
Domain Adaptation Using Pseudo Labels for COVID-19 Detection

Runtian Yuan1, Qingqiu Li2, Junlin Hou3, Jilan Xu1, Yuejie Zhang1∗, Rui Feng1∗, Hao Chen3∗

1School of Computer Science, Fudan University, China 2School of Academy for Engineering
and Technology, Fudan University, China 3Department of Computer Science and Engineering,

The Hong Kong University of Science and Technology, China
{rtyuan21,qqli22,jilanxu18,yjzhang,fengrui}@fudan.edu.cn,csejlhou@ust.hk,jhc@cse.ust.hk

Abstract

Deep learning has offered advanced analytical capabil-
ities to enhance the accuracy and efficiency of detecting
COVID-19 through complex pattern recognition in medical
imaging data. However, the variability across datasets from
different domains poses a significant challenge to the gen-
eralization abilities of deep learning models. In this paper,
we propose a novel two-stage framework for domain adap-
tation of COVID-19 detection. Initially, We train a model on
annotated data from both domains, integrating contrastive
representation learning and a modified version of CORAL
loss to minimize domain discrepancies. In the subsequent
stage, we employ a pseudo-labeling strategy to effectively
utilize non-annotated data from the target domain, further
enhancing the model’s adaptability and performance. The
effectiveness of our approach is demonstrated through ex-
tensive experiments, showing significant improvements in
COVID-19 detection performance compared to the baseline
model. On the COVID-19 domain adaptation leaderboard
in the 4th COV19D Competition, our approach ranked 1st
with a Macro F1 Score of 77.55%.

1. Introduction

The COVID-19 (Coronavirus Disease 2019) pandemic
underscores the need for rapid and accurate diagnostic
techniques, which are crucial for the early identification
of COVID-19, ensuring timely intervention and better pa-
tient outcomes. Computed Tomography (CT) imaging has
proven to be an essential tool in the detection of the dis-
ease, capable of revealing pulmonary manifestations such as
ground-glass opacities and bilateral infiltrates characteristic
of COVID-19. However, the interpretation of CT images
requires significant expertise and can be time-consuming,
presenting challenges in high-demand scenarios and poten-
tially leading to delays in diagnosis and treatment.

Domain 
shift

Domain 
adaptation

Domain A Domain B

Figure 1. An illustration of domain shift and domain adaptation
highlights the divergent data distributions between Domain A and
Domain B. Consequently, models trained on Domain A necessitate
the application of domain adaptation strategies to effectively adjust
and perform optimally in Domain B.

Recent deep-learning methods have been widely ex-
plored in solving COVID-19 detection [6–8, 12, 14, 17, 22].
However, most of them require large amount of annotated
data, which is challenging to acquire from various domains
in real-world settings. This scarcity of data becomes more
problematic when considering the phenomenon of domain
shift, as illustrated in Figure 1. Domain shift occurs when
the distribution of data encountered during the deployment
of a machine learning or deep learning model differs from
the distribution of the training data. This mismatch can lead
to a decline in the model’s performance because the patterns
the model learned during training may not accurately repre-
sent the patterns in the new data. Domain adaptation is a
set of techniques aimed at addressing this challenge by en-
abling a model to adapt to the new data distribution. These
techniques can involve retraining the model with a mix of
original and new domain data, applying transfer learning to
adjust the model to the characteristics of the new data, or
employing unsupervised methods to learn representations
that are invariant across the two domains, thereby maintain-
ing performance even in the face of domain shift.

Confronted with the challenge posed by the scarcity of
annotated data, our approach leverages a modified version
of CORAL loss and the pseudo-labeling strategy to facili-
tate effective domain adaptation, thereby substantially en-
hancing the detection of COVID-19 from CT images. By
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integrating the modified CORAL loss, we aim to mini-
mize the discrepancy in feature distributions between dif-
ferent domains, ensuring that the model can generalize well
across varied datasets for more accurate, robust, and adapt-
able COVID-19 detection. Concurrently, the employment
of pseudo labels for non-annotated data in the target domain
serves to augment the training set, providing valuable infor-
mation that enables the model to learn more comprehensive
and representative features of the COVID-19 pathology.

