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Abstract

Data augmentations are widely used in training medi-
cal image deep learning models to increase the diversity
and size of sparse datasets. However, commonly used aug-
mentation techniques can result in loss of clinically relevant
information from medical images, leading to incorrect pre-
dictions at inference time. We propose the Interactive Med-
ical Image Learning (IMIL) framework, a novel approach
for improving the training of medical image analysis algo-
rithms that enables clinician-guided intermediate training
data augmentations on misprediction outliers, focusing the
algorithm on relevant visual information. To prevent the
model from using irrelevant features during training, IMIL
will ’blackout’ clinician-designated irrelevant regions and
replace the original images with the augmented samples.
This ensures that for originally mispredicted samples, the
algorithm subsequently attends only to relevant regions and
correctly correlates them with the respective diagnosis. We
validate the efficacy of IMIL using radiology residents and
compare its performance to state-of-the-art data augmenta-
tions. A 4.2% improvement in accuracy over ResNet-50 was
observed when using IMIL on only 4% of the training set.
Our study demonstrates the utility of clinician-guided inter-
active training to achieve meaningful data augmentations
for medical image analysis algorithms .

1. Introduction
The applications of computer vision to medical image anal-
ysis have been numerous in recent years [4, 10]. This
can be attributed to major advancements in deep learn-
ing and increased availability of large, open-access medi-
cal imaging datasets [20]. These algorithms have the po-
tential to significantly improve the efficiency and accuracy
of disease diagnosis in various medical imaging modalities
[22, 27, 29, 30].
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Figure 1. IMIL versus CutOut [8]. In this study, we propose an
interactive medical image learning framework (IMIL), a callback
framework that solicits clinician input to generate human-guided,
intermediate training data augmentations. Compared to random
pre-training augmentations, IMIL prevents the removal of clini-
cally relevant visual features. When IMIL is used on just 20 CXR
images, it surpasses the performance and calibration of CutOut for
tuberculosis classification (see Results 4 - IMIL + Res1).

As these models are translated into the clinical setting, it
is important to consider the interaction between clinicians
and algorithms [5]. In addition to training algorithms for
accuracy, practitioners must also ensure that a model identi-
fies and concentrates on clinically relevant features (correct
focus) and performs consistently and dependably in various
settings (reliability). A focused algorithm should not only
be able to make correct predictions but should make these
predictions based on relevant regions of the medical image
and at the same time, avoid spurious correlations from irrel-
evant parts of the image [38, 41]. Algorithms can have dif-
ficulty focusing on clinically relevant regions, as they often
lack the ability to independently sort information for clin-
ical relevance like a clinician would [7, 31]. Furthermore,
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model reliability is achieved by providing confidence levels
for predictions, which enable clinicians to understand the
true certainty of a prediction. Standard convolutional neu-
ral networks (CNN) are often prone to overconfidence and
miscalibration, creating the need for confidence calibration
[16]. Although visual explainability and calibration are im-
portant, they are not reflected in accuracy or performance-
based metrics and can often go undetected.

Image augmentations are used in medical image anal-
ysis to counteract a lack of diversity or scarcity of clinical
data. Typically, these are performed before training in a ran-
domized manner through image manipulations (e.g. crop,
zoom, flip) [6]. Recent, modern augmentations include Cut-
Mix, MixUp, and CutOut [8, 40, 42]. These methods aim
to improve the performance, robustness, and calibration of
CNNs. Although their efficacy has been established for
medical image analysis [32], their underlying effects pose
significant challenges and may necessitate further optimiza-
tion. When training algorithms on clinical data, it is most
efficient to retain all relevant information. However, data
augmentations developed for non-medical use may run the
unintended risk of removing clinically relevant information
from images. Doing so may not always be directly reflected
in accuracy but can significantly impact focus and visual
explainability. For example, CutOut [8] (which performs
randomized pre-training dropouts in the visual space), may
remove the lung apex in a chest x-ray which is critical to
identify tuberculosis (as shown in Figure 1). The algorithm
instead focuses on external and irrelevant visual features.
With limited medical image datasets, it is important for the
algorithm to correctly associate class labels with relevant vi-
sual indicators. Even small shifts in this relation can cause
downstream effects on attention and domain shifting.

