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Abstract

The Segment Anything Model (SAM), originally de-
signed for general-purpose segmentation tasks, has been
used recently for polyp segmentation. Nonetheless, fine-
tuning SAM with data from new imaging centers or clin-
ics poses significant challenges. This is because this ne-
cessitates the creation of an expensive and time-intensive
annotated dataset, along with the potential for variability
in user prompts during inference. To address these issues,
we propose a robust fine-tuning technique, PP-SAM, that
allows SAM to adapt to the polyp segmentation task with
limited images. To this end, we utilize variable perturbed
bounding box prompts (BBP) to enrich the learning context
and enhance the model’s robustness to BBP perturbations
during inference. Rigorous experiments on polyp segmen-
tation benchmarks reveal that our variable BBP perturba-
tion significantly improves model resilience. Notably, on
Kvasir, I-shot fine-tuning boosts the DICE score by 20%
and 37% with 50 and 100-pixel BBP perturbations during
inference, respectively. Moreover, our experiments show
that 1-shot, 5-shot, and 10-shot PP-SAM with 50-pixel per-
turbations during inference outperform a recent state-of-
the-art (SOTA) polyp segmentation method by 26%, 7%,
and 5% DICE scores, respectively. Our results motivate
the broader applicability of our PP-SAM for other medical
imaging tasks with limited samples. Our implementation is
available at https://github.com/SLDGroup/PP-SAM.

1. Introduction

Deep learning-based algorithms [2, 6, 9, 11, 13—17] have
emerged as a promising tool for detecting precancerous le-
sions during colonoscopy procedures. Recently, a founda-
tional model, namely the Segment Anything Model (SAM),
has been introduced for general-purpose semantic segmen-
tation. Several studies explore its zero-shot inference [2,

11, 12] or fine-tuning [9, 17] potential for polyp segmen-
tation. However, when SAM is fine-tuned using data ex-
clusively from one imaging center/clinic, fine-tuning it for
different centers/clinics with potentially out-of-distribution
data is crucial due to its limited generalizability. Yet, anno-
tating datasets for new centers poses challenges in terms of
time, resources, and cost.

Additionally, the complexity is compounded by the pos-
sibility of user prompts being imprecise during inference.
Since the prompts used by endoscopists are subjective, there
is a chance of variability from the human factors such as fa-
tigue, experience, and number of cases examined in the day.
SAM performs poorly when the endoscopists use a larger
(inaccurate) bounding box prompt than the region of inter-
est of the polyp. Therefore, it is critical to develop a robust
adaptation method that is resilient to inaccurate (perturbed)
bounding box prompts.

To address these issues, we investigate fine-tuning of
SAM, namely PP-SAM, for polyp segmentation with vari-
able bounding box prompt perturbations. By fine-tuning
SAM on colonoscopy images, we demonstrate its superior
performance for polyp segmentation, showcasing its po-
tential to enhance colorectal cancer screening and diagno-
sis across diverse clinical settings. Our approach stream-
lines the time, cost, and resources required for data annota-
tion during fine-tuning, making it effective for multi-center
polyp segmentation. Our main contributions are as follows:

1. PP-SAM framework: We introduce PP-SAM, a new
SAM-based robust adaptation framework with limited
data for polyp segmentation. We also explore the trans-
fer learning capabilities of different modules of SAM.

2. Variable prompt perturbation: We propose to use a
very simple but effective strategy, variable perturbation
of the bounding box prompt, during fine-tuning to make
the model more robust to prompt perturbation.

3. Robustness analysis: We conduct rigorous analyses on
the robustness of zero-shot and few-shot SAM to bound-
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ing box prompt perturbation during inference. Our ex-
perimental results show that zero-shot SAM is highly
vulnerable to prompt perturbation, hence our proposed
PP-SAM with perturbed prompt-based adaptation strat-
egy can significantly improve the robustness of the
model during inference.

The remaining of the paper is organized as follows: Sec-
tion 3 describes our methodology. Section 2 explains rele-
vant prior work. Section 4 presents the experimental setup
and results. Finally, Section 5 concludes the paper.

2. Related Work

In this section, we describe the related work in three parts:
the Segment Anything Model (SAM), SAM in medical im-
age segmentation, and SAM in polyp segmentation.