In this paper, we present our framework for the domain
adaptation challenge of the 4th COV19D Competition [18].
The proposed model aims to achieve a high level of diag-
nostic precision while significantly reducing the time and
resources required for COVID-19 detection via CT scans.
This advancement holds the promise of enabling faster,
more accurate, and scalable diagnostic solutions.

2. Related Work
2.1. COVID-19 Detection

The detection and diagnosis of COVID-19 have been
pivotal since the onset of the pandemic. Various method-
ologies have been proposed to improve detection rates and
reduce diagnostic time. Several studies have focused on the
application of deep learning techniques for the detection of
COVID-19 from X-rays. [20] and [9] trained Convolutional
Neural Networks using chest X-ray images, achieving en-
couraging performance for COVID-19 detection.

Another significant portion of research has been directed
towards the development of AI-driven tools for the auto-
matic detection of COVID-19 using CT scans, recognizing
the potential for rapid and scalable screening. He et al. [4]
proposed a Self-Trans approach, which synergistically in-
tegrates contrastive self-supervised learning to learn pow-
erful and unbiased feature representations for reducing the
risk of over-fitting, showing promising results in enhancing
diagnostic accuracy and efficiency. Wang et al. [26] col-
lected 1065 CT images of pathogen-confirmed COVID-19
cases along with those previously diagnosed with typical vi-
ral pneumonia, and modified the inception transfer-learning
model to extract radiological features for timely and accu-
rate COVID-19 diagnosis. Gupta et al. [3] developed a new
lightweight, less complex deep learning model for the au-
tomated screening of COVID-19, using a repeated 10-fold
holdout cross-validation scheme. These studies underscore
the potential of deep learning in augmenting traditional di-
agnostic methods for COVID-19, leading to faster and more
reliable detection processes.

2.2. Domain Adaptation

Domain adaptation is a crucial area of research in ma-
chine learning and computer vision, aimed at addressing the
challenge of domain shift, where the distribution of test data

differs from the training data. This discrepancy can signif-
icantly impair the performance of models when applied to
real-world scenarios. A variety of strategies have been de-
veloped to mitigate these effects, focusing on enabling mod-
els to generalize across different domains.

In the realm of domain adaptation, several approaches
have been developed to minimize the domain discrepancy
by aligning feature distributions between the source and
target domains. Sun and Saenko [23] introduced Deep
CORAL, extending the CORAL [24] approach to deep
learning by aligning the deep feature distributions of source
and target domains directly through the minimization of the
difference in their covariance matrices. Tzeng et al. [25]
proposed a method called Deep Domain Confusion (DDC),
which incorporates a domain confusion loss to encourage
the learning of domain-invariant features by maximizing the
confusion between the source and target domains. Addi-
tionally, Zhu et al. [31] designed a deep subdomain adapta-
tion network that learns a transfer network by aligning the
relevant subdomain distributions of domain-specific layer
activations across different domains based on a local max-
imum mean discrepancy (LMMD). These methods share a
common goal of reducing domain shift at the feature level,
thereby improving the model’s generalization capabilities
across different domains.

Pseudo-labeling, as a semi-supervised learning tech-
nique, has been widely used in domain adaptation, lever-
aging unlabeled data to improve model generalization.
A significant contribution is the work by Lee [19] on
pseudo-labeling, which formalized the approach of using
the model’s own predictions as labels to augment the train-
ing set in semi-supervised learning. Saito et al. [21] in-
troduced asymmetric tri-training for unsupervised domain
adaptation, employing three networks where two are used
to generate pseudo-labels for training the third, iteratively
refining the model with less domain bias. More recently,
Yu et al. [27] viewed the source data as a noisily-labeled
version of the ideal target data and then proposed an semi-
supervised domain adaptation model that cleans up the label
noise dynamically with the help of a robust cleaner compo-
nent designed from the target perspective.

