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Abstract

Lateral flow tests (LFTs) enable rapid, low-cost test-
ing for health conditions including Covid, pregnancy, HIV,
and malaria. Automated readers of LFT results can
yield many benefits including empowering blind people
to independently learn about their health and accelerat-
ing data entry for large-scale monitoring (e.g., for pan-
demics such as Covid) by using only a single photograph
per LFT test. Accordingly, we explore the abilities of
modern foundation vision language models (VLMs) in in-
terpreting such tests. To enable this analysis, we first
create a new labeled dataset with hierarchical segmenta-
tions of each LFT test and its nested test result window.
We call this dataset LFT-Grounding. Next, we bench-
mark eight modern VLMs in zero-shot settings for ana-
lyzing these images. We demonstrate that current VLMs
frequently fail to correctly identify the type of LFT test,
interpret the test results, locate the nested result window
of the LFT tests, and recognize LFT tests when they par-
tially obfuscated. To facilitate community-wide progress
towards automated LFT reading, we publicly release our
dataset at https://iamstuti.github.io/lft_
grounding_foundation_models/

1. Introduction

Vision-language models (VLMs) have demonstrated im-
pressive zero-shot capabilities in describing images. This
development begs a question as to how far such models’
abilities extend. We explore VLMs’ abilities for a critical
medical problem: analyzing Lateral Flow Tests (LFTs) [5].
An LFT [5] is a cost-effective diagnostic tool for rapidly
identifying health conditions.

Our work contributes to the growing interest in automat-
ing LFT analysis [11, 21, 31]. The motivation for auto-
mated interpretation of LFT results are numerous. For in-
stance, such a solution could empower blind people to in-
dependently learn about their health [9, 10, 19, 25], thereby
broadening accessibility and inclusivity in healthcare diag-
nostics. Automated readers could also accelerate data en-
try for large-scale monitoring (e.g., for pandemics such as

Figure 1. Examples from our dataset of images showing COVID-
19 LFTs with positive results (first row) and negative results (sec-
ond row). We introduce segmentations of each LFT test (indicated
in purple) and its test result window (indicated in orange).

COVID-19) by only requiring the capture of a single photo-
graph per LFT test [5].

Our first contribution is an LFT-based dataset to enable
evaluating models’ predictive performance. Extending prior
work [4, 17, 29], we introduce the first dataset that locates
the visual evidence used to arrive at a test result interpre-
tation. Specifically, for a collection of images showing
Covid LFTs [17], we augment each image’s label indicating
whether the result is positive or negative with segmentations
of the test and its nested test result window. We call the re-
sulting dataset LFT-Grounding to it provides groundings
that localize LFT tests and their nested test result windows.
Examples of annotated images are shown in Figure 1.
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Our next contribution is to benchmark eight modern
VLMs that generate image captions in zero-shot settings to
see how effectively they recognize the image contents and
reason to those descriptions based on the correct visual evi-
dence. We find that existing VLMs often struggle to recog-
nize the Covid LFTs, interpret their results, locate the cor-
rect visual evidence needed to interpret the test results, and
detect partially obscured LFT tests.

We publicly-share our dataset to facilitate future progress
on this challenging problem. Success can benefit other re-
lated applications, including automated analysis of other
LFT test results including for pregnancy, HIV, and malaria.
Our work also contributes to designing more interpretable
solutions, by enabling assessment of the extent to which
models reason based on the appropriate visual evidence.

2. Related Works
Lateral Flow Tests (LFTs). LFTs have been widely
adopted for decentralized testing due to their simplicity,
cost-effectiveness, and quick results. They are used for de-
tecting a broad range of health conditions including preg-
nancy, Covid, and infectious diseases such as malaria and
HIV. Each lateral flow test works by quantifying the pres-
ence of a target substance in a liquid sample (e.g., urine,
saliva) to determine the presence of a medical condition.
Each test achieves this by transporting the sample through
pads where nanoparticles with specialized receptors react
with the target substance that would indicate a positive re-
sult. The result is a visual signal indicating the strength
of that target substance’s presence. Our work will comple-
ment the existing work on automatically interpreting LFT
results [11, 21, 31], by offering a new labeled dataset to sup-
port richer evaluation alongside the first published analysis
of foundation models’ zero-shot performance in interpret-
ing LFT test results.

