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Abstract

Glaucoma remains one of the leading causes of irre-
versible blindness, its timely detection being imperative
to avoiding permanent visual impairment. Deep learning
methods offer a solution for early detection of Glaucoma
by reducing the need for manual labor at screening stages.
Hence, numerous automated methods have been proposed
to assist experts in diagnosing Glaucoma from fundus im-
ages. However, the sole focus on increasing the accuracy of
predictions has resulted in a lack of trust due to the black-
box nature of such models. Similar sentiment across multi-
ple high-stakes decision domains has led to a growing de-
mand for replacing black-box models with glass-box ones.
In this work, we propose an inherently explainable model
that 1.) learns class-specific prototypes, which capture the
general characteristics or concepts of the pathology, 2.)
uses the actual visualized prototypes in the decision-making
process by computing the similarity between them and the
query image, as a result revealing the underlying model’s
reasoning process, 3) is end-to-end optimizable. Moreover,
the proposed approach does not require joint training of
the classification models with decoders for visualization of
the prototypes, simplifying the overall training process. Ex-
perimental results demonstrate that our proposed approach
achieves comparable performance with its black-box coun-
terparts and outperforms the state-of-the-art baseline, both
quantitatively and qualitatively, on the benchmark RIM-
ONE DL dataset.

1. Introduction

Deep learning has revolutionized multiple research areas,
with arduous tasks being accomplished in seconds. In the
medical imaging community, it has emerged as a promising
tool to tackle a multitude of problems. However, the adop-
tion of deep learning-based solutions in clinical settings is
slow to fruition, largely due to the black-box nature of these
models. In recent years, several attempts have been made
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to address this issue, such as facilitating model explana-
tion in the form of image attribution methods such as Grad-
CAM [34] and Integrated Gradients [38]. However, these
methods only provide a localization of the attributes sen-
sitive to the classification models’ decisions without shed-
ding light on the models’ reasoning processes. Moreover,
such saliency-based posthoc visualization methods can of-
tentimes be misleading [1, 3, 39]. A critical element lack-
ing in these works that could largely benefit the medical
imaging community is the intuitive explainability of sensi-
tive ‘concepts’. Such high-level features or concepts may be
more intuitive to a medical practitioner than a mere local-
ization of sensitive pixels. Recently, a concept attribution
method, Gifsplanation, has been proposed in [11], which
diminishes the sensitive features to generate new counter-
factual images. A string of such counterfactual images is
then stitched together into a short video to give a visual
understanding of how the sensitive attributes change with
changes in the model’s predictions. While motivated in the
right direction, Gifsplanation [11] being a posthoc explana-
tion technique, lacks transparency [15], and the visualized
concepts are not explicitly used in the classification task.

In this work, we propose a prototype-based [26] de-
sign to make black-box models inherently interpretable and
inject the models with transparency [15]. The proposed
method provides a visualization of the actual prototypical
images of the class, exemplifying the concepts used by the
model, and employs the visualized prototypes in the classi-
fication task, making the model’s reasoning process trans-
parent. This approach aligns with the reasoning process
used by domain experts of comparing cases at hand with
known prototypical cases to reach conclusions [19]. The
proposed model is trained in an end-to-end regime with-
out requiring the joint training of complex components like
variational autoencoders, which hinder the training process
and put a constraint on the input image resolutions. Addi-
tionally, the design can be utilized with any existing classi-
fication backbone. We demonstrate the performance of the
proposed method on MNIST and a real-world Glaucoma
dataset. The proposed method is evaluated by comparison
with baseline methods and experimental results show that
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it achieves comparable performance to its black-box coun-
terparts, while also making the models interpretable. The
proposed model also performs better than the state-of-the-
art baseline [15] in terms of both quantitative metrics as well
as prototype visualizations.

The main contributions of this work are outlined as fol-
lows:
• We propose a novel prototype-based interpretable net-

work that does not require training in conjunction with
decoders.

• To the best of our knowledge, this is the first work ex-
ploring an end-to-end trainable approach to achieve both
interpretability and diagnostic performance for Glaucoma
detection using fundus images.

• We demonstrate the performance of our proposed method
on public benchmark datasets and compare it with the
state-of-the-art baselines.