In our work, we design a modified version of CORAL
loss between annotated data from both domain A and B as
well as non-annotated data from domain B. Additionally,
we generate pseudo labels to merge with labeled data, and
then finetune our model to effectively improve the classifi-
cation performance of COVID-19.

3. Methodology
Figure 2 provides a schematic representation of our

framework, which is structured into two stages. In the initial
stage, the model is trained on annotated data from both Do-
main A and Domain B, employing techniques such as con-
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Figure 2. Overview of our two-stage framework for COVID-19 domain adaptation.

trastive representation learning and modified CORAL loss
to enhance its learning efficacy. The subsequent stage in-
volves leveraging the pre-trained model from the first stage
to generate pseudo labels for the non-annotated data in Do-
main B. This augmented dataset, comprising both pseudo-
labeled and originally annotated data, is then utilized for
improved COVID-19 detection. Our methodology builds
upon the foundation laid by the previous CMC network [5],
which has already demonstrated its excellent performance
in accurately detecting COVID-19.

Stage 1: domain-invariant learning. The initial stage
of our framework is designed to develop a model that ef-
ficiently absorbs general class information from annotated
data. This foundational phase is structured through the in-
tegration of five key components:
• A data augmentation module A(·), which transforms an

input CT sample x into a randomly augmented sample
x̃ from random crops and random changes in brightness
and contrast, introducing variability and robustness into
the training process.

• A base encoder E(·), responsible for extracting vital fea-
tures from the augmented data and acting as the basis
for meaningful representation extraction, maps the aug-
mented CT sample x̃ to a representation vector r =
E(x̃) ∈ Rde in the de-dimensional latent space.

• A projection network P (·), which further processes
these representations to support contrastive learning by
mapping the representation vector r to a relative low-
dimension vector z = P (r) ∈ Rdp .

• A multi-layer perception (MLP) head M(·), which is
followed by a Softmax operation to classify the repre-
sentation vector r ∈ Rde into COVID or Non-COVID.
The classification loss Lclf is implemented by the stan-
dard cross-entropy loss between predicted probabilities
and ground truth labels.

• A modified CORAL loss function Lcoral to align the
deep feature distributions of the two domains, encom-
passing both annotated data from Domains A and B as
well as non-annotated data from Domain B.

Contrastive representation learning. The first three
elements collectively execute a contrastive representation
learning approach. Given a minibatch of N CT volumes
and their labels {(xi, yi)}i=1,...,N , we can generate a mini-
batch of 2N samples {(x̃i, ỹi)}i=1,...,2N after data augmen-
tations. We define the positives as any augmented CT sam-
ples from the same category, while those from different
classes are considered as negative pairs [11]. Therefore, the
contrastive loss is defined as:

Lcon =
1

2N

2N∑
i=1

Li
con,

Li
con =

−1

2Nỹi − 1

2N∑
j=1

· log
exp

(
zTi · zj/τ

)∑2N
k=1 1i ̸=k · exp

(
zTi · zk/τ

) ,
when i ̸= j and ỹi = ỹj ,

(1)
where Nỹi is the number of samples in a minibatch that
share the same label ỹi, 1 ∈ {0, 1} is an indicator func-
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tion, and τ > 0 is a scalar temperature hyper-parameter.
Contrastive representation learning prepares the model to
discern and learn from the intrinsic patterns and differences
within the data, setting a robust groundwork for the frame-
work’s subsequent stages.

