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Abstract

Deep learning models that predict cancer patient treat-
ment response from medical images need to be generalis-
able across different patient cohorts. However, this can
be difficult due to heterogeneity across patient populations.
Here we focus on the problem of predicting colorectal can-
cer patients’ response to radiotherapy from histology im-
ages scanned from tumour biopsies, and adapt this predic-
tion model onto a new, visibly different, target cohort of
patients. We present a novel unsupervised domain adap-
tation method with a Cluster Triplet Loss function, using
minimal information from the source domain, resulting in
an improvement in AUC from 0.544 to 0.818 on the target
cohort. We avoid the use of pseudo-labels and class fea-
ture centres to avoid adding noise and bias to the adapted
model, and perform experiments to verify the preferable
performance of our model over such state-of-the-art meth-
ods. Our proposed approach can be applied in many com-
plex medical imaging cases, including prediction on large
whole slide images, based on combining predictions from
smaller, memory-feasible representations of the image ex-
tracted from graph neural networks.

1. Introduction
Adapting a deep learning model in the field of medical
imaging from one group of patients to another can be chal-
lenging, due to the wide variability that can occur between
patients. In this work we focus on using deep learning to
predict colorectal cancer (CRC) patients’ response to radio-
therapy from a digital histology image of the pre-treatment
tumour tissue, and we attempt to adapt this model to a
completely unseen cohort of patients from a different ge-
ographic region. In this work we focus on unsupervised

domain adaptation (UDA), since for this prediction model
to be useful in clinical practice we would need to adapt the
model without knowledge of the patient outcomes at time
of use.

While much research has been done on using domain
adaptation in other fields, application to histology images is
more challenging due to complications arising from the size
and heterogeneity of this imaging modality [12].

Histology slides are the haematoxylin and eosin (H&E)
stained, digitally scanned, tumour tissue slices cut from a
biopsy sample. These slices are scanned at very high reso-
lution, resulting in extremely large file sizes. Images must
be split into smaller sections to fit into computer memory,
and a multiple instance learning (MIL) method is then re-
quired to combine the predictions into one prediction per
slide. Here we present a method which focuses only on the
intermediate feature representation within a model, hence
preserving any optional MIL methods on the features for
final outputs. Specifically, we make predictions from natu-
rally segmented tissue regions using a graph neural network
(GNN) approach, using the features within the GNN to help
adapt our model to a new domain.

While socioeconomic factors could influence patients’
experience with cancer in different regions or countries [5],
batch effects in histology images can commonly develop
from the processing of the tumour biopsy once it is removed
from the patient. The processing of the tissue samples is
performed slightly differently across medical centres, which
introduces an inherent domain shift into the data [29]. We
train and validate our method on patient cohorts from three
different medical centres, all of which have different tissue
processing practices.

We approach our binary prediction problem with a gen-
eralised view, avoiding pseudo-labels by focusing only on
adapting the underlying features to a new domain, and pre-
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serving the original classification branches. By avoiding the
use of pseudo-labels, unlike many other UDA approaches
[19, 30, 35, 40–43, 45], we avoid adding bias and noise from
our source model into our predictions.

Furthermore, we avoid the use of class-based clustering
to find a cluster representative for each class label, as many
in the literature have done [10, 15, 19, 30, 43], to allow for
more variance within each class label by clustering on the
whole feature set at once, allowing for a natural number of
clusters that is not constrained by the number of class labels
in the dataset. This approach works much better particularly
for binary outcome data since it allows for more than two
clusters to represent the entire source dataset.