2. Related Work
Previous research has focused on explaining black-box
models after they have been trained (posthoc visualization)
[20, 31, 34, 35, 38, 41]. However, there is a growing need to
develop inherently explainable models, especially in high-
stakes decision domains [32] such as medicine. One ap-
proach to achieving inherent explainability is through pro-
totype networks [26], where the classification of data points
depends on their closeness to the prototypical observations
in the dataset. Transparency of these models is achieved
when the learned prototypes are used in downstream classi-
fication tasks and these prototypes are visualizable in pixel
space [15].

Some methods [4, 9, 22, 28, 33, 40] consider the pro-
totypical observations as specific data points present in the
training dataset. They visualize the prototypes using the
closest images or image patches in the train set, rather than
the learned prototype vectors that are actually used in mak-
ing the predictions. This results in an approximation of
model transparency. Whereas in other works [15, 26], the
prototypes are not approximated to the nearest training sam-
ples but are instead decodable to the input space, resulting
in an increased flexibility in capturing the dataset’s charac-
teristics. The proposed work follows the second approach
to prototype learning and achieves model transparency.

In [26], an autoencoder is trained with a four-part objec-
tive loss, optimizing for both the reconstruction of images
via the autoencoder, and the classification accuracy through
a classifier network. The architecture has a ‘prototype layer’
that computes distances between the latent representations
of the input and those of the prototypes. These distances
are then used to compute the final prediction. Gautam et al.
[15] improve upon [26] by replacing the simple autoencoder
with a variational autoencoder, which is known to learn bet-
ter latent representations, and also include an orthonormal-

ity constraint in the loss function, similar to [40], which
improves the intra-class prototype diversity. A classifica-
tion module is trained in tandem, which uses the similarity
scores between the prototype vectors and the query image’s
latent representations to compute the final predictions.

The proposed work differs from both [26] and [15] in
that it does not require joint training of autoencoders and
classifiers. This facilitates a much simpler training proce-
dure, increases model flexibility, and permits the use of any
existing classification backbone. Additionally, the similar-
ity score calculation is done in the classifier’s latent space,
as opposed to the autoencoder’s latent space in [26] and
[15].

3. Methodology
Given an image dataset with N data points, X : (xi, yi), for
i ∈ [1, .., N ], where for each pair (xi, yi), xi ∈ RH×W×C

is an image sample belonging to K possible classes, and
yi ∈ [1, ...,K] is the corresponding ground truth class label,
the primary aim is to develop inherently interpretable clas-
sification models that do not compromise on the prediction
accuracy. To accomplish this task, we propose a transpar-
ent [15] architecture where the model explicitly learns the
latent representations of prototypes corresponding to each
class, which are further used to make the classification de-
cisions. In addition, the actual learned class prototypes are
visualizable in the pixel space, unlike [9] where the near-
est training sample is used for visualization. These decoded
prototype visualizations provide a global explanation of the
concepts the model is sensitive to, along with a clear mech-
anism to trace the contribution of each prototype in the final
decision.

3.1. Architecture

As Figure 1 shows, the proposed architecture is composed
of multiple components. The first component is a condi-
tional generative decoder, D, the second component is a set
of learnable prototype vectors, {φk}, and the third compo-
nent is a classification module, f . A detailed description of
the three components follows next.

The decoder, D, generates images x̂ ∈ RH×W×C con-
ditioned on a specific class y, given latent vectors z ∈ Rd,
and the target class, y, i.e., x̂ = D(z, y). To obtain this de-
coder, a variational autoencoder [23] is used to learn the
underlying distribution of the training dataset, X , where
the encoder, E , generates the parameters, σ and µ, of the
posterior distribution, instead of synthesizing a latent vec-
tor directly, i.e, {σi, µi} = E(xi, yi). Then the reparam-
eterization technique is used to sample the required latent
vector, zi ∼ N (σi, µi). In addition to this, a class con-
ditioning constraint [37] is applied to learn a set of em-
beddings for the class labels, which are used to push the
decoder to sample only from the target class. With this
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Figure 1. Proposed Architecture. At the top is a one-time trainable VAE model trained for the class-conditional synthesis of images, trained
with a perceptual reconstruction loss, a patch-based discriminator loss, and the KL Divergence loss. The decoder obtained from the VAE
is extracted and stitched into the proposed pipeline, and its parameters are kept frozen. The bottom part shows the proposed pipeline, with
learnable prototype vectors for each class, φk, and the classification module with a feature extractor, fe, a similarity layer, fs and a fully
connected layer, fc. Refer to Section 3 for a detailed description.