2.1. Segment anything model

In [8], the authors of SAM propose a foundation model by
introducing a promptable segmentation task, a segmentation
model to allow for zero-shot transfer to a variety of tasks
and a new dataset for image segmentation. The idea for
SAM comes from the natural language processing (NLP)
domain, where large language models (LLMs) pre-trained
on large datasets have shown strong zero-shot performance
[4]. These types of large models have shown the ability
to generalize to tasks and datasets they have not seen dur-
ing training [3, 8]. The work of SAM [8] shows that this
same type of training on extremely large-scale datasets can
be translated to the computer vision domain to segment a
variety of different image types, including medical images.

2.2. SAM in medical image segmentation

Despite the strong performance of SAM, it fails to per-
form optimally on out-of-distribution domains, such as
medical imaging due to its pre-training on natural images
[11, 12, 17]. By evaluating SAM on a collection of 19 med-
ical imaging datasets from different anatomies and modali-
ties [12], the authors of [12] perform an experimental study
to determine the potential of SAM to be applied in medi-
cal imaging. The authors find that the performance of SAM
based on single prompts is highly dependent on the dataset
and the task, thus concluding that SAM shows impres-
sive zero-shot segmentation performance for some medical
imaging datasets while performing poorly on others [12].
Auto-SAM [17] replaces SAM’s conditioning on either a
mask or a set of points with an encoder that operates on the
same input image. The introduction of this encoder allows
for Auto-SAM [17] to obtain state-of-the-art (SOTA) re-
sults on multiple medical image segmentation benchmarks.
MedSAM [11] goes in another direction by designing a
foundation model for medical image segmentation through
using a curated dataset with over one million images [11].

MedSAM also outperforms existing SOTA foundation mod-
els on medical image segmentation and even outperforms
some specialized models [11].

2.3. Polyp segmentation

Colon polyps are an important precursor to colon cancer,
thus the correct segmentation of colon polyps can reduce
misdiagnosis of colon cancer [9]. Many methods have been
proposed for polyp segmentation, but the limited amount of
colonoscopy images remains a major challenge. A method
like SAM that can perform segmentation without a large
amount of data looks thus very appealing.

In [9], the authors propose Polyp-SAM, which is a fine-
tuned version of the SAM model for polyp segmentation.
Polyp-SAM achieves SOTA or near SOTA performance on
five datasets, thus showing the effectiveness of SAM in
medical image segmentation tasks. In [2], the authors use
a text prompt-aided SAM called Polyp-SAM++, which is
shown to be more robust and precise compared to the un-
prompted SAM [2, 11]. The prior work on SAM mod-
els (SAM models in medical imaging and SAM models in
polyp segmentation), builds upon the original SAM model
and uses different methods to achieve better segmentation
results than the original SAM for more specialized tasks
where pre-training on natural images may not be enough
to achieve SOTA results. However, none of these methods
considers the real-life inherent inaccuracy (perturbation) in
prompts while adapting SAM for polyp segmentation.

3. Methodology

Figure 1 shows our proposed PP-SAM framework. First,
we take a small labeled dataset of images as input. Then, we
extract the bounding box from the corresponding ground-
truth (GT) segmentation mask. Then, we perturb the bound-
ing box using our variable bounding box prompt perturba-
tion method. Finally, we use this dataset with GT masks
and perturbed bounding box prompts to fine-tune SAM [8].
The main components are described next.

3.1. Prompts

In this subsection, we describe our proposed variable per-
turbed prompts for fine-tuning, and perturbation used dur-
ing inference for robustness analysis.

3.1.1 Variable perturbed prompts for fine-tuning

While SAM can utilize various prompts, we advocate for
adapting the bounding box prompt due to its simplicity. Our
approach involves fine-tuning SAM for polyp segmentation
using a variable (perturbed) bounding box prompt. Our
variable perturbation extends the bounding box randomly
from O to n pixels in all four directions, as in Figure 1
box (2). When we fine-tune SAM with this strategy, the
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Figure 1. Few-shot fine-tuning pipeline. Here, ‘no perturbation’ represents the bounding box extracted from the original ground truth (GT)
masks; ‘variable perturbations’ means extending the bounding box on each side separately.

variation in perturbation enhances model robustness against
prompt perturbations during real-life inference.