In this paper we develop a feature-alignment UDA tech-
nique to transfer our trained clinical model onto an unseen
target cohort without the use of any target labels. We pro-
pose a novel approach, defining a loss function to be used
in a ‘source-supervised’ training manner for domain adap-
tation. This loss only requires a lightweight representation
of the source data to guide the learning of a new, domain-
adapted, target model. Our method allows for distributed
training of a cohort-tuned model without requiring any
training or updating of the original model, therefore provid-
ing a secure federated learning technique that can protect
patient confidentiality between locations. Rather than con-
fusing the results with all the dataset permutations, we focus
on the dataset which is most dissimilar as our target dataset,
as this is the biggest challenge. This also mimics applica-
tion in clinical practice where we would need to transfer
frozen pre-trained models onto to new cohort domains to
better predict patient outcomes, without advance knowledge
of a patient’s response to treatment. This method requires
no batch or cohort assumptions and can be applied to even
a single new data point.

2. Related Work

2.1. Unsupervised Domain Adaptation

Clustering While many papers have explored the use of
clustering for domain adaptation, with various methods of
aligning source and domain distributions using contrastive
or adversarial loss approaches [13, 16, 22, 43], to the best
of our knowledge none have used the lightweight clustering
approach we suggest here.

The intuition behind our domain adaptation approach
builds on the idea of Attracting and Dispersing [40], where
the authors aim to bring similar features together and dis-
similar features apart in the feature space. This unsuper-
vised method uses k-nearest neighbours and pseudo-labels
to maximise consistency of predictions between neigh-
bours, and minimise similarity of dissimilar feature pre-
dictions. A similar method, Structurally Regularized Deep
Clustering (SRDC) [30], uses KMeans to cluster interme-

diate network features of the target data, and minimises the
Kullback-Leibler (KL) divergence between the distributions
of the predicted target labels and the true source labels, as
well as the KL divergence between the learnable source and
target cluster centres. Another approach using KMeans is
the Source Hypothesis Transfer (SHOT) method proposed
by Liang et al. [19], who freeze the final classifier layer of
a source model and use the rest as initialisation for a target
model. Their unsupervised approach predicts pseudo-labels
and minimises entropy, finding target class centroids in a
manner similar to weighted KMeans, and then defining a
target sample’s pseudo-label by its nearest neighbour class
centroid, measured using cosine distance.

Pseudo-labels Most UDA approaches use pseudo-labels
to train their model [19, 30, 35, 40–43, 45], which can
provide more information in the multi-class classification
setting than the binary one. These pseudo-labels are com-
monly used for masking or as an indicator method to calcu-
late some further statistic for use in a loss function [40, 45].
Methods using pseudo-labels depend heavily on the teacher
model having a prior reasonable accuracy on the target do-
main, which is not always the case, as pointed out by Li et
al. [18]. Crucially, they also observe that there are no com-
mon methods to evaluate the quality of these pseudo-labels.
While many papers acknowledge this caveat and propose
methods to counteract it [18, 30, 41, 43], it is a clear in-
herent design flaw that can add unnecessary bias and noise.
Zhang et al. acknowledge this and regularize their pseudo-
labels with weights during training, by measuring distances
to feature centroids of classes [41]. The Divide and Contrast
method divides the target data into source-like or not, and
makes the reasonable assumption that pseudo-labels from
source-like target data are more accurate than those from
target-specific samples [43]. The SRDC authors also admit
that the unreliability of the source model on the target data
could lead to some incorrect target predictions, and conse-
quently add an extra term to the loss function using pseudo-
labels as an indicator on the predicted labels [30].

Triplet loss The idea of a triplet loss using central fea-
tures was first introduced by [10] for object retrieval, where
they propose a Triplet Centre Loss (TCL) to align features
of the same class to a learnable class centre, and repel fea-
tures from different classes. They use Euclidean distance to
measure the difference between the class centre and sample
features, as we do here, though for their negative sample
in their triplet loss they choose the closest negative cen-
tre. They also use class labels to identify the correspond-
ing class centre, so the method is not unsupervised. Other
works have used a similar approach using a triplet loss on
feature centres [2, 15, 33, 37], across different fields. Most
focus on calculating the feature centres from pseudo-labels
to find a centre representing each class in a classification
problem [2, 15, 37].