To improve model focus and reliability, we explore the
usage of clinician feedback during training, rather than be-
fore, to perform clinically meaningful augmentations on the
most challenging cases for the algorithm. We aim to fo-
cus the algorithm on relevant visual information, increase
the safety of augmentations, and minimize clinician an-
notation burden. The Interactive Medical Image Learn-
ing (IMIL) framework is a flexible callback that enables
clinician-guided intermediate training data augmentations.
During a set frequency in training, IMIL selects a prede-
fined number of outliers from the training dataset based
on the algorithm’s worst mispredictions. These images are
provided to a clinician along with the associated class ac-
tivation map (CAM) [34], prediction with confidence, and
ground-truth label. The clinician then re-directs the atten-
tion of the algorithm after understanding why it is making a
misprediction. To provide feedback, akin to the Google re-
CAPTCHA method [15] where users identify relevant seg-
ments within a grid on an image, the clinician selects the re-
gion of the image that the model should be focusing on, us-

ing a similar grid overlay approach. Using this input, IMIL
will perform a ’blackout’ augmentation and remove all of
the unselected grid regions. The newly augmented image
only contains clinically relevant information that should be
associated with the diagnostic label. The algorithm then re-
learns the correct visual features on the most challenging
outlier cases (as shown in Figure 1). After feedback, the
original training samples are replaced with the IMIL aug-
mented images for subsequent training. Our study demon-
strates that intermediate training augmentations based on
clinician-guidance can significantly improve performance
and calibration and can maximize the potential of smaller
medical image datasets.

To validate the efficacy of IMIL, we perform a clinical
user-study with three clinical radiology residents. The res-
idents provide IMIL feedback on a tuberculosis (TB) chest
x-ray (CXR) dataset, which is used to create three sepa-
rate IMIL-augmented algorithms. We perform a compara-
tive analysis of these algorithms to modern augmentations
(MixUp [42], CutMix [40], and CutOut [8]) using perfor-
mance and calibration-based metrics.

Our main contributions are summarized below:
1. We propose a novel deep learning callback framework,

IMIL, which incorporates clinician feedback to perform
intermediate training augmentations.

2. We conduct a user-study on clinical residents to under-
stand the potential of IMIL deployment

3. We validate IMIL using deep learning algorithms
trained during the user-study and compare performance
against state-of-the-art modern augmentations: CutMix,
MixUp, and CutOut.

2. Related Work

Medical Confidence Calibration: Various studies have
shown that standard CNNs are highly prone to overconfi-
dence which can lead to unreliable confidence estimates.
Gou et al. [16] studied the calibration of widely used ar-
chitectures, such as ResNet [18]. The study found that al-
though increased network depth and width tends to improve
accuracy, it can have negative effects on calibration. Fur-
thermore, the use of batch normalization can also reduce
calibration. Calibration level is not reflected in standard
performance-based metrics which can lead to this problem
going undetected. However, in the general computer vision
domain, various techniques have been developed to com-
bat miscalibration. Modern augmentations such as MixUp,
CutMix, and CutOut can have significant effects on calibra-
tion. In the original studies, these augmentations showed
major benefits for regularization of CNNs [8, 40, 42]. Var-
ious studies have also separately validated the calibration
benefits of these algorithms showing that they can yield sig-
nificant improvements. They have also been applied in the
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medical domain for image classification and segmentation
[9, 12]. Additionally, a study looked at benchmarking these
augmentations for various medical image modalities and re-
vealed that they can significantly improve the performance
and calibration of CNNs [32].

Visual Explainability: Studies have shown that standard
CNNs do not possess the ability to accurately rank the clin-
ical relevance of visual features [31, 33]. In one study
[7], the visual explainablity of a deep learning algorithm
for COVID-19 detection in chest x-rays was assessed. The
study found that even though performance-based metrics in-
dicated that the algorithm was accurate, saliency maps re-
vealed that predictions were being made on textual indica-
tors rather than actual pathology. This is just one example
of the potential risk associated with models that lack focus.

Human-in-the-loop Training: We have not identified a
prior augmentation technique that incorporates clinician
feedback during training. However, interactive training
(human-in-the-loop) has been notably studied through ac-
tive learning (AL) in the medical image domain [3]. AL
often involves querying a clinical expert to label data points
that will have the greatest effect on performance. This is a
technique that is often leveraged when the cost of obtaining
labeled data is high (time and expertise) [11, 36, 39].