architectural design, the decoder, D, learns to reconstruct
the input image samples, xi, given these latent vectors,
zi, and their class labels, yi, generating the output recon-
struction images, x̂i = D(zi, yi) = D(E(xi, yi)), where
x̂i ∈ RH×W×C . The traditional objective function opti-
mized by a VAE, the ELBO function, fosters the learning of
a well-structured latent space. However, to enforce richer
perceptual quality and avoid blurry reconstructions due to
the smaller latent dimensions, we use a perceptual recon-
struction loss [42] and a patch discriminator loss [21] in ad-
dition to the VAE’s KL Divergence loss [14]. Hence, the
Conditional Variational Autoencoder (CVAE) is trained by
optimizing for Lvae = Lper +Ldisc +LKL, where Lper is
the perceptual reconstruction loss, Ldisc is the patch-based
discriminator loss, and LKL is the KL Divergence loss.
This model is trained only once to synthesize samples of X
and need not be retrained for changes in other components
of the proposed model. The proposed model then uses the
decoder of such a trained CVAE to achieve faithful recon-
structions without further optimizing for the parameters of
the decoder.

Secondly, the proposed architecture comprises of K
learnable parameters, denoted ϕk ∈ Rd, having the same
dimension as the latent vectors, zi, of the CVAE. These pa-
rameters correspond to the latent representations of the pro-
totypes of each of the K classes. Feeding these latent proto-
type vectors to the decoder, D, produces prototype images,
x̂ϕk

∈ RH×W×C , which are visualized in the pixel space.
The conditioning of the VAE on the classes assures that the
prototypes correspond to specific classes alone, and thus
does not require a “cluster” or “separation” loss as needed
in [9].

The final component of the proposed architecture is a

classification module composed of a feature extraction net-
work, fe, a similarity computation layer, fs, and a fully con-
nected layer, fc. The feature extraction module, fe, mimics
the convolutional blocks prior to the fully connected layers
in conventional classification networks. In contrast to [15],
the proposed model can utilize any classification backbone
and make existing classification models inherently explain-
able. The module takes input images, xi, to extract the fea-
tures, fe(xi), and the decoded prototype images, x̂ϕk

, to
extract the prototype features fe(x̂ϕk

). This is followed by
a similarity layer, fs, where the conventional inner product
operator is replaced by generalized convolution (similarity
measure) [16] as done in [9]. This layer calculates the simi-
larity of the input image features, fe(xi), with every proto-
type image feature, fe(x̂ϕk

), to obtain K similarity scores.
Same as [9], the similarity function used computes the L2

distance between the pairs and inverts the distances to ob-
tain similarity scores. For input image xi, the similarity
score si ∈ RK is obtained as follows:

si =fs(fe(xi), fe(xϕk
))

K
k=1

=log

(
∥fe(xi)− fe(xϕk

)∥2 + 1

∥fe(xi)− fe(xϕk
)∥2 + ϵ

)K

k=1

(1)

where, 0 < ϵ < 1. Finally, the similarity layer is fol-
lowed by a fully connected layer, fc, which takes the simi-
larity scores as input and produces output logits, convertible
to probability scores of the input image belonging to each
of the K classes. Hence, the final predictions, ŷi = fc(si)
where ŷi ∈ RK , are obtained from a weighted combination
of the similarity scores of the input image features and each
of the class prototype features. This way the model not only
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uses the learned prototypes in making the final decisions but
also provides the similarity scores for an understanding of
the importance of the different prototypes in the classifica-
tion of a particular image.

