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Abstract

Trauma is a leading cause of mortality worldwide, with
about 20% of these deaths being preventable. Most of
these preventable deaths result from errors during the ini-
tial resuscitation of injured patients. Decision support has
been evaluated as an approach to support teams during this
phase to reduce errors. Existing systems require manual
data entry and monitoring, which makes tasks challeng-
ing to accomplish in a time-critical setting. This paper
identified the specific challenges of achieving effective deci-
sion support in trauma resuscitation based on computer vi-
sion techniques, including complex backgrounds, crowded
scenes, fine-grained activities, and a scarcity of labeled
data. To address the first three challenges, the proposed sys-
tem involved an actor tracker that identifies individuals, al-
lowing the system to focus on actor-specific features. Video
Masked Autoencoder (Video-MAE) was used to overcome
the issue of insufficient labeled data. This approach enables
self-supervised learning using unlabeled video content, im-
proving feature representation for medical activities. For
more reliable performance, an ensemble fusion method was
introduced. This technique combines predictions from con-
secutive video clips and different actors. Our method out-
performed existing approaches in identifying fine-grained
activities, providing a solution for activity recognition in
trauma resuscitation and similar complex domains.

1. Introduction

Trauma is one of the leading causes of death world-
wide [27]. Despite individual and team training, errors
persist during the initial resuscitation phase of trauma that
can contribute to these deaths [35, 40]. Failures to adhere
to established protocols (rule-based errors) and inadequate
or incorrect knowledge (knowledge-base) account for 85%
of human errors in trauma resuscitation resulting in pre-

ventable deaths [16]. While computerized decision sup-
port systems offer potential solutions to mitigate these er-
rors, their practical implementation during active resuscita-
tion is limited by the need for manual data entry by a dedi-
cated team member [15]. This challenge led to the develop-
ment of an automated system that uses computer vision to
monitor patient status and activities during trauma resusci-
tation. Although computer vision can effectively recognize
resuscitation activities that are easily visible, previous ap-
proaches for identifying relevant but more fine-grained ac-
tivities (e.g., Intravenous (IV) placement and temperature
measurement) have had poor performance.

Several previous studies have used deep learning to
identify activities through ceiling-mounted cameras during
trauma resuscitation procedures [10, 47]. One system [10]
extracted activity-related features (e.g., patient location and
medical devices) and applied Markov Logic Networks to
differentiate activities with these features. Because of its
reliance on manually crafted features, this system may not
perform well in the complex and chaotic environments typ-
ical of trauma resuscitation due to its inability to general-
ize [47]. Another system [47] used a 3D Convolutional
Neural Network (ConvNet) to recognize activities. This
system performed well for easily visualized activities but
performed poorly for fine-grain activities like intravenous
(IV) catheter placement, likely because of an inability of
the model to identify small regions of interest.

Recognizing activities during trauma resuscitation has
several challenges, including a complex background, a
crowded setting leading to partial and transient visual oc-
clusion of activities, and a need to recognize fine-grained
activities that are represented in a small area (i.e., < 5% out
of the whole scene). Obtaining and annotating video data
is an additional challenge in this domain. In contrast to ex-
isting public video datasets (e.g., Kinetics [26], Something-
Something [17], and AVA [18]), patient and provider con-
fidentiality limits the available video samples available for
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training models for trauma resuscitation. Domain knowl-
edge is also required for ground truth coding, increasing the
cost of video annotation.

This research introduced an approach to address the
challenges of identifying fine-grained trauma resuscitation
activities, which first identifies the actor and then recog-
nizes the activities performed by that actor. Using this ap-
proach, the model focused on the movements of individuals
rather than the entire scene, reducing background distrac-
tions from a noisy background and attention to irrelevant
activities. The system begins with the design of a tracker
that detects and tracks actors. After extracting the feature
map from the original video stream, the system isolates
actor-specific features from the feature map using tracked
coordinates and actor identifiers. To address the problem
of limited labeled training data, a Video Masked Autoen-
coder (VideoMAE) pre-trained the feature extractor, i.e.,
Vision Transformer(ViT), with unlabeled videos. This pre-
training process can enhance the ViT model’s ability to ex-
tract meaningful features for medical activities. To enhance
reliability, an ensemble fusion method merged predictions
from consecutive video clips and various actors. In sum-
mary, the main contributions of this work are as follows:

• The development of fine-grained medical activity sys-
tem achieves excellent performance, with a mean av-
erage precision of 0.78.