LFT Datasets. A limited number of large-scale, publicly
available LFT image datasets exist [4, 29]. Our work is the
first to enrich such images with annotations indicating the
test result as well as the location of the test and its nested
results window. This new dataset can empower researchers
to improve the precision of automated visual inspections for
LFT images by enabling them to verify models look at the
correct visual evidence when making its predictions regard-
ing the test results.

Vision Language Models. Many large VLMs [6, 8, 14,
15, 23, 30, 32] have made significant strides in various vi-
sion and cross-modality downstream tasks. For example,
several models [15, 30] have shown strong performance on
conventional public image captioning datasets like COCO-
Captions [12], TextCaps [24], NoCaps [3], and Flickr30k

[22], respectively. Such models often achieve their impres-
sive reasoning and generalization capabilities by aligning
visual features extracted from images with the input em-
bedding space of power large language models (LLMs) like
ChatGPT [18], GPT-4 [1], Vicuna [7], and LLaMA [28].
A well-known challenge from such models is the tendency
to hallucinate, ignoring the image and instead specifying
text the LLM knows should often appear together from
training. We rigorously explore modern VLMs to interpret
LFT images using specific prompts designed to direct them
to locate the LFT tests and the test result window within
the images, we aimed to assess the models’ ability to draw
interpretations from visual cues. Our findings shed light
on the current capabilities of VLMs in accurate LFT image
analysis, highlighting potential areas of improvement, as it
directly impacts the reliability and effectiveness of accurate
and unbiased healthcare image interpretation.

3. LFT-Grounding Dataset

We now introduce our extended version of LFT image
dataset [17], that we call LFT-Grounding to reflect the
dataset provide groundings that localize LFT tests and their
nested test result windows.

3.1. Dataset Creation

Source. We extend an existing dataset of 325 Covid Lat-
eral Flow Test (LFT) images acquired in real-world set-
tings, licensed by MIT on Kaggle [17]. Our dataset is re-
stricted to these images due to obstacles in acquiring addi-
tional publicly-available images of LFTs.1 Images are cate-
gorized according to their ground-truth labels, distinguish-
ing between positive and negative results for LFT tests. All
images contain exactly one clearly-visible, valid LFT test
with observable test lines in its result window.

Annotation Task Design. We created an annotation inter-
face for segmenting parts of LFT images. It starts with de-
tailed instructions at the top that encompass navigating the
interface and completing annotations for images with both
positive and negative results, including an annotated exam-
ple of each scenario. Then, annotators are walked through
annotating five LFT images. For each image, users are first
asked, “Is the Covid test positive? Please indicate “Yes” or
“No” for the image you are viewing.” After collecting the
result of the Covid Test, annotators are tasked with outline
the entire Covid LFT test within the image. Upon success-
ful demarcation, annotators are then directed to segment the
result window. Annotators are first asked, ”Can you locate

1Other known images are HIV LFT images in [29] and pregnancy
LFT images from Adobe Stock [2]. However, we are still waiting on our
application on February 15,2024 for the former dataset to be approved and
the latter restricts their redistribution in the license.
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the Covid Test Result on the Covid Test Object?” and, if
yes, are then instructed to delineate the result window. The
interface enables segmentation by gathering a sequence of
clicked points to form a contiguous polygon.

Annotation Collection. We hired crowdworkers from
Amazon Mechanical Turk (AMT) to annotate the data. We
deployed a total of 65 HITs to annotate all 325 images. We
engaged 16 highly skilled annotators from AMT for this
task, who already had contributed to previous efforts from
our team in the preceding 30 months for large-scale data
segmentation. The authors visually reviewed all submis-
sions to verify they all are high-quality.

