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Abstract

This paper outlines our submission for the 4th COV19D
competition as part of the ‘Domain adaptation, Explain-
ability, Fairness in AI for Medical Image Analysis’ (DEF-
AI-MIA) workshop at the Computer Vision and Pattern
Recognition Conference (CVPR). The competition consists
of two challenges. The first is to train a classifier to de-
tect the presence of COVID-19 from over one thousand CT
scans from the COV19-CT-DB database. The second chal-
lenge is to perform domain adaptation by taking the dataset
from Challenge 1 and adding a small number of scans
(some annotated and other not) for a different distribution.
We preprocessed the CT scans to segment the lungs, and
output volumes with the lungs individually and together. We
then trained 3D ResNet and Swin Transformer models on
these inputs. We annotated the unlabeled CT scans using
an ensemble of these models and chose the high-confidence
predictions as pseudo-labels for fine-tuning. This achieved
the winning macro F1 score of 94.89% for Challenge 1 of
the competition. It also achieved a second-best macro F1
score of 77.21% for Challenge 2.

1. Introduction
Deep learning models are becoming an increasingly com-
mon tool used for medical image analysis. In combination
with expert medical professionals, these models can aid in
the accurate detection of diseases such as COVID-19 [6, 7].
Here, deep learning models have been shown to provide ac-
curate predictions for the presence of the disease from CT
scans alone.

The 4th COV19D competition is being run as part of
the ‘Domain adaptation, Explainability, Fairness in AI for
Medical Image Analysis’ (DEF-AI-MIA) workshop [12] at
the Computer Vision and Pattern Recognition Conference
(CVPR) in 2024. It follows on from previous competitions
held as part of the IEEE ICCV 2021 [8], ECCV 2022 [9]
and ICASSP 2023 [2, 10] workshops. In the 2024 competi-

tion, two challenges presented to participants. The first is to
take over one thousand CT scans from the COV19-CT-DB
database [1, 11], annotated as belonging to patients with or
without COVID, and train a classifier. The second chal-
lenge is to perform domain adaptation. A smaller dataset
with CT scans from a different distribution to Challenge 1
is provided. This also includes almost 500 scans which have
not been annotated. The challenge is to use the dataset for
challenge 1 and make the best classifications on data from
a distribution like the additional dataset.

In our submission, we build on work for previous years
[18, 19] where we trained 3D ResNet and SwinTransformer
models. In our 2023 submission, we segmented the lungs
and cropped the CT scans accordingly. Here we experi-
ment with segmenting individual lungs and training addi-
tional models with each lung separately as input. We also
use pseudo-labels for augmenting the annotated dataset in
the domain adaptation challenge.

2. Dataset

The 2024 competition dataset is divided between the two
challenges. The Challenge 1 dataset comprises a total of
3,107 scans, with 1,684 used for training and validation (ta-
ble 1). We divided the training dataset into four partitions
which together with the official validation set gives five par-
titions for cross-validation. The Challenge 2 specific dataset
comprises 4,979 scans, including 912 scans to be used in
training and validation. Of these, 494 scans are not labeled
as to whether or not the subject is infected with COVID-19.
We combined both training and validation partitions from
the Challenge 2 dataset and then divided this into roughly
equal partitions for five-fold cross-validation.

We also included the public STOIC dataset [15] which
includes 2,000 CT scans labeled as COVID-19 positive or
negative. We ignored the severity categories of COVID-19
positive scans.
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COVID NON-COVID Total

Training 703 655 1358
Validation 170 156 326

Test — — 1,413

Table 1. The Challenge 1 Dataset.

COVID NON-COVID Total

Training 120 120 240
Validation 65 113 178

Unannotated — — 494
Test — — 4,055

Table 2. The Challenge 2 Dataset.

3. Methods
3.1. Preprocessing

As in [19], we first segment the lungs using an adapted ver-
sion of the methodology from [16] and crop the full 3D vol-
umes to the resulting bounding box. In this work, we then
additionally identify and crop each lung separately.

This is achieved by taking each transverse slice in turn,
applying a binary threshold using Otsu’s method, identi-
fying all contours in the resulting image, removing con-
tours with enclosed areas below a 500 pixels2 and which
are clearly not associated with lungs (e.g. span the entire
width of the slice), and finally taking the two largest con-
tours which overlap by less than 20% of their horizontal axis
extent. An example is presented in the top panel of fig. 1
for a single slice. Once we have identified the lungs in each
slice, we determine their axis-aligned bounding boxes. The
left (/right) lung is cropped to be from the left (/right) side of
the volume, to the left (/right) edge of the largest bounding
box surrounding the right (/left) lung. In this manner, we
find the maximum crop that guarantees each lung will be
fully contained and contamination from the opposite lung is
minimized. An example of the resulting crops for each lung
are shown in fig. 1 in both the transverse and coronol planes
(upper and lower panels, respectively). A volume contain-
ing each lung is stored and these are used as input to the
model.