• The introduction of an actor tracker isolates actor-
specific features to enhance model’s focus and recog-
nition performance.

• Ensemble fusion method increases reliability by inte-
grating predictions from consecutive video clips and
multiple actors.

• Evaluations indicate that the developed method sur-
passes existing methods, especially in recognizing
fine-grained activities, e.g., IV placement and measur-
ing temperature.

2. Related work

2.1. Vision-based activity recognition

Activity recognition is an active area of research in many
domains. This work is focused on identifying specific ac-
tions within video segments. Several approaches have been
used in this field, including two-stream 2D ConvNets [25,
37], 2D ConvNets combined with LSTMs [12,46], 3D Con-
vNets [9,23,45], and Transformers [3,36,39]. These meth-
ods have been successfully applied to several activity recog-
nition datasets, including Kinetics-400 [26], UCF-101 [38],
Something-Something [17], and Jester [33]. Although these
model frameworks can effectively learn temporal and spa-
tial features to recognize actions in short, segmented clips,
these approaches face limitations when applied to longer
videos typically found in real-world applications. Other in-

vestigators integrated object detection with activity recogni-
tion for spatiotemporal action detection. Faster-RCNN was
used to generate proposals, followed by SlowFast networks
to perform multi-label predictions [14]. Subsequent work
showed improved results using more robust backbone net-
works [39]. TubeR was proposed as a solution [49], pro-
viding an end-to-end solution capable of simultaneously lo-
cating and recognizing activities. The successes in activity
recognition [14, 37, 39, 45, 49] are partly due to the avail-
ability of high-quality, labeled datasets. These techniques,
however, have limited applicability to complex settings with
limited labeled data, such as trauma resuscitation.

2.2. Medical activity recognition

Activity recognition systems have been evaluated for ap-
plication in healthcare, using various sensing techniques,
including radio frequency identification (RFID) [5], ac-
celerometers [2, 34], microphones [19], and cameras [47].
Body-attached RFID tags have been used to track the move-
ments of objects and medical personnel in surgical set-
tings [5]. The use of body-attached sensors presents chal-
lenges, such as potential interference with medical proce-
dures, maintenance demands, and the time needed for sen-
sor placement, limiting the effectiveness in time-critical
settings. To overcome the limitations of wearable sen-
sors, some systems have adopted fixed sensors. RFID
tags on medical tools and the use of the received signal
strength indication (RSSI) feature are examples of this ap-
proach [28, 29]. Fixed microphones have been used to cap-
ture speech for recognizing activities [19]. These fixed sen-
sor systems avoid the need for provider interaction but have
performance constraints. These limitations include a re-
quirement for pre-tagging tools and a lack of applicability
to activities not involving taggable tools. Speech recogni-
tion can assist in activities but is limited by the costs and
effort of creating transcripts and the challenge of noisy en-
vironments with overlapping speech. Vision-based tech-
nologies address many of these challenges, including ease
of maintenance and the lack of reliance on physical sen-
sors. A 3D ConvNet was introduced for medical activity
recognition, achieving high performance for many medical
activities [47]. This system recognized medical activities
from the entire video view without focusing on the region
of interest. Consequently, it exhibits limited performance
in identifying fine-grained activities, such as IV placement.
This limitation highlights the need for a fine-grained activ-
ity recognition method using computer vision.

3. Method

Our activity recognition system consisted of an actor
tracker, a feature extractor, an MLP classifier head and an
ensemble fusion(Figure 1).
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Figure 1. System flow: the actor tracker first tracked actors (i.e., bounding boxes (BB) and actor identification) in the frame sequences.
A vision transformer (ViT) extracted spatial-temporal features from the video stream. With the help of bounding boxes and actor iden-
tification, the MLP classifier head focused on the action features of each actor to recognize medical activities. Region of interest align
(RoIAlign) [21] aligned the dimension of actor features with the input of MLP classifier. Ensemble fusion smoothed the prediction across
time and aggregated prediction scores of actors to enhance performance.