5123



The Centroid Triplet Loss proposed by Wieczorek et al.
for image retrieval [37] uses a traditional triplet loss on the
target features with the positive example as the centroid of
the class of that target example, and the negative example as
the centroid of a negative class, which is similar to what we
propose here, but differing in our exclusion of any assumed
or known class information. Lagunes-Fortiz et al. [15] use a
different negative sample in their triplet loss, using a sample
from the domain itself instead of a feature centre. The triplet
loss has also been used to define target and source clusters
as class guided constraints [35], for better class alignment
between the domains.

2.2. Histology domain adaptation

Staining In the field of deep learning on histopathology, tis-
sue staining and processing can vary heavily across hospi-
tals and laboratories, and efforts have been made to counter
these cohort staining effects [8, 14, 25, 44] beyond tradi-
tional colour normalisation methods [20, 31]. However,
sometimes this approach alone is not enough to guaran-
tee domain generalisability of a model. Lafarge et al. [14]
propose a domain-adversarial neural network (DANN) to
predict the probability that a sample comes from a partic-
ular domain, allowing removal of domain-specific features
while maintaining those features which are useful for pre-
diction. They also experiment with traditional staining do-
main adaptation methods, and their best results are achieved
when the DANN is used in addition to colour augmentation
or stain normalization.

Feature alignment In this work we focus on feature
alignment between the source and target domains. Of the
feature alignment approaches in the field of histology that
use a cluster-based approach, most use pseudo-labels to find
a class prediction which can help to update class-wise fea-
ture centres [6, 32]. Distill-SODA [32] is one such source-
free UDA method that performs Monte Carlo simulations
of its clustering for robustness. Similar to our method, they
calculate a cluster centroid to compare with target features
in their loss function; however their centroids are not label-
agnostic but are constrained to one per class, instead of
naturally deriving them from the source domain. Another
feature-alignment approach introduced by Jian et al. [26]
trains a convolutional neural network (CNN) to map tar-
get images into the source model feature space, minimising
the difference between domains. This method goes further
to introduce a Siamese model to encourage patches from
the same whole slide image (WSI) to be classified with the
same label, but this approach does not account for naturally
occurring heterogeneity within the tissue sample. Wang et
al. [36] focus on using GNN node features for alignment of
CRC histology images for nuclei detection using an adver-
sarial loss. Abbet et al. [1] use few source labels to train a
model for CRC tissue classification.

Binary classification Most research focuses on multi-
class classification or segmentation problems, where
pseudo-labels or class-centres can provide a higher quantity
of information. Some works focus on binary classification
problems such as epithelium-stroma classification, with one
paper training a single model on source and target at once
and adapting the kernels of a CNN to the target domain us-
ing a simple vector multiplication of the eigenvectors cor-
responding to the largest eigenvalues from the target and
source domains [11]. Qi et al. [24] also work on epithelium-
stroma classification and apply a curriculum learning ap-
proach, measuring cosine similarity between samples and
class centroids to avoid samples that are more likely to give
false pseudo-labels, selecting initial training samples based
on maximum distance to source domain.

Li et al. [17] focus on classifying tumour as benign or
malignant on breast, lung and colon cancer histology slides.
Despite the lack of outcome classes they do, however, have
multiple dataset cohorts, and so their UDA approach trains a
separate feature extractor on each source and target domain,
and uses the source labels to learn alignment of the feature
distributions. Optimal transport has also been used to penal-
ize domain prediction in a binary classification of tumour vs
normal tissue [9]. We found no previous research on UDA
for models which predict patient treatment response from
histology images.

Triplet loss on histology Very little research has applied
triplet loss for domain adaptation on histology, and even
less for unsupervised approaches. Sikaroudi et al. [28] use
triplet loss in their efforts to learn hospital-agnostic histol-
ogy representations, again focusing on the class-conditional
shift across domains. They take a supervised approach with
a cross entropy loss on the target predictions, as well as KL
divergence to align feature domains, and a metric loss to
separate classes.