3.2. Dataset Analysis

We now characterize our LFT-Grounding dataset with re-
spect to it’s overall composition as well as spatial statistics
characterizing the Covid tests and their result windows.

Overall Dataset Composition. In Table 1, we report for
LFT-Grounding the total number of images, number of im-
ages showing a positive test result, number of images show-
ing a negative test result, and total number of collected seg-
mentations (recall, each image contains two segmentations
with one for the test and one for the result window). Overall,
we observe a large dataset imbalance with only 8% of im-
ages indicating a negative result. We suspect this could be
attributed in part to people preferring to post images of pos-
itive Covid test results online in order to either warn their
community or garner emotional support.

Covid LFT Test Statistics. We next characterize the seg-
mentations for the test and result window with respect to
four metrics:
• Image Coverage: fraction of image pixels covered by a

segmentation.
• Test Coverage: fraction of test pixels covered by the re-

sult window.
• Boundary Complexity (BC): ratio of a segmentations

area to the length of it’s perimeter (i.e., the isoperimetric
quotient). Values are in [0, 1] with 0 representing a highly
jagged boundary and 1 representing a perfect circle.

• Normalized Aspect Ratio (NAR): Ratio of the shortest
side of the segmentation to it’s longest side. Values are
in (0, 1], where values approaching 0 represent a thin seg-
mentation, while 1 represents a perfect square.

For all four metrics, we visualize the distribution of scores
in Figure 2.

Overall, results for positive and negative results look
similar across all metrics. The one exception is for outliers
in positive tests, which we suspect is due to sample imbal-
ance between positive and negative images in our dataset.

# Images # Pos. # Neg. # Seg.

325 300 25 650

Table 1. Composition of LFT-Grounding. From left to right: num-
ber of images, number of images showing a positive Covid result,
number of images showing a negative Covid result, and total num-
ber of segmentations.
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Figure 2. Boxplots for each of the four metrics used to analyze
LFT-Grounding. Each boxplot shows the overall results, alongside
fine-grained result for positive and negative tests. (a) image cov-
erage; (b) boundary complexity; (c) test coverage; (d) NAR. The
lines in each boxplot represent medians, the bottoms and tops of
each boxplot represent the 25th and 75th percentiles respectively,
whiskers represent most extreme data not considered outliers, and
circles represent outliers. (Res.=Result window; Over.=Overall;
Pos.=Positive; Neg.=Negative; NAR=Normalized aspect ratio)

We also observe that the result window occupies a small
proportion of pixels in the images as well as within the
Covid tests. This highlights a challenge for modern mod-
els [27], as locating small regions is known to be a challeng-
ing problem. Improving automated analysis of such small
result windows would be especially valuable for visually
impaired users, as the design of result windows is an ob-
stacle for many low-vision users who have some lingering
sight yet cannot independently discern information in such
small physical regions.

When observing boundary complexity, we observe the
the test itself is more circular than the result window (i.e.,
has a higher BC score). Intuitively, Covid tests typically
have rounded corners, which contributes to having a sim-
pler shape, whereas test windows are typically rectangular
with sharp edges, leading to a more jagged shape, as demon-
strated in Figure 1. Regions with simple boundaries (e.g.,
rectangles) may be easier for models to segment due to clear
boundaries and less variability in form, compared to more
complex shapes (e.g., humans). Finally, we observe that
both the result window and rectangular shapes, with Covid
tests having a NAR range in [0.29, 0.35] (mean 0.32) and
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result windows having a range in [0.17, 0.38] (mean 0.23),
indicating that result windows are on average more narrow
than the test itself, matching qualitative samples from our
LFT-Grounding dataset in Figure 1. As a consequence,
models may have trouble accurately localizing result win-
dows as thin objects have shown to be challenging for mod-
ern models [13, 16].

