often expensive, uncomfortable, and
can pose risks to both the mother and the fetus [26, 32].
Non-invasive fetal ECG extraction is the process of sepa-

rating the fECG signal from the abdominal ECG (aECG)
signal recorded from the abdominal surface of a pregnant
woman [29]. But these methods are challenging due to sig-
nal interference [8], noise [2] [3], as well as differing mor-
phologies of the recordings.

Numerous studies have explored adaptive filtering tech-
niques, such as Independent Component Analysis (ICA)
[17, 21, 30] and Template subtraction (TS) [1, 23], to sep-
arate fECG from mECG signals. However, these methods
often encounter convergence issues, lack precision, and rely
on knowledge of maternal QRS (mQRS) locations, which
can be unavailable. Deep learning-based (DL) approaches,
as seen in fetal QRS detection, offer promise for fECG ex-
traction tasks even without mECG signals. DL enables end-
to-end processing, but prior AutoEncoder-based attempts
depended on extensive preprocessing and hyperparameter
tuning. Previous work mainly focused on raw 1-D data, ne-
cessitating complex preprocessing for competitive perfor-
mance.

In this paper, we argue that transforming ECG data into
time-frequency domain is more effective in terms of pre-
processing effort and especially accuracy of fECG extrac-
tion. Specifically, short-time Fourier Transform is utilized
to obtain time-frequency representations of ECG data in the
form of spectrograms. We design a novel framework based
on Conditional Generative Adversarial Network (cGAN)
[18] whose input are spectrograms of aECG signals, and
the model attempts to reconstruct spectrograms of fECG
signals as outputs. To achieve this, the model consists of
an attention-based generator and a discriminator that work
in an adversarial manner. By conditioning both generator
and discriminator with ground truths spectrograms of fECG
signals, the generator attempts to learn to generate spec-
trograms of fECG signals from aECG spectrograms while
the discriminator tries to distinguish between these spectro-
grams and ground truth spectrograms.

This approach is well-suited to our task because it can
effectively capture complex time-frequency patterns in the
ECG signals, which are often difficult to extract using tradi-
tional signal processing techniques. Furthermore, the abil-
ity to incorporate prior knowledge about the expected struc-
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ture of fECG signals into the cGAN model allows for more
accurate reconstruction of fECG signals from aECG inputs.
As far as we are concerned, this paper is the first work that
proposes to perform fECG extraction using cGAN on time-
frequency domain.

Overall, the main contributions of this paper are as fol-
lows:
1. Providing insights into the time-frequency characteris-

tics of fetal and mECG signals and how they can be ex-
ploited for more accurate fECG extraction.

2. Proposing a novel approach for fECG extraction on the
time-frequency domain using Conditional GAN, which
has not been explored in previous studies.

3. Evaluating the effectiveness of our method using a real-
world dataset, and comparing the results with conven-
tional methods.

2. Related Work
Conventional fECG extraction methods encompass Adap-
tive Filtering, Blind Source Separation (BSS), and Template
Subtraction (TS). Adaptive algorithms in previous works
[16, 25] address noise and interference in abdominal sig-
nals, yet necessitate prior knowledge and are susceptible
to noise artifacts. BSS techniques [17, 21, 30] assume in-
dependence among sources, which is not always practical
for device implementation. TS [1, 23] utilizes maternal
ECG templates for removal, but its effectiveness varies with
mECG variability and fECG strength.

Deep Learning has been extensively studied in signal
data especially ECG signals because of its ability to learn
and extract features automatically. A deep learning ap-
proach in Zhong et al. [31] employs a 1-D CNN to detect
fetal QRS (fQRS) complexes, inspiring subsequent work on
fQRS detection like Lee et al. [13] and Huque et al. [9].
Mirza et al. [19] utilize fQRS as references to locate fe-
tal ECG signals in raw aECG data, using a ResNet-based
model with 1-D octave convolution. Lo et al. [15] adopt
a 2-D CNN for fECG extraction, treating it as a four-class
classification task. However, these CNN-based methods re-
quire large amounts of training data to achieve high accu-
racy and may not be effective in cases where the fetal ECG
is weak and the signal to noise ratio (SNR) is low.

Recent work has focused on using AutoEncoders (AEs)
for fetal ECG extraction which are neural networks trained
to reconstruct the input data. For instance, [20] proposed
an AE-based method to reconstruct fECG signals by stack-
ing Denoising AEs. This is followed by a residual U-net
convolutional encoder-decoder network proposed in [33].
AECG-DecomposeNet in [27] has extended this approach
by utilizing two U-net architectures in series, one for ex-
tracting mECG signals and other for removing them from
the maternal-abdominal ECG. Nevertheless, these meth-
ods have limitations in removing mECG signals accurately

Figure 1. Spectrogram generation module: Takes the 1D aECG
and fECG signals as input, then generates 2D spectrograms.

when the amplitudes of the fetal and maternal ECG signals
are similar. The work in [4] builds a multi-channel fECG
denoising using convolutional AE by assuming the mECG
pattern is provided and can be easily removed from aECG
signals. W-Net, where two U-net are stacked, is designed by
Jin et al. [14] to separate maternal and fetal ECG. However
this architecture requires large computing resources and is
not efficient in practical scenarios. Moreover, these tech-
niques require large amount labelled fECG signal as refer-
ences, while labelled fECG data is very limited and hard to
collect by non-invasive methods.