3. Methods
This work assumes we already have a pre-trained source
model which we wish to adapt to a new domain. We de-
scribe the source model below, which is building on a sim-
ilar previous model in this field [38], and then explain how
we train a new model (using the weights of the source model
at initialisation) to adapt the prediction to a new domain.
We explain the clustering approach used on the source data
to extract a lightweight representation of the source data,
which is then used in our proposed Cluster Triplet Loss
function to train and adapt the new model.

We first introduce some terminology. The source model
is the model that we are starting with before any domain
adaptation is applied. The source model was previously
trained and validated on the source data, xs. The target
data, xt, is the new unseen dataset that we wish to adapt
the source model to. The target model is an updated version
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of the source model that has been adapted to the target data.

3.1. Source model

Our source model is a GNN with three Graph Isomorphism
Network layers [39] of feature sizes 64, 32 and 16. In-
stead of feeding our WSI straight into this GNN, we first
apply a superpixel method on the WSI and then calculate
superpixel features from patch features in the same region
(size [1, 768]) [38], extracted using the self-supervised pre-
trained large histology model CTransPath [34]. From these
superpixel features we construct a graph representation of
each WSI, where the nodes and node features are defined
from the superpixels and the edges of the graph are defined
by nearest neighbours using Delaunay triangulation. These
graphs are then used as input to the GNN, which is trained
in a semi-supervised manner to predict a patient’s response
to radiotherapy.

On the source validation dataset the source model
achieved metrics of 0.931 AUC, 0.803 balanced accuracy
and 0.885 weighted F1. Evidently our source model can
perform well on the source cohorts, and while efforts were
made to generalise this model in training, the application of
this model on an unseen test cohort demonstrates the inad-
equate generalisability of the model with metrics of 0.544
AUC, 0.500 balanced accuracy and 0.840 weighted F1, as
seen in Table 2. Efforts made to avoid overfitting on the
training cohorts include extensive data augmentation on the
training images prior to extracting features, heavy dropout
in the GNN and classification branches (p = 0.5), training
on more than one geographic cohort of patients, and apply-
ing a multi-task learning approach to ensure the final feature
set includes information on molecular traits and spatial tis-
sue architecture as well [38].

For this work we are only concerned with the intermedi-
ate feature representation, not the final prediction stage of
the model. When training our new domain-adapted model
we freeze the classification branches on our target model
(of which there are multiple due to a multitask learning ap-
proach with the source model, where one of these branches
predicts the patient’s response to radiotherapy), and we train
only on the GNN layers before this. Hence in this work we
focus on the node-level features of our dataset, rather than
the slide-level features. We refer to the node feature extrac-
tor part of the source model as Fs, and the classifiers after
this remain constant across the source and target models.

3.2. Clustering

We use clustering on the source data to extract a
lightweight, high-level representation of the source data fea-
ture set. GNNs provide us with the node-level predictions
from the superpixel nodes, providing an intuitive, natural
representation of tissue segments within the tumour. We
extract the features of these nodes from the final layer in

Figure 1. Nearest neighbour tissue segments for each of the five
optimal clusters found on the source data. Each row represents a
single cluster centre, containing the five nearest neighbours when
comparing the optimal cluster centres C to the source data xs.

our GNN before we split into three prediction branches for
the multi-task learning approach.

We apply our clustering approach to the normalised con-
catenated set of node feature vectors from the source data
cohorts seen in training. The concatenated feature vectors
are of size [N, 16], where N = 134, 132 is the total num-
ber of nodes and 16 is the number of features per node.
To find the optimal number of clusters, kopt, we calculate
the silhouette width [27] of the clustering for the number
of clusters k = 2, . . . , 20. We select the number of clus-
ters as the cluster in this range with the highest silhouette
width and Calinski-Harabasz index [4], and lowest David
Bouldin score [7] for the most distinct clusters in an unsu-
pervised setting. Due to the large sample size we use the
KMeans MiniBatch approach, implemented in the Python
library sklearn.cluster (version 1.1.3) [23]. We fit the Mini-
Batch Kmeans on a subsample (n = 10, 000 node features)
of our source dataset for efficiency, using the optimal num-
ber of clusters. We extract the resulting cluster centres C of
size [kopt, 16].