3.2. Training Regime

The proposed model is trained in an end-to-end regime, in
contrast to the multi-stage training procedure of [9]. While
VAEs produce good latent representations, they are also
known to be harder to train and prone to blurry recon-
structions, especially for higher-resolution images. Un-
like [15], our model does not require a VAE to be tied to
the training regime, simplifying the training procedure and
tackling the restriction on the use of higher-resolution in-
puts. Hence, the CVAE is trained separately and only once,
not requiring retraining for every classification model. As
described above, the CVAE is trained by optimizing for
Lvae = Lper + Ldisc + LKL. The resulting generative de-
coder is extracted with frozen parameters to aid with image
reconstruction in various versions of the proposed model.
Once the frozen decoder is obtained, the overall objective
function to optimize is given by:

Lce(wfe , wfc ,Φ) =

N∑
i=1

CE(yi, ŷi)

=

N∑
i=1

K∑
k=1

CE(yi, fc(fs(fe(xi), fe(xϕk
)))

(2)

where, CE is the cross entropy loss function, wfe and
wfc are the parameters of the feature extractor module, fe,
and the final fully connected layer, fc, respectively, and
Φ = ϕ1, ϕ2, ...., ϕK are the learnable prototype vectors.
The minimization of Lce penalizes misclassification of the
training samples and hence encourages inter-class separa-
tion. This loss, in addition to the class conditioning of
CVAE, ensures that each of the prototypes corresponds to
a particular class.

Further, our model can be extended to have any number
of prototypes per class to capture intra-class diversity. In
the case of such multi-prototype networks, to avoid proto-
type collapse and encourage disentanglement of the learned
prototypes per class, an orthonormal constraint is applied
on the prototypes, as described in [15, 40]. This additional
penalty can be formulated as:

Lorth =

K∑
k=1

∥φ̄T
k φ̄k − IM∥2F (3)

where, M is the number of prototypes per class, φk =
{ϕk,1, ϕk,2, ..., ϕk,M} is the set of prototype vectors corre-
sponding to class k, and φ̄k is a matrix whose column vec-

tors are the differences between the prototypes correspond-
ing to class k and their mean, i.e.,

φ̄k = {ϕk,m − 1

M

M∑
m=1

ϕk,m} for m = 1, ...,M,

while IM ∈ RM×M is an identity matrix, and ∥ · ∥F is the
Frobenius norm. Hence, the overall objective to be opti-
mized is formulated as

L = Lce + Lorth

4. Experiments
The proposed model is initially evaluated on a toy dataset,
MNIST [24] for proof of concept. This is followed by an
evaluation on a real-world dataset for Glaucoma. The fol-
lowing sections detail the experimental setup and present
the results and analysis.

4.1. Datasets

For Glaucoma, we use the Rotterdam EyePACS AIROGS
dataset (AIROGS) [12] as well as the Retinal IMage
database for Optic Nerve Evaluation for Deep Learning
(RIM-ONE DL) dataset [5].

AIROGS The AIROGS dataset consists of 101,442 pub-
licly available color fundus images. Each of the samples
is labeled as either Referable Glaucoma or Non-Referable
Glaucoma. The original images are available as full fundus
images, which are preprocessed to be cropped around the
optic disk area as described in [2] since these are the main
regions of interest for Glaucoma detection [13, 25]. Despite
the higher volume of this dataset compared to most other
publicly available Glaucoma datasets [5, 7, 13, 29, 36, 43],
it is a highly imbalanced dataset with Referable Glaucoma
making up a mere 3.2% of the total dataset. Additionally,
the automated cropping adds noise to the dataset. Hence,
AIROGS is used only in the pretraining stages of the CVAE
training, giving the models a better initialization. Whereas
for pre-training of the baselines and the proposed model, we
create a subset of AIROGS, denoted AIROGSsub, in which
we oversample the Referrable Glaucoma samples by repeti-
tion, and undersample the Non-Referrable Glaucoma sam-
ples, only 27000 samples are kept (see Table 1).

RIM-ONE DL The RIM-ONE DL dataset is specially
curated keeping in mind the deep learning paradigm and
follows the specifications established in the REFUGE [29]
challenge. It consists of a total of 485 retinographies, of
which 313 are from healthy individuals and 172 are from
Glaucoma patients. The dataset is available in two variants,
one partitioned into train and test sets by hospitals and the
other partitioned randomly. In this work, the random parti-
tion variant is used where the training set has 339 samples
while the test set has 146 samples. Each of the samples is
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Table 1. Data distribution of datasets used in this work

Dataset Glaucoma No Glaucoma
AIROGS [12] 3270 98172

AIROGSsub [12] 9508 27000
RIM-ONE DL [5] 146 313

available cropped around the optic nerve head. The training
set is used for finetuning of all models and final results are
reported for the test set.