3. Methods
We perform a preliminary validation of the IMIL callback
framework for TB classification in CXR images [23]. We
validate IMIL by performing a clinical user-study with res-
idents to train three IMIL-augmented CNNs. We then com-
pare the performance and confidence calibration of IMIL
to state-of-the-art modern augmentations: CutMix [40],
MixUp [42], and CutOut [8]. As follows is a description of
the callback architecture (3.1), modern data augmentations
(3.2), and study design (3.3).

3.1. IMIL Architecture

The overall architecture of the IMIL callback module is
shown in Figure 2A and the usage of IMIL within a training
pipeline for a CNN (as done in our study) is shown in Figure
2B. Figure 2B also shows the IMIL callback configuration
used within our study. Each of the parameters are customiz-
able within the framework and consist of num outliers,
IMIL epoch, and grid size. As follows are details re-
garding each step of the feedback loop.

Misprediction Outlier Selection Based on the prede-
fined num outliers parameter in the callback config-
uration, IMIL finds the ’most significant’ mispredictions
on which clinician feedback will be obtained. At the

IMIL epoch at which the callback is called, IMIL makes
predictions across the full training set. IMIL then compiles
a list of mispredictions by comparing ground-truth labels to
model predictions. The mispredictions are then sorted in
descending order based on confidence. The final outliers
(n = num outliers) are then chosen from the highest
confidence mispredictions. This process helps direct human
feedback towards the most challenging cases for the model.
As such, directing human feedback to shift attention on hal-
lucinations can potentially have more significant effects on
downstream feature extraction compared to a random out-
lier selection strategy.

User Interpretation For each outlier, the clinician is pro-
vided with a visual dialogue during training to interpret the
misprediction and then provide feedback. Before the clin-
ician is prompted for feedback, they are provided with in-
formation to inform their decision-making: the original im-
age, CAM heat-map [34], predicted label (with confidence),
and ground-truth (as shown after misprediction selection in
Figure 2A). The clinician should interpret all datapoints to
understand the cause for the misprediction. For example,
the heat-map can direct the clinicians attention to the region
of the image where the model extracted features. The pre-
dicted label and associated confidence can help the clinician
determine how these features are being mapped in the CNN.
As the clinician becomes more familiar with this interpre-
tation flow, they may start to notice biases in the model’s
focus (e.g. consistent attention towards the soft tissues in-
stead of lung in CXR) and thus tailor their feedback to better
correct the model.

Localization Grid Feedback Clinician feedback is ob-
tained using a localization grid overlaid on the original im-
age. The grid is made up of equally sized squares of mod-
ifiable dimensions (based on grid size). The clinician
selects relevant squares on the grid overlay that correspond
to clinically relevant visual features (as shown in the sparse
user input stage in Figure 2A). This step re-focuses the
model and prevents it from falsely associating the ground-
truth class label to irrelevant features. In the current pro-
totype implementation of IMIL, this is done by assigning
each grid region a number and mapping to a console input.
However, the underlying callback function can be applied
to a variety of different interactive feedback interfaces.

Callback Output Augmentation The region-based
sparse input is used to generate the augmented output.
IMIL removes unselected regions (’blackout’) from the im-
age (similar to visual dropout [8]), and retains the selected
regions. The original training sample is then replaced with
the augmented IMIL output at the specified IMIL epoch.
The replacement of the original image during training
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Figure 2. Interactive Medical Image Learning (IMIL) callback framework architecture (A) and implementation within a standard CNN
training pipeline (along with callback configuration) (B). The IMIL framework allows the clinician to perform guided-augmentations
(’blackout’) during training to re-focus the algorithm on clinically relevant regions. The callback consists of various configuration param-
eters allowing for customized usage of IMIL during training.

allows the algorithm to re-associate the ground-truth label
with relevant visual features for the remainder of training
epochs. After replacment, training continues (from the 70th
to 100th epoch; Figure 2B).