3.1.2 Prompts during inference

To assess the robustness of our method, we evaluate the per-
formance of the models with different levels (0, 5, 10, ..., 95,
and 100 pixels) of fixed perturbations in the bounding box
(on all sides) during inference. For instance, the 10-pixel
perturbation during inference means extending the bound-
ing box by 10 pixels on all sides.

3.2. SAM architecture

SAM [8] is a foundational image segmentation model that
responds to various prompts (e.g., point, box, mask). While
trained on the extensive SA-1B dataset, SAM exhibits ro-
bust zero-shot generalization. SAM comprises three key
components: image encoder, mask decoder, and prompt en-
coder. These components are described next.

3.2.1 Image encoder

The SAM image encoder (Figure 1 box (3)) is based on
a vision transformer (ViT) backbone [5]; this takes high-
resolution (i.e., 1024 x 1024) images as input and produces
a 16 x downsampled image embedding (i.e., 64 x 64).

3.2.2 Prompt encoder

The SAM prompt encoder (Figure 1 box (4)) utilizes two
sets of prompts: sparse (bounding boxes, points, text) and
dense (masks) prompts. Also, it uses both positional encod-
ing and learned embeddings to encode points and boxes.

3.2.3 Mask decoder

SAM utilizes a lightweight mask decoder (Figure 1 box
(5)) which consists of a dynamic mask prediction and an

intersection-over-union (IoU) score regression head.

3.3. Transfer learning

We study the transfer learning ability of different compo-
nents of SAM: image encoder, prompt encoder, and mask
decoder. The experimental results in Figure 2 reveal that
fine-tuning image and prompt encoders suffice; thus, we
keep the mask decoder frozen in all our experiments.

3.4. Limited data settings

In this work, we randomly select different small datasets
(Figure 1 box (1)) to fine-tune SAM for polyp segmenta-
tion. Specifically, we fine-tune PP-SAM with k randomly
selected images, where £ = 1,5,10, 20,50, and 100, as
well as the full dataset.

4. Experiments

In this section, we describe the datasets, evaluation metrics,
implementation details, and experimental results.

4.1. Datasets

‘We use the Kvasir [7] dataset to fine-tune SAM for few-shot
polyp segmentation. This dataset contains 1,000 polyp im-
ages. Following [6], we adopt the same 900 images from
Kvasir as the training set and the remaining 100 images
as the testset. To assess the generalizability of our pro-
posed decoder, we use three unseen test datasets, namely
ClinicDB [1], EndoScene [19], and ColonDB [18]. Clin-
icDB consists of 612 images extracted from 31 colonoscopy
videos. EndoScene and ColonDB consist of 60 and 379 im-
ages, respectively. The images of our three unseen testsets
significantly differ from trainset as they are collected from
separate hospitals/clinics/centers with different acquisition
devices and procedures.
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4.2. Evaluation metrics

We use DICE similarity scores as evaluation metrics in all
our experiments. The DICE similarity score measures the
overlap accuracy which is suitable for binary segmenta-
tion with imbalanced data. As polyp segmentation is a bi-
nary segmentation task with imbalanced polyp (lesion) and
background regions, we favor the DICE score for assess-
ing the performance of our PP-SAM on polyp segmenta-
tion, where the precise delineation of anatomical structures
is crucial for diagnosis and treatment planning. The DICE
score DICE(Y, P) of a ground truth mask Y and a pre-
dicted mask P is defined in Equation 1:

2x|Y NP
Y[+ |P|

4.3. Implementation details

DICE(Y,P) = x 100 (1)

We implement and fine-tune our PP-SAM using Pytorch
1.11.0, operating on a single NVIDIA RTX A6000 GPU
with 48GB of memory. In our experiments, we set the max-
imum length for variable bounding box prompt perturba-
tion, n = 50. We resize the images to 1024 x 1024 and
re-scale the bounding box to match the new image resolu-
tion. We use the AdamW optimizer [10] with both a learn-
ing rate and weight decay rate of 0.0001. We do not use any
data augmentations and learning rate schedulers.