4.2. Baselines

For comparison, we choose four of the best-performing
models reported in [5], including VGG16 (with Batch-
Norm), VGG19 (with BatchNorm), ResNet50, and Mo-
bileNetv2. However, we do not use the weights provided
by [5] since the results obtained using these do not match
the reported numbers and are much lower. Instead, we re-
train the models for fair comparison, maintaining the same
training paradigm across all the baseline and proposed mod-
els. We pretrain all the baseline classification models using
AIROGSsub for around 100 epochs and save the weights
for the best configuration based on the validation loss. We
then finetune the models using the RIM-ONE DL dataset
for around 300 epochs. For all these classification mod-
els, the medical domain images are resized to 224 × 224.
The publicly available implementation of ProtoVAE [15] is
used, with the same base architecture used for the CIFAR
dataset (since this is the largest resolution dataset (32× 32)
used in [15]). Unlike the black-box classification models,
ProtoVAE requires smaller resolution inputs, and hence the
medical dataset images are resized to 64 × 64. We also
train different versions of ProtoVAE by varying the latent
dimension to 16, 32, 64, 128, and 256. These models are
also trained using the same paradigm followed for the rest of
the models, i.e. pretraining using AIROGSsub and then fine-
tuning using the RIM-ONE DL dataset. For all the baseline
models, at the pretraining stage, no other data preprocess-
ing is performed except data normalization to the [−1, 1]
range. At the finetuning stage, since the dataset is small,
data augmentation is applied using horizontal flip, vertical
flip, random rotation (−30, 30), and random resized crop
with scale (0.8, 1.2). For the classification loss, a weighted
cross entropy is used to help with class imbalance in RIM-
ONE DL.

4.3. Implementation

All the models are trained using the Pytorch framework on
an A100 GPU with 30GB RAM.

Decoder D For the medical domain, we train a VGG-
based CVAE. The image samples are resized to 64× 64 for
computational efficiency. No other preprocessing or aug-
mentation is applied to the dataset apart from normalizing to

the [−1, 1] range. The latent dimension of the models is var-
ied as 16, 32, 64, or 128 across different experiments. The
Adam optimizer is used with a learning rate of 0.0001. To
encourage realistic and sharper reconstructions the model
is trained using Lvae, composed of a patch-based discrim-
inator loss, a perceptual reconstruction loss, and the KLD
loss, as described in Section 3. The coefficients for each
component of the total loss are fixed as 1 across all our ex-
periments. We pretrained the models using AIROGS for
around 200 epochs with a batch size of 32 and the best
model is saved based on the validation loss. This is followed
by the finetuning of the models using RIM-ONE DL, which
makes the model learn the distribution of the RIM-ONE DL
dataset. Similarly for MNIST, the models are trained on the
28× 28 input images. The CVAE is thus trained only once
and the decoder is extracted. It need not be re-trained for
every classification model, reducing the training overhead
extensively.

Proposed Model The trained decoder, D, is extracted
and stitched into the proposed pipeline with its parameters
frozen. The learnable prototype vectors are initialized from
the normal distribution. For initial experiments, the num-
ber of prototypes is fixed to one per class. As described in
Section 3, for the feature extractor, fe, convolutional lay-
ers of different existing classification networks are used.
The classification networks used in our experiments include
VGG16, VGG19, ResNet50, and MobileNetv2, which are
initialized with the weights of the trained baseline models,
showcasing the ability of the proposed design to utilize any
existing classification backbone. We also experiment with
the encoder used in the ProtoVAE [15] baselines. For exper-
iments on the toy dataset, the classification networks used
are variations of LeNet. Again, we experiment with differ-
ent versions of the model with varying prototype dimen-
sions of 16, 32, 64 and 128. The models are pre-trained
using AIROGSsub for about 200 epochs with a batch size
of 32 for the medical datasets, and a batch size of 128 for
MNIST. For finetuning, RIM-ONE DL is used with a batch
size of 4. For the medical domain, the input images are re-
sized to 224 × 224 and fed to the classifier modules, while
the output of the frozen decoder is appropriately upsam-
pled for input to this module. The models are trained using
the Adam optimizer and the learning rate is kept at 0.0001.
The preprocessing and data augmentation performed are the
same as those for the baseline models.