3.2. Modern Data Augmentations

We compare IMIL against MixUp [42], CutMix [40], and
CutOut [8] which have been widely studied and applied
for medical image analysis. Out of these augmentations,
IMIL’s ’blackout’-like augmentation is similar to CutOut.
However, instead of random visual dropout it is clinician-
guided and performed during training on a limited sample
size. As follows are brief details surrounding the formula-
tion for each augmentation.

MixUp Zhang et al. [42] proposed MixUp as a modern
augmentation technique for training neural networks on a
blend between a pair of images and labels based on convex
combinations. MixUp has demonstrated benefits in terms
of increasing robustness of neural networks when learning
from corrupt labels and adversarial examples. The original
formulation of MixUp from the original paper [42] is:

x̃ = λxi + (1− λ)xj

ỹ = λyi + (1− λ)yj ,
(1)

where xi,,yi are raw randomly sampled input vectors and
xj ,yj are the corresponding one-hot label encodings. λ are
values in the range [0, 1] which are randomly sampled from
the Beta distribution for each augmented example.

CutMix Yun et al. [40] introduced CutMix, an augmen-
tation built upon the original formulation of MixUp and the
idea of combining samples. CutMix removes a patch from
an image and swaps it for a region of another image gener-
ating a locally natural unseen sample. The formulation for
CutMix is as follows:

x̃ = Mxi + (1−M)xj

ỹ = µyi + (1− µ)yj ,
(2)

where M indicates the binary mask used to perform the
cutout and fill-in operation from two randomly drawn im-
ages. µ are values (in [0,1]) randomly drawn from the Beta
distribution.

CutOut DeVries et al. [8] proposed CutOut which is for-
mulated based on extending dropout [19] to a spatial prior
in the input space. CutOut performs occlusions of an input
image by performing fixed-size zero-masking and randomly
removing input regions. CutOut aims to improve CNN reg-
ularization and differentiates from dropout as it is an aug-
mentation technique and visual features are dropped at the
input stage of the CNN whereas in dropout, this occurs in
intermediate layers. CutOut also aims to improve robust-
ness to occluded samples in real-world applications.

3.3. Study Design

As follows is a description of each component of the user-
study for feedback-guided augmentations. The dataset used
for this study is described in 3.3.1, the configuration of
IMIL in 3.3.2, the CNN architectures used in 3.3.3, training
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details in 3.3.4, clinical user-study structure in 3.3.5, and
lastly the evaluation metrics used to measure performance
and calibration of the models in 3.3.6.

3.3.1 Tuberculosis Dataset

To validate the efficacy of IMIL, we focused on TB diagno-
sis in CXR. TB is a highly prevalent lung condition result-
ing in more than 1 million deaths per year worldwide; thus,
significant international attention has been paid to prompt
diagnosis and treatment of the disease [14]. Chest x-ray is
an effective and cost-efficient modality for pulmonary TB
diagnosis, making it a vital clinical tool in low-resource
settings where TB is most prevalent [37]. Moreover, la-
beled CXR datasets are available, and AI for TB diagnosis
in CXR has been validated in previous research [13]. The
dataset selected for this study was from the U.S. National
Library of Medicine (NIH) Shenzhen No. 3 People’s Hos-
pital in China [23]. The dataset consists of 662 frontal chest
x-ray (CXR) images labeled with each respective patient’s
TB positive or negative diagnosis. The limited sample size
helps demonstrate the effective use of data through IMIL’s
feedback-based augmentations. The dataset has a class dis-
tribution of 49% positive and 51% TB negative. In terms of
demographics, the dataset only included sex: 69% male and
31% female. The models in our study were trained on 80%
(n = 530) of the dataset and evaluated on 20% (n = 132).

3.3.2 IMIL Configuration

For our study, we configured the IMIL callback to launch
at the 70th epoch (IMIL epoch) of training. We also used
an IMIL grid size of 4x4 (grid size). Lastly, we use
20 for the num outliers parameter. In summary, IMIL
will function by sequentially providing the clinician with
20 misprediction outliers (which accounts for 3.77% of the
training dataset) at the 70th epoch and after feedback is pro-
vided, training will continue till the 100th epoch using the
dataset with the newly augmented samples.