Modified CORAL loss. Deep CORAL [23] seeks to
align the deep feature distributions between the source
and target domains by minimizing the disparities in their
covariance matrices. In our work, we have further re-
fined this approach by computing the CORAL loss across
a broader spectrum of data, encompassing both annotated
data from Domains A and B as well as non-annotated data
from Domain B. Given annotated training samples DL =
{rli}i=1,...,NL

, rl ∈ Rde with labels {yi}i=1,...,NL
, and non-

annotated data DU = {rui }i=1,...,NU
, ru ∈ Rde , where NL

and NU denotes the number of samples in DL and DU , re-
spectively. Note that DL consists of annotated data from
both domain A and domain B. Here both rl and ru are
the de-dimensional feature representations extracted by the
base encoder. The covariance matrices of DL and DU are
given by:

CL =
1

NL − 1
(D⊤

LDL − 1

NL
(1⊤DL)

⊤(1⊤DL)), (2)

CU =
1

NU − 1
(D⊤

UDU − 1

NU
(1⊤DU )

⊤(1⊤DU )), (3)

where 1 is a column vector with all elements equal to 1.
Then the modified CORAL loss is defined as the distance
between the covariance of the features:

Lcoral =
1

4d2
∥ CL − CU ∥2F , (4)

where d is the channel after the features are reshaped into
two-dimensional vectors, and ∥ · ∥2F denotes the squared
matrix Frobenius norm. Suppose rlij and ruij indicate the j-
th dimension of the i-th sample in DL and DU , respectively.
According to [23], the gradient with respect to the features
can be calculated as follows:

∂Lcoral

∂rlij
=

1

d2(NL − 1)
((rl

⊤− 1

NL
(1⊤rl)⊤1⊤)⊤(CL−CU ))ij

(5)

∂Lcoral

∂ruij
=

1

d2(NU − 1)
((ru⊤− 1

NU
(1⊤ru)⊤1⊤)⊤(CL−CU ))ij

(6)
By integrating the CORAL loss in this manner, we enable
the model to extract and leverage the underlying common-
alities and differences more effectively, fostering a learning
environment that is rich, adaptive, and ultimately more con-
ducive to discerning the complex patterns associated with
COVID-19 detection. This enhancement not only amplifies

the model’s ability to generalize across different domains
but also enriches its interpretative depth, making its learn-
ing process significantly more meaningful and robust. Our
modified CORAL loss function plays a crucial role in bridg-
ing the gap between domains, ensuring that the learned rep-
resentations are domain-invariant and highly informative.

The total loss is a combination of the three loss functions
with adaptive weights [10], which is defined as:

Ltotal =
1

σ2
1

Lclf+
1

σ2
2

Lcon+Lcoral+log σ1+log σ2, (7)

where σ1 and σ2 are utilized to learn the relative weights of
the classification loss and contrastive loss adaptively.

Stage 2: semi-supervised learning (target domain). In
the next stage, we use the trained model to tackle the non-
annotated data in Domain B. Here, the model acts like a
teacher, assigning ”pseudo labels” to this unlabeled data,
basically making educated guesses based on what it learned
in the first stage. We then merge this newly labeled data
with the original annotated dataset in domain B, resulting
in a bigger and more diverse set of dataset.

The constructed dataset is a goldmine for improving
our model’s ability to detect COVID-19 in domain B.
Given a minibatch of NM CT volumes and their labels
{(xi, yi)}i=1,...,NM

, we then adopt the mixup [28] strat-
egy to further boost the generalization ability of the model.
Mixup can be understood as a form of data augmentation
to provide a smoother estimate of uncertainty. For each CT
sample xi, the mixup sample and its label are generated as:

xmix
i = λxi + (1− λ)xj ,

ymix
i = λyi + (1− λ)yj ,

(8)

where j is a randomly selected index in the training data,
and λ ∈ [0, 1]. The mixup loss is defined as the cross-
entropy loss of mixup samples:

Lmix =
1

NM

NM∑
i=1

CrossEntropy(xmix
i , ymix

i ). (9)

Mixup generates a newly augmented dataset that embod-
ies the nuances and variability of the original data in a
more continuous space by creating synthetic data points
through the combination of pairs of images and their labels.
This process not only diversifies the training data but also
encourages the model to learn more generalized features
rather than memorizing specific data points. We effectively
broaden the model’s exposure to a wide range of data inter-
polations. As a result, the model’s predictions across dif-
ferent inputs become more reliable and less prone to over-
fitting, providing a more smooth estimation of uncertainty,
making it more accurate in spotting COVID-19.
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Set Type Domain A Domain B

Training
COVID-19 703 120

Non-COVID-19 655 119
Non-annotated - 494

Validation COVID-19 - 65
Non-COVID-19 - 113

Testing - - 4055

Table 1. Data samples for training, validation and testing.