4.4. Evaluation

First, as a proof of concept, we evaluate the proposed model
on the MNIST dataset. For this set of experiments, the num-
ber of prototypes chosen per class is one and the evalua-
tion metric is accuracy. Table 2 shows the comparison with
black-box models in terms of Accuracy. Figure 2 shows the
prototypes learned for each class. These can be compared
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Table 2. MNIST results for black-box LeNet and proposed method
using LeNet backbone and a latent dimension of 64. Accuracy is
in %.

Model Test Accuracy
LeNet 99.51

Proposed(LeNet-64) 99.17

Figure 2. Prototypes learned for each class of MNIST by the pro-
posed method using LeNet backbone and a latent dimension of
64.

Test Image
4.45                    4.75                  4.83  

4.40                   7.15                    4.17                  4.78

Prototypes with the similarity scores for the test image

 3.99                    4.68                   3.96

Figure 3. A test image along with the similarity scores it received
for each of the class prototypes.

with the prototypes of a model trained using the decoder of
a VAE without any class conditioning constraint. As shown
in Figure 4, without the class conditioning constraint, the
cross entropy loss alone is not enough to enforce the inter-
class diversity of the prototypes and the correspondence of
each prototype to a specific class. There seems to be an
entangling of the prototypes of classes 2 and 3, classes 7
and 9, and classes 3, 5 and 8. Hence, the class conditioning
obtained by using CVAE helps ensure that the learned pro-
totypes correspond to a particular class. Figure 3 shows the
similarity scores obtained for a correctly classified test sam-
ple. These scores show that the model uses the correct pro-
totype for classification. This can be confirmed by visually
looking at the prototype, which indeed looks like a proto-
typical ‘7’. Additionally, we are assured that the prototype
was also sampled from the distribution of class ‘7’ due to
the class conditioning constraint which further strengthens
the confidence on the model’s predictions.

Next, we report the results for the Glaucoma dataset. Ta-
ble 3 presents the results of the models for classification
of Glaucoma on the RIM-ONE DL test set. The metrics
used for comparison are Accuracy, AUC (Area Under the
Receiver Operating Characteristic Curve), and Sensitivity.
For the proposed model, we experiment across four latent

Table 3. Comparison of the proposed model with baselines for
Glaucoma detection on the RIM-ONE DL [5] dataset. Sen. is the
Sensitivity and Acc. is the Accuracy. All values are in %. The
proposed model variations are named as Proposed(classification
backbone-latent dimension).

Model Acc. AUC Sen.
VGG16 [5] 95.9 95.9 92.3
VGG19 [5] 95.2 94.6 94.2

Resnet50 [5] 95.2 95 92.3
MobileNetV2 [5] 94.5 94.4 90.4
ProtoVAE-16 [15] 92.47 90.7 84.6
ProtoVAE-32 [15] 91.1 91.4 92.3
ProtoVAE-64 [15] 92.47 91.6 88.5

ProtoVAE-128 [15] 93.15 93 92.3
ProtoVAE-256 [15] 91.78 91 88.5

Proposed(VGG16-64) 95.21 95.85 98.08
Proposed(VGG19-64) 94.52 94.89 96.15

Proposed(Resnet50-64) 93.15 94.68 100
Proposed(MobileNetv2-64) 95.21 94.56 92.31

Proposed(ProtoVAE-16) 92.47 91.57 88.46
Proposed(ProtoVAE-32) 93.15 92.96 92.31
Proposed(ProtoVAE-64) 93.15 94.25 98.08

Proposed(ProtoVAE-128) 94.52 94.46 94.23

Figure 4. Prototypes learned by a version of the proposed method
which uses the decoder of a VAE without any class conditioning.
A test accuracy of 99.13% is obtained.