3. Dataset

The Abdominal and Direct Fetal ECG Database
(A&DFECG) [6] from PhysioNet is a collection of
ECG recordings of abdominal and direct fetal ECG signals
from five pregnant women. Each recording consists of four
abdominal channels and one direct fetal channel, all are
5-minute long. The signals were sampled at a rate of 1 kHz
and 16-bit resolution. We use this database as the training
dataset by making use of direct fECG signal channel as
target domain of our proposed cGAN model, while the four
abdominal channels act as the input domain of the model.

4. Methodology

The overview of our proposed framework is depicted in Fig-
ure 2. First the 1D aECG and their corresponding fECG sig-
nals are passed to the spectrogram generation module that
performs Fourier transform to obtain the 2D time-frequency
representations. The generated aECG and fECG spectro-
grams serve as input to the cGAN module which learns
to synthesize the fECG spectrograms from aECG spectro-
grams. Output of cGAN module are then compared with
the ground truth fECG spectrograms using the evaluation
module.

4944



Figure 2. Overall framework: There are three main modules: (1) spectrogram generation module that performs Fourier transform on 1D
signals to obtain the 2D time-frequency representations (2) cGAN module that comprises a cGAN to synthesize the fECG spectrograms
from aECG spectrograms; and (3) the evaluation module that evaluates the performance of our method for fECG extraction.

4.1. Time-Frequency Representations

In signal processing, Fourier analysis is a prevalent tech-
nique known for its ability to reveal frequency domain prop-
erties. However, its unable to precisely pinpoint the tim-
ing of events, making it particularly challenging when con-
fronted with time-varying signals like those found in fECG
data. To address this, the Short Time Fourier Transform
(STFT), often referred to as the windowed Fourier Trans-
form, emerges as a pivotal tool in delivering essential in-
formation about both the timing and frequency of signal
events. This precise localization is contingent upon the
size of the window used in the transformation. In the con-
text of fetal health monitoring, STFT’s application offers a
nuanced understanding of fECG signals, aiding in the de-
tection of fetal heart rate, rhythm, and cardiac anomalies.
Alongside techniques like the Wavelet Transform, STFT
plays a crucial role in the fECG analysis. The STFT equa-
tion can be given as

F (τ, ω) =

∫ ∞

−∞
f(t) ·W (t− τ) · e−jωt dt (1)

where w(t − τ) is a window function (often a Hamming
window) used to select a specific time segment of the signal.

The dataset includes 1D signals corresponding to four
aECG signals and one corresponding fECG signal for each

patient. The process of transforming the 1-1 signals onto
time-frequency domain is visually depicted in Figure 1.
The signals are first normalized to range [−1, 1]. Follow-
ing normalization, the signals are segmented into discrete
intervals of 250ms duration, with overlapping segments of
10ms. This segmentation strategy enhances the dataset’s in-
put diversity for deep learning networks and facilitates com-
prehensive signal analysis. Subsequently, STFT is applied
to these signal segments to obtain fECG and aECG spec-
trograms. Note that four spectrograms from four distinct
aECG channels are associated with a single fECG spectro-
gram label.

4.2. Conditional GAN Module

On time-frequency domain, in this work, we propose to
leverage Conditional GAN (cGAN) [18] to translate aECG
spectrograms to fECG spectrograms as illustrated in Fig-
ure 3. cGAN is an extension of GAN [7]. Given a random
noise vector z, GAN learns a generator G to output image y:
G : z → ŷ. On the other hand, a discriminator D is tasked
with distinguishing between real image y and generated im-
ages ŷ. In an adversarial manner, the generator G is trained
to generate images that can fool the discriminator D. The
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objective of a GAN can be stated as:

min
G

max
D

(
Eŷ∼p(ŷ)[logD(ŷ)] + Ez∼pz(z) [log (1−D(G(z)))]

)
(2)

Different from GAN, the generator GC of cGAN maps an
observed aECG spectrogram x and random noise vector z to
output fECG spectrogram image ŷ: GC : {x, z} → ŷ. The
discriminator DC is trained to detect as well as possible if
the generated fECG spectrogram ŷ is real or fake using the
objective function conditioning on x:

L (DC) = Ex,z [log (1−DC(x,GC(x, z)))] . (3)

The objective of GC becomes minimizing the ability of DC

to distinguish between x and ŷ:

L (GC) = Ex,ŷ [log (D(x, ŷ))] . (4)

Besides fooling the discriminator, the generator is con-
strained to output images that are near the ground truth im-
ages based on L1 distance:

LL1(GC) = Ex,y,z [∥y − GC(x, z)∥1] . (5)

The final loss of the cGAN model can be summarized as:

LcGAN = L(GC) + (−L(DC)) + LL1(GC). (6)

The architectures of the generator and discriminator use
modules of the form convolution-BatchNorm-ReLu, which
are are adapted from [10, 24] Since aECG spectrograms to
fECG spectrograms share a great deal of low-level infor-
mation, for the generator, we follow the general shape of a
U-Net [28] with N layers. Then we add skip connections
that concatenates all channels at each layer k with those at
layer N − k.

4.3. Evaluation Module

Figure 4 shows the main steps of the evaluation module. To
validate the effectiveness of our method, we propose a con-
ventional method called Probabilistic Averaging (PA) and
perform comparison between the outputs of our framework
and PA. For PA, we extract fECG signals based on a se-
ries of Gaussian laws. First, to preprocess the signals, we
perform a normalization and alignment using QRS annota-
tion. After aligning the signal segments, an array of Gaus-
sian estimators are generated by calculating the means and
standard deviations of points grouped by index:

σ =

√∑
xij − µj

N
,µj =

∑
xi

N
(7)

This yields a generator array capable of accepting any seed
and positioning new synthetic segments in acceptable in-
tervals. Finally, random seeds and a random variable were
generated to obtain a synthetic signal.

Figure 3. Conditional GAN module: Takes the fECG and aECG
spectrograms as input, learns to synthesize fECG spectrograms
from the aECG spectrograms.

Two main metrics are used, namely Structural Similar-
ity Index (SSIM) and Mean Squared Error (MSE). SSIM is
used to measure the similarity between two images, which
is sensitive to changes in structural information. SSIM val-
ues range from -1 to 1, with 1 indicating perfect similarity
between the images:

SSIM(x, y) =
(2µxµy + c1)(2σxy + c2)

(µ2
x + µ2

y + c1)(σ2
x + σ2

y + c2)
, (8)

where µx and µy , σ2
x and σ2

y , and σxy are the mean values,
variances, and covariance between images x and y, respec-
tively and c1 and c2 are constants. MSE measures the pixel-
wise difference between two images. A low MSE value
indicates that the images are more similar:

MSE =
1

mn

m−1∑
i=0

n−1∑
j=0

[I(i, j)−K(i, j)]2 (9)

where MSE represents the Mean Squared Error between
two images I and K, where m and n are the dimensions of
the images. Using them these two metrics provide us with a
complete assessment of quality degradation of the generated
spectrograms and help us analyze the errors.

5. Experimental Setup
We leveraged Pix2Pix GAN [11] as the backbone Condi-
tional GAN. The Pix2Pix GAN is implemented with a U-
Net generator and a CNN discriminator. The model was
trained with a batch size of 16 for 125 epochs. Both the
generator and discriminator were trained using Adam [12]
optimizer with a learning rate of 0.0002, beta parameters of
(0.5, 0.999), weight decay of 0.0001 and momentum of 0.9.
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Figure 4. Evaluation module that compares the generated fECG
spectrograms with ground truth using MSE and SSIM metrics.

Figure 5. Distribution of MSE values (left) and SSIM values
(right) of all pairs of fECG spectrograms generated by our pro-
pose framework from the aECG spectrograms in the test set and
its corresponding ground truth fECG spectrograms. MSE Mean:
0.002, MSE Standard deviation: 0.0008; SSIM Mean: 0.801,
SSIM Standard deviation: 0.0190.

We reduce the learning rate linearly by a factor of 0.1 after
every 50 epochs. Training was performed on a NVIDIA
GeForce GTX 1080Ti GPU with 16GB RAM, which took
around 16 hours. Implementation is in PyTorch [22].

6. Results

6.1. Overall results

We evaluate the performance of our proposed method on the
A&DFECG Database. We quantify the performance of our
method using boxplots that show the distribution of MSE
and SSIM values for all pairs of aECG and fECG spec-
trograms in the test set. From Figure 5, the boxplot of
MSE values shows a small mean of 0.002 and a low stan-
dard deviation of 0.0008, demonstrating that the generated
fECG spectrograms are highly accurate in terms of pixel-
wise comparison. Similarly, the SSIM values also indicate a
high degree of similarity in structure between the generated

Figure 6. Comparison between fECG spectrograms generated by
our proposed method and Probabilistic Averaging. By visual ob-
servation, our framework produces more accurate fECG signals
and fQRS peaks, which are close to ground truth. In terms of qual-
itative comparison, our proposed method results in a lower MSE
value (0.001 compared to 0.006) and a higher SSIM value (0.812
compared to 0.741).

and ground truth spectrograms, with the mean SSIM value
of 0.801 and standard deviation of 0.0190. High level of
structural and pixel-wise similarity indicates that the gen-
erated fECG spectrograms are close to the ground truth,
which demonstrates the effectiveness and accuracy of our
proposed method for fECG extraction task.