4. Algorithm Benchmarking
We next analyze the performance of modern VLMs at ana-
lyzing images in our LFT-Grounding dataset.

Models. We chose to benchmark the following eight
off-the shelf vision language models in zero-shot set-
tings: BLIP2 [14], InstructBLIP [8], MiniGPT-4 [32],
CogVLM [30], Monkey [15], GLaMM [23], ViP-
LLaVA [6] and GPT-4V [1].2 For InstructBLIP and
MiniGPT-4, we test both available backbone options. We
summarize these models in Table 2.

Evaluation Metrics. We use two evaluation metrics to as-
sess a model’s abilities to recognize the image contents and
to do so based on the correct visual evidence.

For assessing recognition, we measure accuracy based
on each model’s ability to both identify that the test is for
Covid and provide the correct test result. We establish
a single score per image through two sequential steps of
string matching. First, we search for “Covid-19 Test” (case-
insensitive) in each model’s generated caption. If that string

2While the commercial application, Be My AI [20], has potential for
reading LFT’s results, it currently only exists as a mobile application and
so is unsuitable for our large-scale evaluation.

Model Visual Input Grounding
Output

Grounding
Type

BLIP2 [14] VP × –
InstructBLIP(Vicuna) [8] VP × –
InstructBLIP(FlanT5) [8] VP × –
MiniGPT-4(Vicuna) [32] VP × –
MiniGPT-4(Llama) [32] VP × –
GPT-4V [1] VP × –
CogVLM [30] VP,Coor ✓ Bbox
Monkey [15] VP × –
GLaMM [23] VP,Coor ✓ Mask
ViP-Llava [6] VP,ROI × –

Table 2. Comparison of different methods in terms of input visual
prompt formats and ability to generate groundings as visual output.
Input formats include a text prompt along with an image (VP), text
prompt specifying image coordinates along with an image (Coor),
text prompt along with a region of interest indicated by visual cues
such as arrows, bounding boxes, circles, scribbles overlaid onto
the input image (ROI). Grounding output formats are bounding
box (Bbox) and binary segmentation mask (Mask).

is detected, then we perform string matching for “positive
result” and “negative result” to find matches to the ground
truth labels.3 We penalize models as predicting wrong when
generated captions include “positive or negative”.4

For models that can generate visual groundings (i.e.,
CogVLM and GLaMM) (Table 2), we evaluate their
grounding capabilities by measuring the Intersection over
Union (IoU) between the prediction and ground-truth. We
do this separately for each entity type of interest, specifi-
cally the covid test and its test result window. Due to the
different grounding outputs from these models (Table 2),
we compare bounding boxes for CogVLM and segmenta-
tion masks for GLaMM.

For both measures, we compute the scores across all im-
ages. Then, we present results as percentages, where higher
values range from 0 to 100 with higher scores signifying
better performance.

Test Result Recognition with General Prompts. We
first test three prompt formats: PG1: “Describe the image
in detail”, PG2: “Describe in detail every object and their
parts”, and PG3: “Describe the hierarchical parts of the
LFT test in the image”. Results are shown in Table 3.

While most models perform poorly at recognizing the
test result, we observe strong performance from GPT-4V
with scores ranging from 64% to 74% across the three
prompts. We suspect GPT-4V’s strong performance is due
to its more extensive training data, although its proprietary
design limits further analysis.

When comparing the performance of different prompts,
we observe marginally improved accuracy scores for the
prompt PG1 compared to prompts PG2 and PG3. We sus-
pect this is due to the prompt’s closer resemblance to those
used during the training of these models; e.g., “Describe
this image in detail” was used when fine-tuning MiniGPT-
4 [32] and “Generate the detailed caption in English:” was
used when instruction tuning Monkey [15]).