dimensions, 16, 32, 64, 128, and across different classifica-
tion backbones including VGG16, VGG19, ResNet50, Mo-
bileNetV2, and the encoder backbone used for the Proto-
VAE baselines. Accordingly, the different versions of the
model are named Proposed(classification backbone-latent
dimension). Similarly, ProtoVAE [15] results are generated
for different versions of the model using five different la-
tent dimensions of 16, 32, 64, 128, 256. These are named
accordingly as ProtoVAE-latent dimension. As shown in
the table, the proposed models achieve comparable perfor-
mance to their black-box counterparts in terms of all three
metrics. The proposed model achieves a better sensitiv-
ity than all the blac-box classification backbones. Again,
the quantitative comparison with corresponding versions of
ProtoVAE shows the superior performance of the proposed
models, especially in terms of the AUC and sensitivity met-
rics. It should be noted that while the results for all the
models are reported for an input size of 224× 224, the Pro-
toVAE model results are for an input size of 64× 64.
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ProtoVAE-16
Proposed

(ProtoVAE-16)ProtoVAE-128

Normal

Glaucoma

Proposed
(ProtoVAE-32)

Proposed
(ProtoVAE-64)

Proposed
(ProtoVAE-128)

Figure 5. Visual comparison of prototypes learnt by ProtoVAE
[15] and the proposed model using the same classification back-
bone as [15] for different latent dimensions.

Qualitative comparison in terms of the global explana-
tions provided by the prototype images is shown in Figure
5. Across all five latent dimensions, ProtoVAE is unable
to produce meaningful prototypes due to the need to opti-
mize for both the VAE losses and the classification losses.
Since all the ProtoVAE models’ prototypes are extremely
blurry, we only show the prototypes for two models, hav-
ing latent dimensions 16 and 128. Whereas the proposed
models, using the same encoder backbones as ProtoVAE,
learn meaningful prototype images as shown in Figure 5.
Both the CVAE in the proposed model and the VAE in Pro-
toVAE are trained using 64× 64 sized inputs, however, the
additional perceptual and discriminator losses help CVAE
beat the blurring issue faced by ProtoVAE. Since the train-
ing regime is kept almost identical for both ProtoVAE and
the proposed model, model capacities are kept similar, and
a fair chance is given to ProtoVAE with smaller input di-
mensions, these results show how it is easier to train the
proposed model compared to ProtoVAE. For good sample
generation using a VAE, a balance needs to be attained be-
tween the reconstruction loss and the KL Divergence loss.
Adding a classification loss into the mix and the complex-
ity of real-world datasets complicates the training procedure
significantly. Overall, the prototypes of the proposed model
shown in Figure 5 exhibit an enlarged optic cup for the
Glaucoma samples compared to the Normal samples, which
is one of the primary factors motivating Glaucoma detection
[13]. However, the prototypes of Proposed(ProtoVAE-128)
show some visual artifacts around the retinal vessels despite
having better quantitative performance, which should help
experts qualify whether the classification backbone used is
acceptable or needs to be discarded.

Further, a visual comparison of the prototypes learned by
different classification backbones is shown in Figure 6. For
brevity, the results are shown only for a latent dimension
of 64 across all the backbones. Again, the prototypes for
Glaucoma exhibit an enlarged optic cup area compared to
the prototypes learned for the Normal class. Additionally,
the retinal vessels can be noted as having a higher curvature
in the prototypes of Glaucoma compared to those of Nor-
mal, indicating a focus on retinal vessel concepts as well.

Proposed
(VGG16-64)

Proposed
(VGG19-64)

Proposed
(ResNet50-64)

Proposed
(MobileNetV2-64)

Normal

Glaucoma

Figure 6. Visual comparison of prototypes learned by the proposed
model for different classification backbones and latent dimension
64.

Normal

Glaucoma

Proposed (VGG16-16)

Figure 7. Multiple prototypes per class learned by the proposed
model for a VGG16 classification backbone with latent dimension
16. The number of prototypes per class is 5.