3.3. Cluster Triplet Loss

To train and adapt our model onto the target dataset, we
propose the Cluster Triplet Loss, which makes use of the
source clustering from the previous section.

Our proposed Cluster Triplet Loss works on a per-sample
basis, meaning it can be used to adapt a model to any size
of cohort. For each feature vector provided, it calculates the
mean squared error loss between the feature vector and the
fixed source cluster centres, akin to one iteration of the tra-
ditional KMeans algorithm. From this we select the closest
and furthest cluster centres to our input feature vector, and
give these as the positive and negative samples in the calcu-
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Algorithm 1: Training with Cluster Triplet Loss
Input : source feature model Fs, source data xs,

target data xt

1 Extract source features Fs(xs) from final layer of
GNN before classification;

2 Run KMeans on Fs(xs) for k = 2, ..., 20 clusters
and calculate optimal kopt using silhouette width;

3 From best KMeans extract kopt cluster centres C;
4 Initialise target model Ft with weights from source

model Fs;
5 while Training do
6 Extract target features from target model,

Ft(xt);
7 Calculate Euclidean distance from Ft(xt) to

each cluster centre in C with Eq. (1);
8 Find closest (Cpos) and furthest (Cneg) clusters

to target features using distances with Eq. (2);
9 Calculate mean triplet loss for xt with Eqs. (3)

and (4) over the batch and backpropagate
10 end

Output: adapted target feature model Ft

lation of the triplet loss, with the input feature vector as the
anchor, to move the feature vector onto the cluster domain
while simultaneously clustering the sample. We vectorize
and apply this method simultaneously on all feature vectors
from the model training batch. In our triplet loss imple-
mentation we use a margin of 1 and we swap the distance
between the input and the negative cluster centre with the
distance between the positive and negative cluster centres,
as proposed by Balntas et al. [3].

We first define the source model Ms = Hs(Fs), where
Hs is the classifier part of the model and Fs is the feature
part of the model which we adapt to a new domain. We
define the target model Mt = Hs(Ft), where we use the
same classifier from the source model, Hs, but update the
feature part of the source model to get Ft. Hence the source
model and target model have the exact same model archi-
tecture but different model weights.

In our proposed Cluster Triplet Loss function, we start
with the cluster centres, C, from the optimal clustering of
the source data. Taking our input target data, xt, in a batch
of size b, we calculate the Euclidean distance dij between
the input and each cluster centre,

dij = ∥xti − Cj∥2, (1)

where i ∈ [1, b] denotes each node input within the batch.
We use these distances to find the closest (Cjpos ) and

furthest (Cjneg ) cluster centres, using

jposi = argmin
j

dij , jnegi = argmax
j

dij . (2)

Cohort CR NoCR % CR/Total Total

Aristotle 24 97 20% 121
Grampian 61 186 25% 247
Salzburg 6 49 11% 55

Table 1. Slide counts split by outcome (CR - positive, complete
response to radiotherapy, NoCR - negative, no complete response
to radiotherapy) across patient cohorts.

We use these positive and negative cluster centres in our
adjusted triplet loss function, as defined by

Li(xti) = max{∥xti−Cjposi
∥2−∥Cjposi

−Cjnegi
∥2+µ, 0}

(3)
using the margin µ = 1.

Finally we reduce the output by taking the mean over our
batch, and backpropagate through the model with the batch
loss

Lb(xt;C, µ) =
1

b

∑
i

Li(xti , jposi , jnegi ;C, µ), (4)

where the cluster centres C and margin µ are fixed, but jposi
and jnegi vary depending on Equations (1) and (2).

The algorithm for our whole method can be found in Al-
gorithm 1. Steps 1-3 need only be performed once, and
then, given the source data representation C, steps 4 on-
wards can be used to train any number of target models on
different domains.