Figure 2. Matching pipeline of actor tracker. The use of a Kalman
filter estimated the bounding boxes of Tracklet at the next time
frame. The system then matched Tracklet with new detections
based on similarity features and updated Tracklet with the match-
ing results.

3.1. Actor Tracker

Multiple actors appear simultaneously in the videos. For
this reason, activity recognition relies on the recognition of
consecutive features belonging to the same actor. This led
us to develop an actor tracker that assigns a unique identifier

to the first detected actor and maintains tracking of that ac-
tor using the same identifier. The most influential paradigm,
tracking-by-detection, was used for this purpose [41,43,48].
Tracklet set was defined as Tt−1, which stores tracklet (i.e.,
bounding box, actor ID, and actor’s id-related features) at
frame t − 1. After actor detector (i.e. YOLOv8) predict-
ing the new detections in frame, t, the tracking procedure
(Figure 2) was as follows:

• Model the movement of each actor and predict their
bounding boxes for the next time frame t to update Tt.

• Associate new detections with current Tt and maintain
Tt:

– If a new detection matches an existing tracklet,
update the tracklet’s bounding box with that of
the new detection.

– If a new detection does not match any existing
tracklets, create a new tracklet for it in Tt.

– If an existing tracklet does not find a matching
new detection, remove that tracklet from Tt.

Given tracklet Tt−1, the Kalman filter (KF) [8] predicted
the location of each actor in frame t and update Tt. This
estimation process was applied to every actor from the pre-
vious frame to refresh the tracklet set Tt. Tracking of multi-
ple actors relied on ID Match process, which calculates the
similarity between tracklets and new detections, and then
pairs them based on this similarity.

Similarity metric. Location and appearance features
play a significant role in matching tracklets [7]. Advances
in representation learning have led to the adoption of the
Re-Identification (Re-ID) feature model, which extracts
deep appearance features and facilitates long-term track-
ing [1, 42, 48]. In medical rooms, actors may be crowded,
and occlusions of medical activities by actors can occur. To
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address this challenge, both location and ID features are in-
corporated into our similarity metric. For location similar-
ity, intersection over union (IoU) distance metric was used:

dIoUi,j = 1− IoU(BBdet
i , BBtracklet

j ), (1)

where BBdet
i and BBtracklet

j are bounding box of ith de-
tection and bounding box of jth tracklet, respectively. The
IoU distance measure can be ineffective for long-term track-
ing because it becomes unreliable when an actor is occluded
for a prolonged time, leading to inaccurate bounding box
estimations for similarity checks. To address this chal-
lenge, our approach involved Re-ID feature matching. The
advanced BoT(SBS) model [22] extracted Re-ID features,
with ResNeSt50 [44] serving as the backbone. Given the
potential unreliability of Re-ID features during occlusion,
the exponential moving average (EMA) method updated the
average Re-ID feature for the ith tracklet using the formula
embti = β ∗ embt−1

i + (1 − β) ∗ eti, where eti is the Re-ID
feature embedding of latest matched detection, embt−1

i rep-
resents the previous average feature and β (with a value of
0.9 [1]) acts as the momentum term. The similarity of the
Re-ID features was then measured using cosine distance.

dcosi,j = 1−
embti ∗ etj∥∥embti

∥∥
2

∥∥etj∥∥2 , (2)

where etj is the Re-ID feature of jth new detection and embti
is the RE-ID feature of ith tracklet.

Matching pipeline. The matching pipeline was de-
signed to ensure comprehensive tracking of activities in
the trauma room, necessitating the tracking of all poten-
tial actors while accommodating some false positives, such
as background elements. To consider all potential actors,
a low detection threshold of 0.2 was applied to the detec-
tor. Our pipeline used different strategies for high-score
and low-score detections divided at a threshold θ = 0.6.
For high-score detections, the pipeline matched them with
tracklets based on the lowest IoU and Re-ID distances. For
low-score detections, IoU distance was used to match un-
matched tracklets, given the potential unreliability of Re-ID
features at low detection scores. After associating, track-
let set was maintained by creating new tracklets, updating
the tracklets’ bounding box with new detection, removing
inactive tracklets, and updating Re-ID feature.