Though most of the Glaucoma [8] detection literature us-
ing deep learning focuses on the cup-to-disc (C/D) ratio for
Glaucoma detection [13], there are many other factors that
experts use for clinical diagnoses, such as the presence of
disc hemorrhage [6], thinning of the neuroretinal rim and
rim that does not obey the ISNT rule [17, 30], bayoneting
or the disappearance of vessels near the optic cup as they
bend with a sharp turn [10] and the vanishing of the nerve
fiber layer [6]. Considering that diagnosing Glaucoma is a
complex process and requires examining multiple concepts,
it justifies the need for more than one prototype per class
to capture the diverse concepts. Figure 7 shows the proto-
types for the proposed model with a VGG16 backbone and
a latent dimension of 16. The models are trained to learn 5
prototypes per class. While the observation of a bigger op-
tic cup remains consistent across the Glaucoma prototypes,
there is also some variety captured in terms of color and
brightness. The vessels are observed to have a higher cur-
vature in the Glaucoma prototypes compared to the normal
ones. While multiple prototypes per class can give a better
idea of the concepts being focused on by the model [27],
since there is no explicit effort in the architecture design to
ground the various concepts, the models may not be mo-
tivated to look at the subtle signs. Hence, this motivates
the need to design models that explicitly capture the con-
cepts used by domain experts, and with such models, the
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Figure 8. Interpolation between prototypes of Normal and Glaucoma learned by the proposed model with a VGG16 encoder backbone and
latent dimension of 32.

Original Input               Overlaid                     Heatmap

Correctly 
classified 
Normal 
sample

Correctly 
classified 
Glaucoma
sample

Figure 9. 2D attribution maps obtained using Grad-CAM [34] on
a black-box VGG16 classification network.

proposed design can be used to further confirm if the tar-
geted concepts are actually being used and if so, quantify
the amount of contribution of each such concept.

Figure 8 shows the interpolation between prototypes of
the Normal and Glaucoma classes learned by the proposed
model with a VGG16 encoder backbone and a latent dimen-
sion of 32. The smooth transition discloses the model’s
transparent latent space. The latent movement from Nor-
mal to Glaucoma shows the thinning of vessels and gradual
enlargement of the optic cup, also known as cupping.

Traditional attribution methods were used, including
Grad-CAM [34] and Integrated Gradients [38], for the
black-box classification models trained on the RIM-ONE
DL dataset. The resulting maps for the Normal class are
consistent and show that the models are sensitive to pix-
els at two regions in the fundus image, around the superior
and inferior rim areas. Whereas for the Glaucoma class, the
maps are not consistent across the images, while some show
sensitivity around the optic disk, some have sensitive pixels
all over the input image, while for a few images, it is sensi-
tive to regions outside of the optic disc as well [18]. These
sensitive pixel attribution maps do not help to conclude any-
thing substantial about the model’s reasoning process. Fig-
ure 9 shows the GradCAM maps for a Normal and a Glau-
coma sample. We also trained the Gifsplanation [11] for
retinal images and the resulting gifs indicate that the clas-
sification models rapidly change the predictions for subtle
visual changes in the counterfactual images. However, since
these counterfactual images are not actually used in training

the models, they may not be loyal to the model’s reasoning
process. Additionally, the method [11] is limited by the la-
tent representation learned by the autoencoder. Even if the
autoencoder learns to reconstruct the input images, which
it does for the retinal images, there is no guarantee that it
learns to express the features being used by the classifier
and hence the visualized concepts may not be trusted.

5. Discussion
A novel prototype-based interpretable model is proposed
and its performance is demonstrated for Glaucoma de-
tection. The learned prototypes exhibit cupping in the
Glaucoma samples, which complements the hypothesis
followed by most of the literature for automated Glaucoma
detection using deep learning approaches. This provides
a more intuitive explanation to the medical practitioner in
comparison to posthoc explanations provided by traditional
attribution methods. There is scope to use rich features
like annotations of the optic disc and cup, retinal vessels,
and other retinal landmarks to explicitly ground these
concepts into the network’s learning in the lines of [4].
Then the proposed method can be utilized to examine
if the model focuses on the correct diagnostic concepts.
Automated medical diagnosis is a complex problem,
requiring analysis of multiple concepts and at varied
scales. The proposed method can be extended to focus on
such multi-scale features, similar to ‘part-prototypes’ in [9].
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