During fine-tuning, we optimize the combined weighted
CrossEntropy and mean intersection over union (mloU) loss
function. SAM with ViT-B (SAM-B) is fine-tuned for 100
epochs with a batch size of 1 unless otherwise mentioned;
we save the best model based on the DICE score with an in-
ference bounding box perturbation of 30 pixels on all sides.
We report the average DICE similarity scores over five runs
to evaluate our fine-tuning performance. We calculate the
DICE scores using the original resolution of the test images.

4.4. Results

To evaluate the performance and robustness of our proposed
PP-SAM, we conduct six different sets of experiments as
described below.

4.4.1 Transfer learning capabilities of different mod-
ules of SAM

We empirically explore SAM’s transfer learning capabili-
ties across four distinct experimental configurations. The
outcomes of these investigations, as it pertains to the impact
of bounding box prompt perturbations during inference, are
illustrated in Figure 2. In our analysis, the strategic freez-
ing of the mask decoder (i.e., exclusively fine-tuning the
image and prompt encoders) emerges as the most effective
approach, yielding the highest DICE scores. This supe-
rior performance likely stems from the avoidance of over-
fitting, which can occur when fine-tuning the mask decoder
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Figure 2. Transfer learning abilities of different modules of SAM
on the Kvasir [7] testset. As shown, freezing only the mask de-
coder produces the best results.

0.95

0.85
L -0
O o8 10
o 20
0.75 30
--40
0.7 | =50
—-Variable 0 to 50
0.65
0 20 60 80 100

40
Perturbation (pixels)

Figure 3. Comparison of different levels of bounding box per-
turbations during training, on the Kvasir testset. As shown, our
variable prompt perturbation produces the overall best results.

with a limited dataset. Conversely, keeping the image en-
coder frozen exposes the model to increased vulnerability
to prompt perturbation. An even more significant decline in
performance is observed when both the image and mask de-
coders are frozen, underscoring their collective importance
in model adaptability. From these insights, we firmly advo-
cate for freezing only the mask decoder and selectively fine-
tuning the image and prompt encoders to optimize transfer
learning efficiency and model robustness.

4.4.2 Effectiveness of variable bounding box prompt
perturbations during fine-tuning

In Figure 3, we illustrate the impact of different bound-
ing box prompt perturbations during fine-tuning. We assess
DICE scores for perturbations of 0 (no perturbation), 10,
20, 30, 40, 50, and random perturbations within 0-50 pixels
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Figure 4. Experimental results on Kvasir testset. All models are
trained using the randomly sampled images from the Kvasir train-
set. We use our variable perturbed bounding box (in the range of
0 to 50) during training. Also, we keep the mask decoder frozen
during these experiments.

on all sides of the original bounding box prompt. The re-
sults reveal that the models without prompt perturbations
during training are susceptible to larger inference pertur-
bations. Resilience to these perturbations improves with
larger training perturbations. However, models fine-tuned
with variable perturbations (0-50 pixels) demonstrate better
overall performance for both small and large inference per-
turbations. We believe that variable perturbations on differ-
ent sides during training enhance model robustness against
various levels of bounding box prompt perturbations.

4.4.3 Learning ability of PP-SAM for polyp segmenta-
tion on Kvasir dataset

In Figure 4, we present the outcomes of applying both
zero-shot and few-shot fine-tuning techniques to the Kvasir
dataset during testing. As depicted in this figure, there is
a discernible decrease in the DICE scores as the magni-
tude of bounding box perturbations increases during infer-
ence, a trend that aligns with our expectations. Notably,
our fine-tuned models demonstrate enhanced durability in
the face of these prompt perturbations throughout the infer-
ence process. The implementation of our random 1-shot and
50-shot fine-tuning with variable perturbed bounding box
prompts significantly enhances model robustness, boosting
the DICE scores by 37% and 60%, respectively, over zero-
shot with 100-pixel perturbations on all sides. We can also
conclude that the DICE scores improve from 1-shot to 50-
shot, with minimal difference beyond 50-shot.
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Figure 5. Experimental results of unseen ClinicDB testset. We uti-
lize the models trained using the randomly sampled images from
the Kvasir trainset for these experiments.
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Figure 6. Experimental results on unseen EndoScene testset. We
utilize the models trained using the randomly sampled images
from the Kvasir trainset for these experiments.