3.3.3 Model Architecture

The CNN architecture used in this study was ResNet-50
[18] which is widely used for medical image analysis, no-
tably through transfer learning [21, 26, 35]. The ResNet
model was implemented based on the standard Tensorflow
Keras [1] applications plugin 1. The implementations of the
MixUp, CutMix, and CutOut followed the original formu-
lations 2. For CutOut we used a 50x50 pixel mask size.

1https://keras.io/api/applications
2DataAugmentationTF Repository

3.3.4 Training Details

Each of the seven ResNet-50 models (baseline, CutMix,
CutOut, MixUp, IMIL + Resident 1/2/3) were trained for
100 epochs. Each input is trained to two output logits cor-
responding to the normal and TB class labels. Experiments
are performed using the stochastic gradient descent (SGD)
optimizer [24], a batch size of 64, and learning rate 0.001.
All input images are uniformly scaled to 224x224.

3.3.5 Clinical User-Study

Our clinical user-study to validate the efficacy of IMIL
was performed with three radiology residents at Stanford
Medicine. These trainees will be referred to as residents
1, 2, and 3. Resident 1 is a PGY-2 diagnostic radiology
resident, resident 2 is a PGY-2 interventional radiology res-
ident, and resident 3 is a PGY-1 interventional radiology
resident. Three separate ResNet-50 models were trained
for each resident. The total time of interaction between
each resident and the feedback mechanism lasted less than
30 minutes. Before each training session, two main com-
ponents of IMIL were described to the resident. The first
component is how to interpret the predicted label and CAM
output jointly to understand where the model was focusing
on to reach its prediction. The second component described
is the how to perform the region selection and how the grid
overlay functions. The resident was informed about the ob-
jective of the feedback: to shift the model’s focus from ir-
relevant to clinically significant features that correlate to the
ground-truth label. The residents were instructed to priori-
tize a single specific region for feedback, despite the possi-
bility of multiple relevant areas.

3.3.6 Evaluation Metrics

Below are descriptions of the statistical metrics used to val-
idate the CNN. The first two metrics are used to validate
the performance of the algorithm. The third metric is used
to evaluate confidence calibration which is not reflected in
performance-based metrics.

Accuracy and AUROC To evaluate the performance of
the algorithm, we use the test set accuracy and area under
the receiver operating characteristic (AUROC). The accu-
racy measures the fraction of predictions that were made
correctly across the test set after training. AUROC is a ro-
bust measure of the ability for the binary classifier to dis-
criminate between class labels [17].

Expected Calibration Error (ECE) The ECE is com-
monly used to quantify the level of confidence calibration
for algorithms. This approach provides a scalar summary
statistic of calibration by grouping a model’s predictions
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into equally spaced bins (B). The weighted average of the
difference between accuracy and confidence across the bins
is outputted. The formulation of ECE from [16] is shown:

ECE =

B∑
b=1

nb

N
| acc(b)− conf(b)|, (3)

where n represents the number of samples. Gaps in cal-
ibration or miscalibration are represented by the difference
between acc and conf . In our study, we use a bin size of 15.

4. Results
IMIL data augmentations yielded improvements in per-
formance and calibration over baseline and CutOut.
Performance-based metrics are discussed in 4.1 and calibra-
tion in 4.2. In 4.3, CAM visualizations from the different al-
gorithms are presented as well as IMIL interaction samples
from each clinical resident to assess usability.

4.1. Performance

The performance-based metrics for the different ResNet-50
[18] data augmentation variants are shown in Table 1 in
the first two columns (accuracy and AUROC). The baseline
ResNet-50 model demonstrated accuracy of 80.4% and AU-
ROC of 83.2% on the CXR test set (Row 1). Of the modern
data augmentations, MixUp presented the most significant
performance improvements in accuracy and AUROC with
accuracy of 83.4% (+3% over ResNet-50) and AUROC of
87.8%. CutMix showed less significant improvements in
performance. CutOut reduced accuracy to 79.7% (-0.7%
compared to ResNet-50) and AUROC score to 81.7% (-
1.5% compared to ResNet-50). Rows 5-7 present the per-
formance of the IMIL-augmented models trained separately
for each resident’s feedback loop. All IMIL models present
performance improvements over baseline with more con-
sistency observed in AUROC compared to accuracy. The
first IMIL model (with Resident 1) presented the most sig-
nificant improvement in accuracy compared to baseline and
all other augmentations at 84.6% (+4.2% over ResNet-50).
The third IMIL model (with Resident 3) showed the high-
est improvement in AUROC at 85.8% (+2.6% over ResNet-
50). A summary of AUROC performance is also shown in
the Figure 3 ROC Curve.