3.2. Feature extractor

The feature extractor processes video frames or se-
quences to obtain high-level features necessary for task
recognition. Vision Transformer (ViT) served as our pri-
mary feature extraction method. ViT was chosen because of
ViT’s performance in other applications [13]. VideoMAE-
based self-supervised learning further refined the feature ex-
traction process using unlabeled videos.

Figure 3. Cube embedding. To tokenize the video as input of ViT,
it extracted and linearly embedded discrete tubes that cover the
spatiotemporal input volume without overlapping

Video stream pre-processing. In addition to standard
pre-processing techniques, including random cropping, flip-
ping, and rescaling, stride temporal downsampling and cube
embedding were applied on video data. This is because
videos often have high frame rates (e.g., 30 FPS) but slow
semantic changes. This method involved initially selecting
a clip of N consecutive frames from the video, which was
then reduced to T = N

4 frames through temporal sampling,
with a stride of 4. Each frame had H ∗W ∗ 3 pixels, where
H and W denoted the frame’s height and width, respec-
tively. In the cube embedding process (Figure 3), video
frames were divided into non-overlap cubes, each contain-
ing 2∗16∗16 pixels, to create individual token embeddings.
This division resulted in a total of T

2 ∗ W
16 ∗ H

16 tokens, each
of which was then converted into a D-dimensional (D =
1024) token embedding. These token embeddings served as
the input for the ViT model. This approach reduced the spa-
tial and temporal dimensions of the input, effectively mini-
mizing the spatiotemporal redundancy present in the video
data.

Video-MAE-based labeled-free pre-training. Label-
ing large volumes of video data is challenging. With only
limited labeled videos available, training a ViT model was
difficult due to the lack of inductive biases in ViTs [13].
A self-supervised learning method, Video-MAE [39]pre-
trained the ViT model. Video-MAE introduced a video re-
construction task by randomly masking out video tubes (i.e.,
video tokens) and reconstructing them through an encoder
(i.e., ViT) and a decoder. The decoder was an auxiliary net-
work (a shallow transformer) that assisted with ViT train-
ing. For a video V ∈ R3∗H∗W∗T , the training involved a
mean squared error (MSE) loss calculation between the nor-
malized masked tokens and their reconstructed counterparts
in the pixel space. The loss function was defined as:

Lmae =
1

Ω

∑
idx∈Ω

∣∣∣V (idx)− V̂ (idx)
∣∣∣2 , (3)
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where idx is the index of a masked tube, Ω represents the
set of all masked tubes, and V̂ is the reconstructed video.
Following pre-training, the encoder model was used to ini-
tialize the ViT, which was then fine-tuned using our labeled
video dataset.

3.3. Ensemble fusion

Visual occlusions can lead to noisy predictions from the
model. An ensemble fusion technique leveraged medical
knowledge to enhance the system’s robustness.

Smooth filter across time. Domain knowledge and
statistical analyses showed that the minimum duration for
activities that we sought to recognize was over 30 sec-
onds [47]. Given that this duration significantly exceeds
our model’s inference interval of 1 second, a moving aver-
age method smoothed the prediction scores over time using
the formula:

P
′
(t, idactor) =

1

Nw

t+⌊N
2 ⌋∑

t−⌊N
2 ⌋

P (t, idactor), (4)

where P (t, idactor) ∈ RC is the prediction score at time t,
C is number of activity classes, idactor is the actor id and
Nw is sliding window size.

Fusion across multiple actors. In resuscitation, patient
care activities often involve collaboration among multiple
actors. To improve recognition of these coordinated ac-
tivities, our fusion method integrated predictions from ac-
tors using a maximum fusion method. The predicted prob-
abilities of all actors at time t were denoted by P

′
(t) ∈

RC∗Nactor , where C is number of classes and Nactor is
number of actors. The fused predictions were then calcu-
lated as P

′′
(t) = max(P

′
(t), dim = 1). P

′′
(t) ∈ RC

represents the highest probability across the actors for each
class at time t.