6.2. Comparison with conventional method

Experiments using Probabilistic Averaging (PA) are con-
ducted to further validate the effectiveness of our method.
We take the same test set of 1D aECG signals to generate the
1D fECG which are then converted to their time-frequency
representations through the spectrogram generation module
and passed to the evaluation module to compare with the
ground truth. PA is used to extract fECG signal from aECG
signal, which is then segmented and projected onto time-
frequency domain to generate spectrograms.

Figure 6 shows the qualitative comparison between out-
puts of our proposed method and PA with the ground truth
fECG spectrograms on a sample segment in the test set.
From visual observation, it can be seen that the fECG spec-
trogram generated by our method is closer to ground truth
than that extracted by PA. In terms of metrics, our method
produces an MSE value of 0.001, which is significantly
lower than that of the conventional method (0.006). More-
over, the SSIM value of our proposed method is higher than
that of PA.

We also report the distribution of MSE and SSIM values
(Figure 7) of all pairs of fECG spectrograms generated by
PA from the aECG segments in the test set. The results indi-
cate that our proposed GAN-based method outperforms PA
in terms of both MSE and SSIM values. Specifically, the
mean MSE value produced by PA is 0.006 while the mean
MSE value produced by our proposed method is 0.002. The
mean SSIM value is 0.736, while the mean SSIM value pro-
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Figure 7. Distribution of MSE values (left) and SSIM values
(right) of all pairs of fECG spectrograms produced by Probabilis-
tic Averaging from the aECG segments in the test set. MSE Mean:
0.006, MSE Standard deviation: 0.002; SSIM Mean: 0.736, MSE
Standard deviation: 0.026.

duced by our proposed method is 0.801. These results in-
dicate that PA produces fECG spectrograms with a higher
degree of error compared to our proposed method, since PA
is sensitive to noise artifacts as the noise either skews the
mean or widens the standard deviation hence, outliers ap-
pear in the signal.

Overall, our proposed model is able to generate higher
quality fECG signals compared to the Probabilistic Aver-
aging method, especially when the aECG signal contains a
high level of noise or artifacts. Additionally, the Pix2Pix
GAN model is able to capture the underlying nonlinear and
complex relationships between the aECG and fECG signals,
which makes it more robust to changes in the input data
compared to the Probabilistic Averaging method.

6.3. Further Analysis

In our work, by segmenting the signal by length of 250ms
with an overlap of 10ms and applying STFT in logarithmic
scale, we are able to track the power spectral density (PSD)
of the signal, and its changes across the time and frequency
domains. We used a hamming window to curb the noise
and emphasize the QRS sequence, yielding a better depic-
tion of high PSD change in the spectrogram. We also fixed
NFFT to 256 to widen the spectrogram sliding window al-
lowing a smooth PSD. This enables the cGAN models to
learn from distinctive patterns within the spectrogram as the
mECG and fECG are periodic signals and showcase change
through time for specific frequency ranges. Those frequen-
cies are characteristics of the PQRS waves. The influence
of some multiplicative noise artifacts make the occurrence
of these waves pseudo-periodic rather than periodic. The
origin of the noise can be linked to multiple artifacts such
as equipment, the influence of the mother's movements and
other types of vibrations on the fECG. Most of these noises
are of additive nature and only affect the amplitude of the
ECG signal, influencing the power changes on a quadratic
scale.

7. Conclusion
In this paper, we have presented a novel approach for ro-
bust fetal ECG extraction using Conditional GAN. Our
proposed method utilizes frequency-domain representations
of abdominal ECG and fetal ECG signals, which are fed
to the Pix2Pix GAN model for generating high-quality
fECG spectrograms. We have demonstrated the effective-
ness of our approach on the Abdominal and Direct Fetal
ECG Database, showing that our method outperforms the
conventional method in terms of both quantitative metrics
(MSE and SSIM) and visual quality. Our method produces
fECG spectrograms with a lower MSE value and a higher
SSIM value compared to Probabilistic Averaging method.
Future work can explore the use of our approach in com-
bination with other machine learning techniques for further
improving the accuracy and reliability of fECG extraction.
In conclusion, our proposed method represents a promising
direction for robust fetal ECG extraction and has the poten-
tial to make a significant impact on the field of fetal health
monitoring.
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