4. Dataset

We train and evaluate our framework on the COV19-
CT-DB database [17]. COV19-CT-DB contains 3D chest
CT scans that collected in various medical centers. The
database includes 7,756 3D CT scans: 1,661 are COVID-19
samples, whilst 6,095 refer to non COVID-19 ones. There
are about 2,500,000 images included in these datasets.
All have been anonymized. 724,273 images refer to the
COVID-19 class, whilst 1,775,727 slices belong to non
COVID-19 class [1, 2, 12–16].

For the COVID-19 domain adaptation challenge, the
training set contains 239 annotated 3D CT scans (120
COVID-19 cases and 119 Non-COVID-19 cases) and 494
non-annotated 3D CT scans from domain B, as well as 1358
annotated 3D CT scans (703 COVID-19 cases and 655 Non-
COVID-19 cases) from domain A. The validation set con-
sists of 178 3D CT scans (65 COVID-19 cases and 113
Non-COVID-19 cases). The testing set includes 4055 3D
CT scans and the labels are not available during the chal-
lenge, as shown in Table 1.

5. Experiments

5.1. Pre-processing

Our data pre-processing procedure follows [5] and [7].
First, each sequence of 2D chest CT slices is composed
into a 3D volume of shape (D,H,W ), where D, H , W
denotes the number of slices, height, and width, respec-
tively. Then, each volume is resized from its original size
to (128, 256, 256). Finally, we transform the CT volume to
the interval [0, 1] for intensity normalization.

5.2. Implementation Details

We apply inflated 3D ResNeSt50 [29] as the encoder in
our experiments. The value of parameter de is 2,048 and dp
is 128. We optimize the network using the Adam algorithm
with a weight decay of 10−5. The network is trained for
100 epochs. The initial learning rate is set to 0.0001 and
then divided by 10 at 30% and 80% of the total number of
training epochs. Our methods are implemented in PyTorch
and run on four NVIDIA Tesla V100 GPUs.

5.3. Evaluation Metrics

We adopt the Macro F1 Score as the evaluation metric.
The Macro F1 Score is defined as the unweighted average
of the class-wise/label-wise F1 Scores. The F1 Score for
the i-th class is defined as:

F1-Scorei = 2× Recalli × Precisioni
Recalli + Precisioni

. (10)

The Macro F1 Score is the unweighted average of F1 Scores
for all classes, i.e., the F1 Scores for COVID-19 and Non-
COVID-19, which can be formulated as:

Macro-F1 =
1

C

C∑
i=1

F1-Scorei, (11)

where C denotes the number of classes. The Macro F1
Score remains robust in the face of data imbalance, main-
taining its reliability as a performance metric without being
skewed by disparities in class distribution.

5.4. Results on the Validation Set

Table 2 shows the results of the baseline model and
our method on the validation set of COVID-19 Domain
Adaptation Challenge. The baseline model [18] employs
Monte Carlo Dropout to assess uncertainty while training
the CNN-RNN architecture using data from both domain
A (annotated) and domain B (annotated), and then anno-
tates the non-annotated data from domain B based on the
model’s predictions. We integrate the CMC architecture
with modified CORAL loss and pseudo-labeling strategy,
and derive an ensemble model by averaging the predictions
from five individual models, achieving the detection perfor-
mance with a Macro F1 Score of 92.68%. The confusion
matrix on the validation set is shown in Figure 3.