4.2. Calibration

The ECE scores for each algorithm are shown in the last
column of Table 1. Lower ECE scores represent higher lev-
els of confidence calibration. The baseline ResNet-50 had
an ECE score of 0.2. Every augmented model decreased
the ECE except for CutOut, which had almost no effect
on it (+0.001 compared to baseline). The most significant
decrease in ECE was observed in CutMix at 0.15 (-0.05

less than ResNet-50). MixUp also had significant calibra-
tion improvements with an ECE of 0.179 (-0.021 less than
ResNet-50). Considering the limited outlier count, IMIL
also presented significant and consistent improvements in
ECE, although it did not outperform CutMix and CutOut
in terms of calibration. The most significant improvement
was observed in the second IMIL model (with Resident 2),
which received an ECE of 0.175 (-0.025 below ResNet-50).

4.3. Visualizations

To gauge the effect of the various augmentations on ex-
plainability, we generate CAM visualizations on four ran-
dom test set samples images (two TB and two normal) as
shown in Figure 4. We examine visualizations for the IMIL
Resident 1 model as it yielded the highest test set accuracy.
As shown in the figure, there are significant variations in
the model’s CAM heat-maps based on the augmentation
technique used. The heat-map for the baseline seems to
be distributed across the lung and hilar lymph node region
region, with greatest attention paid to the lower and mid-
dle lung zones. MixUp pays preferential attention to the
upper zones. CutMix has a patchy heterogenous focus on
the lungs. Visually, CutOut appears to focus the least re-
liably on lung fields, in some cases focusing preferentially
on shoulder and thorax soft tissues. In contrast, Res1 IMIL
heat-maps are well-focused on all of the lung fields and hi-
lar lymph nodes.

We also present three notable sample interactions be-
tween the resident and IMIL to demonstrate the feedback
mechanism in Figure 5. The IMIL outlier heat-map and
selection grid are presented to the resident along with the
predicted label, confidence, and ground-truth. Clinician-
selected grid regions are shown along with the augmented
output. Each resident also provides a reasoning in the form
“The model was focused on .... so I switched the focus to-
wards ....” to understand their decision-making process be-
hind the feedback and effort to shift focus.

5. Discussion
The main objective of this study is developing a human-
in-the-loop learning framework and validating the efficacy
of clinical feedback during training. We choose a CutOut-
like “blackout” augmentation for two reasons. First, within
IMIL, asking clinicians to select relevant regions of the im-
age to shift the model’s focus is highly intuitive; refocus-
ing the model on lymphadenopathy or a lung opacity as op-
posed to clavicle or a gastric bubble was easily understood
by all participants. Second, it allows for a clear validation
of the framework in comparison with the CutOut baseline:
random blackout vs. human-guided blackout. Although
this type of augmentation was chosen with the usability of
the framework in mind, it is worth considering how human
feedback could be integrated into a CutMix or MixUp style
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Figure 4. CAM Visualizations. Shown above are CAM heat-maps
comparing the baseline with the modern augmentations (MixUp
[42], CutMix [40], and CutOut [8]) as well as IMIL (for Resident
1 which had the highest test set accuracy).

Model Accuracy AUROC Expected Calibration Error (ECE)
Baseline (ResNet-50 [8]) 0.804 0.832 0.2

CutMix [40] 0.812 (+0.008) 0.853 (+0.021) 0.15 (-0.05)
CutOut [8] 0.797 (-0.007) 0.817 (-0.015) 0.201 (+0.001)
MixUp [42] 0.834 (+0.03) 0.878 (+0.046) 0.161 (-0.039)

IMIL + Resident 1 0.846 (+0.042) 0.857 (+0.025) 0.179 (-0.021)
IMIL + Resident 2 0.835 (+0.031) 0.853 (+0.021) 0.175 (-0.025)
IMIL + Resident 3 0.824 (+0.02) 0.858 (+0.026) 0.183 (-0.017)

Table 1. Validation statistics of baseline, augmentations, and IMIL framework (for the three residents). Statistics consist of test set
accuracy, AUROC score, and Expected Calibration Error (ECE) (M = 15 bins) for the TB CXR dataset. Bold values represent the best
performing IMIL resident model.

of augmentation. CutMix and MixUp seemed to outperform
CutOut in our investigation, which suggests that the bene-
fits of IMIL clinician input adapted to these two paradigms
could deliver even greater performance and calibration im-
provements. Future work may investigate whether IMIL
could drive accuracy gains in non-CNN models as well.