The volumes are interpolated to a single size. The
cropped volumes including both lungs are interpolated to
256 × 256 × 176 (in axes normal to the axial, sagittal and
frontal planes respectively). The individual lungs are inter-
polated to a size of 320× 160× 224.

3.2. Models

Heterogeneity in the number of scan slices is a common
issue for deep-learning models in an medical imaging con-

Figure 1. Example of segmenting and cropping individual lungs.
The scan is first cropped to a bounding box which fully contains
both lungs, as shown in the transverse and coronol planes by the
top and bottom panels, respectively. In each transverse slice, the
individual lungs are identified (blue and red contours in top panel)
and a bounding box found for each lung which guarantees the lung
is fully enclosed (red and blue boxes in both panels). Note that we
allow small overlaps in the bounding boxes for each lung.

text. A number of methods have been proposed to deal with
this (see e.g. [11] and citations therein), including the use of
3D-CNN architectures with fixed input lengths, achieved by
interpolation or duplicating/subtracting slices as necessary.
In this work, we note that the high-resolution scans which
comprise our dataset closely resemble motion videos, where
deep-learning models face similar issues with the hetero-
geneity of input lengths. In both cases we have two spatial
dimensions with a fixed extent, plus another with a varying
extent (the scan slice in our case and the frame in the case
of videos). The information in consecutive slices/frames
are also typically highly correlated. Noting this similar-
ity, we opt to trial two neural network architectures, both
pre-trained on the Kinetics 400 video classification dataset
[4]. The first is a 3D ResNet [3, 17] with adaptations dis-
cussed in [19]. The second is a 3D Swin Transformer of size
‘Tiny’ [14]. These architectures were chosen to have mod-
els which processed the 3D volumes as input as a whole and
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still be able to train on a single GPU.

3.3. Training Procedure

The models were trained for 30 epochs with a batch size
of 2 using cross-entropy loss with the Adam optimizer [5].
Each volume was included in the training and validation
datasets twice with the second one reflected through the
sagittal plane. The brightness and contrast for each scan
was randomly adjusted during the training according to the
scheme discussed in [19].

3.4. Pseudo-Labels

For Challenge 2, we train an ensemble of models on the
annotated scans and then make predictions on the unanno-
tated scans. These predictions can be used as pseudo-labels
[13]. To mitigate against training with too many scans with
incorrect pseudo-labels, we only include predictions with
higher confidence, meaning that only include predictions
with a probability of the 0.7 or greater. These scans with
their pseudo-labels are then included in the training dataset
for fine-tuning the models for an additional ten epochs.

4. Cross-Validation Results
4.1. Challenge 1

Three models were trained for Challenge 1: a ResNet
model, a Swin Transformer model and a ResNet model
trained on the individual left and right lungs (ResNet-LR).
The best performing model was the ResNet which achieved
a mean F1 score of 92.55% across the five cross-validation
partitions (fig. 2a). The ResNet-LR and Swin-LR models
had a lower mean F1 score than the same architecture with
both lungs at the same time but they had a lower variance
across the five cross-validation partitions. Averaging the
ResNet and the Swin Transformer results gave the highest
F1 score overall at 93.5%, although including the ResNet-
LR model results in the ensemble produced a slightly lower
F1 score of 93.4% but with a smaller variance.

4.2. Challenge 2

A ResNet, Swin Transformer and ResNet-LR model were
trained to predict the pseudo-labels. The best single model
was the Swin Transformer with a mean F1 score of 90.73.
As with Challenge 1, the ResNet-LR model had a lower
mean F1 score than the ResNet model for both lungs but
the individual lung model had a lower variance. An ensem-
ble of the ResNet and Swin Transformer models achieved
an F1 score of 91.2% (fig. 2b). If we filter the validation
datasets for only high-confidence scans with a probability
of being with or without COVID-19 above 0.7, then the F1
score increases to 95.8%. Using this ensemble, predictions
were made on the 494 unannotated scans for Challenge 2.
Of these, 414 predictions were above the threshold of 0.7

and these were assigned as pseudo-labels. This improved
the F1 score for the Swin Transformer to 91.22% but the re-
sult for the ResNet decreased a small amount (fig. 2c). The
ResNet-LR model improved from 88.6% to 89.85%. An en-
semble of both Swin Transformer models (with and without
pseudo-labels) together with the ResNet-LR trained with
pseudo-labels achieved the highest F1 score of 92.15%.

5. Competitions Results
Each challenge was allowed five submissions for the com-
petition. For both challenges, we chose models which per-
formed best on the five cross-validation partitions to be
used for our submissions to the competition. All submis-
sions average results across models trained on the five cross-
validation partitions.