4. Experiments
4.1. Data

For our experiments we have three private CRC histology
datasets, Grampian, Aristotle and Salzburg, all from differ-
ent geographic locations in Europe. For all datasets we have
the digital WSIs of the H&E stained tumour tissue taken
from pre-treatment biopsies. For Grampian and Aristotle
we have the patients’ recorded response to adjuvant radio-
therapy treatment, categorised as pathological complete re-
sponse (CR) if there are no tumour cells remaining after
the treatment course is completed, or defined as no com-
plete response (NoCR) if any number of tumour cells re-
main post-treatment. For the Salzburg data we define com-
plete response to radiotherapy as having a Dvorak tumour
regression of 4, post-treatment. In this work we aim to
predict the response to radiotherapy as our primary binary
outcome. The outcome response counts across cohorts are
given in Table 1, where we can see that the ratio of positive
to negative outcomes (% CR/Total) is similarly imbalanced
across all cohorts.

Two of these cohorts, Grampian and Aristotle, were used
for training our original source model, with the WSIs from
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Figure 2. UMAP projections of unsupervised CTransPath fea-
tures from our different patient cohorts, using the mean features
per WSI. Our target dataset in this work, Salzburg, is clearly very
different from our source cohorts, Grampian and Aristotle. For
each cohort we overlay a section of a randomly sampled WSI in
that cohort, shown in a box of the same colour, to help visualise
the cohort differences.

roughly 30% patients in each cohort used for validation, and
the rest used for semi-supervised training. The third co-
hort of patients, Salzburg, is introduced for this work as our
target dataset, previously completely unseen by our model.
Hence we refer to Grampian and Aristotle as our source
data, and Salzburg as our target data.

The differences between the cohorts can be visualised in
the reduced dimensionality UMAP projection [21] in Fig-
ure 2. For each WSI in the cohorts we extracted the unsu-
pervised CTransPath features [34], which we use as input to
our models. We fit a UMAP on the mean features per WSI,
and plot the resulting embeddings, colouring by cohort. Our
target cohort, Salzburg, is clearly very different to our two
source cohorts, Grampian and Aristotle, and we observe the
trend of sparse biopsy specimens across the Salzburg data.

4.2. Results

Clustering Applying our clustering method to our source
data, we find kopt = 5 optimal cluster centres in the fea-
ture space with the highest silhouette width of 0.28. These
clusters can be visualised in Figure 1, where for each of the
optimal five clusters we have plotted the five nearest neigh-
bours to the cluster centres from the source data.

Training target model We use the weights from our
source model to initialise a new target model, as de-
scribed in Section 3.1. In training the target model we
use heavy training data augmentations using the Pytorch
torchvision.transforms library (version 0.13.1) as follows:
resize, random vertical flip (p = 0.5), random horizontal
flip (p = 0.5), colour jitter (brightness 0.1, contrast 0.25,
saturation 0.5 and hue 0.25), Gaussian blur over a kernel
of size 9, random adjust sharpness (p = 0.2), random auto

contrast (p = 0.5), rotation by multiples of 90 degrees and
normalizing the colour channels. We use the Adam opti-
miser with a learning rate of 1e−3 with weight decay 1e−4.
We use a batch size of 32 and train for 30 epochs to avoid
overfitting to the new domain (the source model was trained
for 50).

Method results The results from the proposed method
can be seen in Table 2, which shows the mean and standard
deviation of metrics from five separate seed rounds of train-
ing, each initialised with a different random seed. Where
required, we use the unoptimised threshold of 0.5 for met-
ric calculations for fair comparison across experiments. Our
domain adapted model achieves an AUC of 0.818 and a bal-
anced accuracy of 0.619 on the target dataset, improving
over the source model by +0.274 AUC and +0.119 bal-
anced accuracy, demonstrating the effectiveness of our pro-
posed method on this complex real world dataset.