Test Result Recognition With Prompts Specifying the
Test Type. We next prompt the model with additional in-
formation about the test type as follows: “PS1: Describe
in detail every part of Covid test in the image”, “PS2: De-
scribe the hierarchical parts of Covid test in the image”.
Results are reported in the Table 3. We observe an average
improvement of ∼5% in accuracy scores when we notify
models about the test type as opposed to general prompts.
We suspect specifying the test type helps models know that
common language patterns are to specify a test result when
reporting the presence of a Covid test.

3Preliminary findings showed better evaluation using “result” in the
string rather than simply searching for “positive” and “negative”.

4Preliminary findings gave similar outcomes when instead searching
for two strings: “positive” and “negative”.
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Model General Prompt Specific Prompt
PG1 PG2 PG3 PS1 PS2

BLIP2 [14] 0 0 0 0 0
InstructBLIP(Vicuna) [8] 0 0 0 0.62 0.92
InstructBLIP(FlanT5) [8] 0 0 0 0 0
MiniGPT-4(Vicuna) [32] 0.31 0.31 1.23 4.92 2.77
MiniGPT-4(Llama) [32] 0.31 0 0 3.08 2.77
GPT-4V [1] 74.15 64.62 67.38 62.24 74.77
Monkey [15] 2.77 0.62 0 0.62 0
CogVLM [30] 23.69 15.08 4.62 30.77 7.38
GLaMM [23] 0 0 0 0 0
ViP-Llava [6] 3.38 2.77 0 23.69 8.62

Table 3. Test result recognition performance from models prompted in a zero-shot setting. PG/S refers to different general and specific
prompts respectively, as described in (Section 4).

Test Result Recognition When Notifying Model’s About
the Covid Test’s Location. We next assess the models’
perfomance when they are notified where to look in the
given image. We feed bounding box coordinates of the
Covid test’s location (derived from its ground-truth segmen-
tation) to the models that accept coordinates as inputs to ex-
plore the upper bound of what these models can achieve.
We use predefined prompts for visual inputs from the orig-
inal documentations of CogVLM [26], GLaMM [23], and
VipLlava [6].5 Quantitative results are reported in Table 4
and a qualitative result is shown in Figure 3.

We find that all models generally perform worse on our
dataset when given ground-truth bounding box coordinates
through prompts. While Vip-Llava misinterprets the Covid
LFT image as ‘pregnancy test’ in 99% of the cases, as ex-
emplified in the Figure 3, it slightly surpasses its counter-
parts (i.e., CogVLM and GLaMM). We believe Vip-Llava’s
improved performance stems from its inherent model de-
sign [6]. Unlike CogVLM and GLaMM, which are lim-
ited to understanding information conveyed through textual
prompts, Vip-Llava is uniquely designed to interpret both
the overlaid visual markers (specifically, bounding boxes
that identify Covid Test and Test Result Window in our
case) on the image and the accompanying prompt. This
dual-layered approach enables Vip-Llava to generate better
descriptions for the LFT images.

5For CogVLM, we use the prompt template: “Give me a comprehen-
sive description of the specified area [[x0,y0,x1,y1]] in the picture”. For
GLaMM, we use: “Can you provide a detailed description of the region
[[x0,y0,x1,y1]] in the image”. Unlike CogVLM and GLaMM, which ac-
cept bounding boxes through text prompts, Vip-Llava processes the im-
age with overlaid multiple bounding boxes, accompanied by a text prompt
specifying the visual cues (e.g., “ <red bounding box >”, “green circle”).
The prompt used for Vip-Llava is: “Could you please describe the contents
of the region <within red box >and <within blue box >in the image”
(where <within red box >refers to the Covid LFT Test object’s bounding
box and <within blue box >refers to the LFT Test Result Window).

Figure 3. Example of generated captions by the models when they
are notified in the prompts of the Covid test’s location.