The five competition submissions for Challenge 1 were:
1. ResNet
2. Swin Tranformer
3. Ensemble of ResNet and ResNet-LR
4. Ensemble of ResNet and Swin Transformer
5. Ensemble of ResNet, Swin Transformer and ResNet-LR

The five competition submissions for Challenge 2 were:
1. ResNet
2. Swin Tranformer
3. Swin Tranformer with pseudo-labels
4. Ensemble of Swin Transformer and Swin Transformer

with pseudo-labels
5. Ensemble of Swin Transformer and Swin Transformer

with pseudo-labels and the ResNet model with individ-
ual lungs and pseudo-labels.
The competition test set results for the submissions to

Challenge 1 are shown in table 3 and for Challenge 2 in ta-
ble 4. These results are plotted against the cross-validation
results in fig. 3. There was a strong correlation between the
performance in cross-validation and on the competition test
set. The results for Challenge 1 achieved a slightly higher
macro F1 score on the test set. The results for Challenge
2 were substantially lower, due to poorer F1 scores for the
positive prediction of COVID19 even though the F1 for pre-
dicting non-COVID19 was high. The number of predic-
tions of COVID19 in this submission was 364 out of 4,055
and, given the F1 scores for both cases, we can infer that
the proportion of actual COVID19 cases in the test set was
smaller than this. Thus the distribution of COVID19 in the
test dataset was quite different to the training and validation
data for Challenge 2 (table 2).

Twelve teams submitted results to Challenge 1 of the
competition. Of these, six teams achieved a macro F1 score
above the baseline (fig. 4a). Our’s was the winning sub-
mission but the highest result in the next three teams were
within 0.65%.

Ten teams submitted results to Challenge 2 and four of
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Figure 2. a. The cross-validation results for challenge 1. b. The cross-validation results for challenge 2 before adding in pseudo-labels. c.
The cross-validation results for challenge 2 after adding in pseudo-labels. Model names joined with a ‘+’ are ensembles with prediction
probabilities averaged.
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Figure 3. The test set results against the cross-validation results. Cross validation results shown with a circle at the mean and the error bars
showing the minimum and maximum values across the five cross-validation partitions.

these achieved a macro F1 higher than the baseline (fig. 4b).
Our best result was 0.34% below the winning submission,
giving us the place of ‘Runner-Up’. All teams which im-
proved upon the baseline had much lower F1 scores for pre-
dicting COVID19 than for predicting non-COVID19. This

tendency may have arisen since the proportion of COVID19
scans in the test dataset being low relative to the train-
ing and validation datasets, leading to over-prediction of
COVID19.

5219



94.3994.6 94.24

90.14

94.89

93.63

MDAP (Ours) Deep-Adaptation ACVLAB FDVTS ViGIR Lab M2@Purdue

85%

90%

95%

74.96

77.55

65.79

77.21

FDVTS MDAP (Ours) Deep-Adaptation M2@Purdue
55%

60%

65%

70%

75%

80%

85%

Team

M
a
c
ro

 F
1

M
a
c
ro

 F
1

a. Challenge 1

b. Challenge 2

Baseline

Baseline

Figure 4. The competition results for all teams that surpassed the baseline. Our result, under then team name ‘MDAP’, is highlighted in
yellow. The highest result for each team is marked with a solid blue dot and the value written above.

Submission Macro F1 Non-COVID19 F1 COVID19 F1

ResNet 93.80 95.06 92.53
Swin 92.56 94.21 90.91
ResNet+ResNet-LR 94.30 95.50 93.09
ResNet+Swin 94.84 95.88 93.79
ResNet+Swin+ResNet-LR 94.89 95.97 93.81

Table 3. The Challenge 1 test set results.

6. Conclusion
The approach used in this paper achieved high cross-
validation F1 scores for both challenges. The best result
for Challenge 1 was an ensemble of the ResNet and Swin
Tranformer models with an average F1 score of 93.5%. This
ensemble achieved the winning result for all teams in Chal-
lenge 1 of the competition with a macro F1 score on the test
set of 94.89%. The best single model for Challenge 2 was
the Swin Transformer at an F1 score of 90.73%. This im-
proved to 91.22% when pseudo-labels with high-confidence

were added to the training set. An ensemble achieved even
better results with an F1 score of 92.15%. This ensemble
was our highest scoring submission on the test set of Chal-
lenge 2, and achieved ‘Runner-Up’ place in the competition
with a macro F1 score of 77.21%. As deep learning meth-
ods continue to develop for analysis of medical imaging,
especially when adapting to new domains, we expected im-
proved outcomes for diagnosis and patient care.
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Submission Macro F1 Non-COVID19 F1 COVID19 F1

ResNet 70.47 94.76 46.17
Swin 76.58 96.78 56.37
Swin-PS 74.22 96.09 52.36
Swin+Swin-PS 75.91 96.56 55.27
Swin+Swin-PS+ResNet-LR-PS 77.21 96.82 57.60

Table 4. The Challenge 2 test set results.
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