Non-COVID COVID
Predicted label

Non-COVID

COVID

Tr
ue

 la
be

l

108

95.58%
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4.42%
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0.2

0.4

0.6

0.8

Figure 3. The confusion matrix of ensemble model’s predictions.
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Methods Pseudo labels Lclf Lcon Lmix Lcoral Accuracy Macro F1 Score F1
Non-COVID COVID

baseline [18] - - - - - - 73.00 - -
model1 × ✓ × × × 91.01 90.43 92.79 88.06
model2 × ✓ × × ✓ 91.57 90.61 93.62 87.60
model3 × ✓ ✓ ✓ × 92.13 91.34 93.97 88.71
model4 ✓ ✓ × ✓ × 93.26 92.52 94.87 90.16
model5 ✓ ✓ ✓ ✓ × 92.70 92.10 94.27 89.92
ensemble - - - - - 93.26 92.68 94.74 90.63

Table 2. The comparison results on the validation set of COVID-19 Domain Adaptation Challenge.

Rank Teams Macro F1 F1(NC) F1(C)
1 FDVTS (Ours) 77.55 96.97 58.14
2 MDAP 77.21 96.82 57.60
3 Deep-Adaptation 74.96 96.52 53.39
4 M2@Purdue 65.79 91.92 39.66
5 baseline 60.16 86.67 33.65

Table 3. The learderboard of COVID-19 Domain Adaptation Chal-
lenge. F1(NC) and F1(C) denote the F1-Score on Non-COVID and
COVID cases, respectively.

5.5. Results on the Domain Adaptation Challenge

In the COVID-19 domain adaptation challenge, as de-
tailed in Table 3, our team, FDVTS, won the top posi-
tion with an impressive Macro F1 Score of 77.55%. This
achievement underscores our model’s superior capability in
handling the nuanced task of COVID-19 detection across
different domains. Particularly noteworthy is our model’s
exceptional performance in accurately identifying Non-
COVID (NC) cases with an F1 Score of 96.97%, coupled
with a robust F1 Score of 58.14% in detecting COVID
(C) cases, significantly outperforming the baseline’s score
by 24.49%. The leaderboard reflects the critical impor-
tance of domain adaptation techniques in managing class
imbalances and enhancing model performance in the con-
text of COVID-19 detection. Our team’s leading position
underscores the effectiveness of our approach in addressing
the complexities of this task, achieving a high accuracy in
Non-COVID case identification and a strong capability in
COVID case detection.

5.6. Visualization Results

Figure 4 provides t-SNE visualizations that encapsulates
the distribution and separation of the training dataset, en-
compassing data from both Domain A and Domain B. By
projecting the high-dimensional feature maps generated by
the encoder into a two-dimensional space, this visualization
offers an intuitive and accessible representation of how the
data clusters in Stage 1 and how distinct the separations are
between different categories.
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(b) Subsequent to Stage 1.

Figure 4. t-SNE visualizations on the training set.

Figure 5 presents the qualitative results obtained from
evaluating COVID-19 samples in the validation set, offer-
ing insightful visual evidence of our model’s diagnostic ca-
pabilities. The images are accompanied by Class Activation
Mapping (CAM) [30] that underline the areas of interest
that the model focuses on when making a diagnosis, such as
ground-glass opacities, consolidation, or other pulmonary
abnormalities commonly associated with COVID-19. Our
model can highlight specific features and patterns that are
indicative of the infection.

6. Conclusion
In this paper, we present our solution for COVID-19

domain adaptation challenge in the 4th COV19D Compe-
tition. Our two-stage framework begins with training a
model on annotated data, leveraging contrastive representa-
tion learning alongside a modified CORAL loss to reduce
domain discrepancies by aligning feature distribution co-
variances. The strategy was further refined in the second
stage through the use of pseudo-labeling, which capitalized
on non-annotated data from the target domain to bolster the
model’s adaptability and overall performance. The efficacy
of our framework is underscored by comprehensive exper-
imental results, which illustrate a marked enhancement in
COVID-19 detection capabilities. This superiority was fur-
ther validated by our first-place ranking on the COVID-19
domain adaptation leaderboard in the 4th COV19D Compe-
tition, achieving a Macro F1 Score of 77.55%.
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Figure 5. CAM visualization results on COVID-19 CT scans.
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