4.4.4 Generalizability of PP-SAM for unseen polyp
segmentation

Figure 5 displays evaluation results of unseen polyp
segmentation on ClinicDB testset, where our fine-tuning
method shows a significant performance improvement, i.e.,
24% and 43.5% DICE score increase over zero-shot for 1-
shot and 50-shot, respectively. In Figure 6, we can see
a similar improvement in the DICE scores for the unseen
polyp segmentation on EndoScene dataset. More specifi-
cally, our 1-shot and 50-shot fine-tuning improves the DICE
scores by 19% and 50%, respectively, over zero-shot infer-
ence with a 100-pixel perturbation. Figure 7 shows the re-
sults on the unseen ColonDB dataset, where our 1-shot and
50-shot fine-tuning achieve 27% and 45% improvements,
respectively, over zero-shot inference with 100-pixel per-
turbations during inference. We observe minimal improve-
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Figure 7. Experimental results on unseen ColonDB testset. We uti-
lize the models trained using the randomly sampled images from
the Kvasir trainset for these experiments.
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Figure 8. Experimental results of SAM’s scalability with ViT en-
coders on the Kvasir testset. We utilize the models trained using
the full Kvasir trainset for these experiments.

ments in DICE scores after 20 to 50-shot fine-tuning for all
the unseen testsets.

4.4.5 Scalability of SAM with ViT encoders

Figure 8 reports the zero-shot and fine-tuning results of
SAM models with ViT-B (Base) and ViT-L (Large) image
encoders. From this figure, we can conclude that SAM with
ViT-L surpasses ViT-B in zero-shot polyp segmentation.
However, the fine-tuned models with both ViT encoders
show similar performance. Hence, these results could be
used to argue the need for careful consideration when de-
ploying models in real-world scenarios, where perturbations
in prompts may occur, and to stress the importance of model
robustness to such changes.

mmm PVT-CASCADE s SAM-B 50-pixel s SAM-B 25-pixel

0.9

1-shot 5-shot 10-shot 20-shot  50-shot  100-shot
Number of Shots/Training Images

Figure 9. Performance comparison with a SOTA method on the
Kvasir testset. We utilize the models trained using randomly
selected images from the Kvasir trainset for these experiments.
SAM-B 25-pixel and SAM-B 50-pixel are the results of 25 and 50-
pixel bounding box perturbations on all sides, respectively, during
inference.

4.4.6 Performance comparison with SOTA

We report the results of our fine-tuned SAM and a SOTA
method, PVT-CASCADE [13] in Figure 9. We can see
from the bar plot that our PP-SAM with variable bound-
ing box perturbations during fine-tuning significantly out-
performs PVT-CASCADE for up to 50 shots (i.e., PP-SAM
requires less labeled data to achieve closer to optimal per-
formance). More precisely, 1-shot (74.5%), 5-shot (77%),
and 10-shot (81.6%) fine-tuning of SAM using our method
achieves 26%, 7%, and 5% better DICE scores than PVT-
CASCADE with 50-pixel bounding box perturbations dur-
ing inference. Our method achieves further better perfor-
mance (i.e., 32%, 11%, and 9% improvement for 1-shot, 5-
shot, and 10-shot, respectively) with 25-pixel perturbations.
Therefore, our PP-SAM is preferable to non-prompt-based
approaches for polyp segmentation involving limited pre-
cisely labeled ground truth segmentation masks.

5. Conclusions

In this paper, we have presented PP-SAM, an innovative
fine-tuning approach for SAM in polyp segmentation. We
introduce a novel concept of variable perturbations in
bounding box prompts during the training phase, which is
aimed at improving the model’s robustness against varia-
tions and inconsistencies in real-world prompt scenarios.
The capabilities of PP-SAM have been demonstrated to
be substantially superior, both in terms of performance en-
hancements and in maintaining resilience to prompt per-
turbations, especially when compared to the conventional
zero-shot SAM inference methods on publicly available
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polyp datasets. Our experiments indicate that fine-tuning
solely the image and prompt encoder (while freezing the
mask decoder) yields superior results.

While PP-SAM currently focuses on binary segmenta-
tion and a single bounding box, future work aims to address
these limitations. Nonetheless, even in its current state, PP-
SAM simplifies SAM adoption for new centers/hospitals/-
clinics, by requiring minimal annotation effort.
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