Visualising domain shift The differences in the interme-
diate model features before and after domain adaptation can
be visualised by plotting a UMAP embedding of the node
features in Figure 3. We randomly subsampled the source
data for balanced outcomes to better visualise the shift. The
feature embeddings are coloured by both domain and out-
come, specifying whether the data is from the source or tar-
get domain, and whether the patient outcome is a positive
CR or a negative NoCR. We have plotted the UMAP em-
bedding of the fixed source cluster centres in black, which
can be useful as fiducial markers across the two plots since
they aren’t updated after domain adaptation. The top scatter
plot shows features extracted from the source model, and
the bottom scatter plot shows features extracted from our
adapted target model.

The top plot in Figure 3 shows the Source CR (pur-
ple) and Source NoCR (red) classes are reasonably sepa-
rated, demonstrating the competency of our source model
on the source data. Before adaptation, the target outcomes
(orange and green) are mixed in with each other, and the
Target CR (green) shows no overlap with the Source CR
(purple). However, after domain adaptation, the Target CR
(green) features have moved towards the Source CR (pur-
ple) domain, better aligning the features for this minority
class across domains.

Quantifying domain shift We measured the distance
between our target features and our source cluster centres
before and after domain adapation. Measuring the distance
from the target data to the closest cluster centre, the mean
distance over the target data decreased from 0.146 to 0.137
after our domain adaptation method (−0.009). However,
measuring the distance from the target data to all cluster
centres, the mean distance increased from 1.100 to 1.141
(+0.041). This highlights how our loss function is designed
to both pull the nearest cluster centre closer, but also push
other cluster centres further away, helping to create more
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Figure 3. UMAP projections of our intermediate model features
before (top) and after (bottom) applying our UDA method. Fea-
tures are coloured by the source or target domain and positive (CR)
or negative outcome (NoCR). The five stationary source cluster
centres are overlaid in black. These target features across domains
are better aligned after domain adaptation.

distinct clusters in the feature set with the idea of guiding
the model to an easier classification decision.

4.3. Comparison with State-of-the-Art (SOTA)

As well as comparing our proposed method to our base-
line source model, we also implemented select SOTA UDA
methods for further comparison. Due to the intricate nature
of most published methods, we chose to implement only
those which had their code publicly available online.

We implemented four UDA methods, Distill-SODA (re-
ferred to as DS in the results table) [32], SHOT [19],
TCL [10] and SRDC [30]. The results can be found in Ta-
ble 2. Distill-SODA is the only method here which was
specifically introduced for histology images, whereas the
other methods are for general computer vision or other
fields. When choosing the best epochs to evaluate results
for each model, we either chose the final epoch as defined
in the papers or the epoch with the lowest training loss if
unspecified.

Models k AUC BAcc F1

Source - 0.544 0.500 0.840
S-Stain - 0.646 0.573 0.866

DS - 0.511±0.00 0.461±0.00 0.736±0.00
TCL - 0.684±0.01 0.605±0.04 0.860±0.02
SHOT - 0.578±0.00 0.543±0.00 0.830±0.00
SRDC - 0.498±0.11 0.500±0.00 0.840±0.00

k-abl 3 0.667±0.06 0.512±0.04 0.809±0.03
k-abl 4 0.750±0.05 0.607±0.06 0.847±0.02
k-abl 6 0.596±0.11 0.568±0.05 0.816±0.03
k-abl 7 0.744±0.02 0.611±0.04 0.868±0.02

Excl G 2 0.650±0.04 0.490±0.01 0.830±0.01
Excl A 5 0.573±0.15 0.527±0.04 0.768±0.11

Stain 5 0.757±0.04 0.540±0.04 0.852±0.02

Ours 5 0.818±0.04 0.619±0.04 0.878±0.02

Table 2. Results for our methods: Source model with no domain
adaptation; S-Stain, the source model with Vahadane stain nor-
malisation [31] on the target data; comparison SOTA UDA meth-
ods on the target dataset; k-abl, an ablation study on changing the
number of clusters k used for the cluster centres in our Cluster
Triplet Loss function; an ablation study removing source cohorts
Grampian (Excl G) and Aristotle (Excl A) from the calculation
of the cluster centers used in our loss with optimal number of
clusters; Stain, our UDA approach with Vahadane stain normal-
isation [31] on the target data; our best model using the Cluster
Triplet Loss proposed in this paper with the optimal number of
clusters kopt = 5. Metrics provided are the mean and standard
deviation of the AUC, balanced accuracy (BAcc) and weighted F1
score (F1) over five seed rounds. We provide the number of clus-
ters k where our method was used.