Evaluating VLMs with Grounding Abilities in Zero-
shot Setting for LFT Recognition We assess the visual
grounding proficiency of two models supporting this ca-
pability: CogVLM and GLaMM. For CogVLM, which
supports bounding box predictions, we design the prompt:
“Please describe the <entity >in detail and provide its co-
ordinates [[x0, y0, x1, y1]]”. For GLaMM, which supports
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Model Bbox Prompt

CogVLM [30] 0
GLaMM [23] 0
ViP-Llava [6] 0.31

Table 4. Accuracy metrics for correctly indicating positive and
negative test results in generated captions with respect to Covid
LFT images in the dataset, when models operate in their zero-
shot setting using auxiliary prompts which provide ground-truth
bounding box coordinates for the Covid test.

Model IoULFT−Test IoUResult−Window

CogVLM [30] 28 16.09
GLaMM [23] 97.59 4.69

Table 5. Overall performance of CogVLM [30] and GLaMM [23]
in locating the Covid LFT test as well as its nested result window
for all images in our dataset (mean value reported).

segmentation predictions, we design the prompt: “Can you
please segment <entity >in the given image”. We use for
<entity >both “Covid Test” and “Covid Test Result Win-
dow”. Results are shown in Table 5.6

For locating the Covid tests, we observe higher IoU
scores from GLaMM than CogVLM. We suspect supe-
rior performance of GLaMM stems in part from provid-
ing fine-grained pixel-level object groundings rather than
coarse bounding boxes like CogVLM. Additionally, we at-
tribute this to the observation that in 7% of cases when
CogVLM is prompted for object “Covid Test”, and in < 2%
of cases when prompted for “Test Result Display Window”,
it fails to provide the grounding coordinates for the specified
salient object in the prompt. A commonality shared in these
cases is either the LFT test is partially obscured (e.g., from
being held in a hand) or the LFT test is placed on a dark or
highly textured background, as exemplified in Figure 4.

When observing performance gaps between average IoU
scores for the predicted bounding box for the Covid test
and test result window, we see that both models struggle
to identify the nested test result window within the LFT im-
ages. Specifically, the performance decrease is ∼42.50%
for CogVLM and ∼95.31% for GLaMM. We suspect this
decline in performance is due to VLMs’ limited grasp in
recognizing hierarchical decomposition within objects as
well as in interpreting small and thin entities. This finding
underscores a valuable future direction in improving the vi-
sual grounding capabilities at multiple decomposition levels
that include smaller entities.

6We exclude performance scores for recognizing the test result because
in most instances the models didn’t output a string description of the image.

Figure 4. Examples when CogVLM did not generate bounding
box predictions for both the Covid test and its result window.

Qualitative Results We display the captions generated by
the models for the top-performing prompt “Describe the
image in detail” in Figure 6.

Upon visual inspection, we observe a common mistake
from models is misidentifying the Covid LFT image as a
“pregnancy test,” “thermometer,” or “blood glucose mon-
itor.” While these errors may stem from model hallucina-
tions, we also suspect this poor performance is due to train-
ing datasets lacking sufficient diversity of LFT test images.

We also show an example of the predictions for the
Covid test and the nested test result window by GLaMM
in Figure 5. This reinforces our quantitative finding that
performance declines between from the Covid test to the
locating its nested result window.

5. Conclusions
We introduce LFT-Grounding to catalyze research into im-
proving the zero-shot generalization capabilities of state-of-
the-art models for automatic interpretation of LFT images.
We also benchmark eight state-of-the-art models in zero-
shot setting to highlight their current status for this challeng-
ing problem. Our work underscores opportunities for future
work, including on resolving how to acquire LFT images for
a wider range of health conditions as well as on improving
the performance of automatic models in interpreting results
and achieving this by conveying the visual evidence it used
to arrive at that interpretation. An important step for future
work will include expanding our test result categorizations
to also support recognizing “invalid” test results. We pub-
licly share our dataset to spur community effort to facilitate
future extensions of this work.
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Figure 5. Examples of ground-truth (purple overlay) and GLaMM predictions (orange overlay) for locating the Covid test as well as its
nested result window.

Figure 6. Models’ predictions using the overall top-performing prompt, “Describe the image in detail”, for a test with a positive result.
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