In the current study, each of the three IMIL experi-
ments were done on a single resident respectively. Each ex-
periment shows performance and calibration improvements
over baseline and CutOut. Although the improvements for
AUROC are fairly consistent, we do notice more significant
variations in accuracy between residents.

Avenues of future research should include variations on
dataset/sample size and combinations of clinical partici-
pants. We validated IMIL on a single smaller scale dataset
where limited feedback (20 outliers) had a significant ef-
fect. It is worth studying the effect of the IMIL outlier
count on performance, as too few outliers can be insignifi-

cant, but too many can overly corrupt the data and shift the
domain. It remains to be determined what the optimal ra-
tio of clinician feedback-to-dataset size is when expanding
this framework to significantly larger datasets. We hope to
apply IMIL to different imaging modalities (CT, MRI) and
different disease entities to validate its utility across clini-
cal use cases. We also plan to conduct more user-studies
on diagnosticians in various stages of practice (all partic-
ipating residents in this study have significant familiarity
in developing AI for radiology applications) to ensure our
framework remains intuitive for a wide swathe of clinical
users. For large datasets, it may be necessary to combine
feedback from several clinicians into the same model. We
would need to test whether a multi-radiologist trained al-
gorithm produces valid results, or whether inter-radiologist
variability would serve as a confounder.

Finally, we only launch the IMIL callback at a single in-
stance during training (70th epoch), but the callback may be
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Figure 5. IMIL Feedback Samples. End-to-end interaction samples are shown above with the IMIL outlier and the predicted label (with
confidence) and the ground-truth. Next to that is the heat-map and selection grid which the resident uses to provide feedback in the form
of a numerical input. This is then used to perform the ’blackout’ augmentation. Each resident also provided clinical reasoning for their
feedback decisions in the samples shown.

employed multiple times during training. Therefore, when
training models for a greater number of epochs, we could
compare the timing and number of IMIL occurrences during
training (e.g. comparing a single feedback loop for 20 out-
liers versus having two loops for 10 outliers each). Optimal
grid size is also unknown and may depend on the disease
and imaging modality. In some cases, having more grid re-
gions to choose from may improve performance and allow
the clinician to provide even more detailed feedback.

From a clinical perspective, IMIL holds the potential to
be easily integrated into a clinical radiologist’s workflow.
Because AI is not yet so diagnostically reliable (and trusted
by providers, patients, and the public) that it can be used
in absence of a radiologist [2], most AI tools for triaging
images to improve radiologist efficiency instead of outright
replacing radiologists [25]. Humans therefore still oversee
final imaging reports. Discrepancies between model and ra-
diologist interpretations could therefore be fed back into a
training loop along with IMIL-style image augmentations to
improve subsequent model performance. As patient popu-
lations, disease presentations, and diagnostic criteria evolve
over time, ensuring AI solutions for radiologists remain
flexible will be paramount [28]. Interactive learning for
medical imaging can therefore be critical in training better

out-of-the-box models for image analysis and easily adapt-
ing these models to best suit the specific needs of the hospi-
tals and patient populations in which they are deployed.

6. Conclusion
Using interactive clinician-guided intermediate training
feedback from three radiology residents, the IMIL callback
framework and data augmentation demonstrates significant
and reliable improvements in accuracy, AUROC, and cali-
bration compared with ResNet-50 baseline and CutOut data
augmentation for pulmonary tuberculosis classification on
chest x-rays. The IMIL framework thus holds great po-
tential for improving performance of computer vision mod-
els for medical imaging tasks hampered by small dataset
size. Future investigation is needed to elucidate optimal
outlier-to-dataset ratio, epoch timing, and image masking
techniques, and to validate the model for use among differ-
ent practitioners, patient populations, and imaging modali-
ties.
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