Each method had to be adjusted somewhat to work on
our problem. The details of the implementations of the
SOTA methods are given in Supplementary Material Sec-
tion 7.

Overall our method has the best metrics compared to all
other UDA methods implemented here.

4.4. Ablation Studies

Number of clusters For the following ablation studies we
trained each model variation over five different random
seeds and averaged the results. We experimented with the
number of clusters and scaling the cluster centres before use
in the loss function. The results from using different num-
bers of clusters can be found in Table 2, on the rows named
k-abl. We found that the optimal number of clusters from
our clustering analysis achieved the best results compared
to other numbers of clusters. Scaling the cluster centres
∈ [0, 1] didn’t improve results either, achieving 0.747 AUC
over five rounds with the optimal number of kopt = 5 clus-

5128



ters. An ablation study on the clustering method used can
be found in Supplementary Material Section 6.

Removing a source cohort We ran experiments where
we removed one of the two source cohorts before calculat-
ing the source cluster centres, and then trained our model
on the target cohort using the reduced cohort clusters in our
loss function. The results averaged over five rounds can be
shown in Table 2, in the rows Excl G and Excl A, where G is
Grampian and A is Aristotle. These results demonstrate the
importance of including both source datasets in the training
set of the source model. We would expect the source model
to be more generalisable when trained on more than one co-
hort domain, and these results show that such a model can
be better adapted to new domains using our domain adapta-
tion method.

Staining For comparison, we used Vahadane stain nor-
malisation [31] on the target data, which has been show
to be an effective technique in histology domain adapta-
tion [14]. The source model predictions were better with
stain normalisation than without (see S-Stain results in Ta-
ble 2), but still do not match the results from our proposed
UDA method. We applied our UDA method on the stain-
normalised target data (see Stain results in Table 2), but it
did not show any improvement over the standard implemen-
tation.

5. Discussion

5.1. Limitations & Future Work

We acknowledge that our adapted model is only trained up
to the point of feature extraction, meaning the classification
branches for the prediction of outcomes from these domain-
shifted features are not updated. Since we are shifting the
feature domain onto that of the original source features,
on which the existing classification branches were trained
to predict from, this part of the model should adapt with-
out further training. However, there could be some useful
cohort-specific information being missed in this final step.

As we demonstrated in our ablation studies (Section 4.4),
finding an optimal clustering of the source data is the key to
getting the best results from this method. It may be possible
to extend this work to test how this approach can generalise
onto multiple target cohorts. To imitate real life application,
a cumulative approach should be considered to recalculate
the cluster centres over each new target domain, and mea-
sure how this affects the model adaptability. It could also be
explored how the adapted model performance may change
on the original source domain.

The power of this approach depends to some degree on
how much the disease space is covered by the disease varia-
tion in the source data. If we are confident our source model
has seen a particular disease variation before, we could be
far more aggressive in shifting features, and similarly less

aggressive for outliers, introducing some sort of weighted
outlier detection approach.

5.2. Conclusion

We propose a novel method that uses graph node features
and source cluster centres in a Cluster Triplet Loss function
for UDA of a histology deep learning model. Our approach
allows for local domain adaptation within the WSI so that
different tissue sections in one target image do not have to
be ‘shifted’ by the same amount.

Whilst our proposed method is not entirely source-free,
we require only a dense representation of the original source
data, which avoids having to store the memory intensive
source dataset and would preserve patient data anonymity
if implemented in different hospital settings. This method
is generalisable across any number of outcome classes and
can be applied to multiple different deep learning and MIL
approaches.
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