4. Experiment
Video recording. Our study was conducted at Chil-

dren’s National Medical Center with approval from the hos-
pital’s Institutional Review Board. The emergency depart-
ment resuscitation room is equipped with a ceiling-mounted
camera that records trauma resuscitation for performance
improvement. The recording system is activated upon pa-
tient entry into the room and terminated upon departure.
Parental or guardian informed consent is obtained for the
use of videos for research. Over two years, video record-
ings included 230 trauma resuscitation cases. These videos
were captured at a frame rate of 30 fps, with a resolution of
640x480 pixels. The average length of the recordings was
25 minutes, ranging from 16 to 35 minutes.

Labeling strategy. 230 trauma resuscitation videos
were divided into three subsets: 170 for unlabeled training,

40 for labeled training, and 20 for testing. The labeling pro-
cess involved two steps: drawing bounding boxes around
each actor and labeling each actor’s bounding box with their
activity. The labeled training dataset videos were prepared
for annotation by extracting frames at one frame per sec-
ond. Due to the labor-intensive process of manually draw-
ing bounding boxes, AI-assisted bounding box labeling
was introduced. This method randomly sampled 200 frames
from training videos and manually outlined each actor with
bounding boxes using the computer vision annotation tool
(CVAT) [11]. These manually annotated frames were then
used to fine-tune a detection model using YOLOv8 [24],
enabling automated bounding box annotations for the rest
of the frames in our training dataset. Following annota-
tions, domain experts labeled each actor’s bounding box
with the medical activities being performed. Using AI-
assisted bounding box labeling, annotating a video takes
about 1 hour, compared to 7.25 hours for manual labeling.
The use of AI-assisted bounding box annotations reduced
annotation time by 86%.

Medical activities. This research concentrated on five
critical and frequently executed medical activities during
trauma resuscitation: cervical collar (c-collar) placement,
IV catheter placement, rolling the patient (log roll), place-
ment of a warm blanket (covering warm blanket), and tem-
perature measurement. C-collar placement ensures spinal
stability during patient log roll for injury assessment. IV
placement facilitates diagnostic and therapeutic interven-
tions through blood draws and medication administration.
Temperature measurement is needed to monitor the need for
warming measures while covering a patient with a warm
blanket helps maintain core body temperature. Among
these activities, IV placement and temperature measure-
ment present challenges in computer vision due to the small
size of the essential tools. For example, the IV needle and
thermometer probe constitute much less than 5% of the total
camera view.

Baseline. Due to its specific design for medical activ-
ities, our method is compared exclusively with our earlier
work in medical activity recognition [47]. Variants of gen-
eral video understanding models within the medical activity
recognition domain are evaluated in the ablation study, fo-
cusing on the effects of different backbones.

4.1. Training pipeline.

Actor detection and activity recognition models were
trained separately. For both models, a two-step training
process was adopted involving pre-training and fine-tuning.
Initially, the YOLOv8 model was pre-trained on the COCO
dataset [30] and subsequently fine-tuned using our own
dataset with labeled bounding boxes, running this process
for 100 epochs. This approach aligned with established
practices [3, 6] for training video transformers from scratch
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on video datasets with limited available samples. For the
activity recognition model, a two-stage pre-training process
was also conducted. Initially, the ViT-Large model was pre-
trained on the ImageNet-1K dataset for 1600 epochs to learn
spatial features. The model was then adapted for tempo-
ral feature learning by inflating the 2D patch embedding
layer into a cube embedding layer. Pre-training continued
on the Kinetics datasets [26]. This step helps the model to
better understand temporal dynamics by randomly masking
out cube embeddings and reconstructing them. The two-
stage pre-training process is resource-intensive and time-
consuming. For this reason, we opted to download the
pre-trained weights. To address the unique characteristics
of medical activity motion, the ViT-Large model was fur-
ther trained using VideoMAE on the unlabeled training set.
This process aided in domain adaptation learning. Finally,
both the ViT and MLP classifier were fine-tuned using the
labeled dataset in a supervised manner for 30 epochs, en-
suring that the model was adapted to specific features of
targeted activities.

4.2. Implementation detail

Our experiments were conducted with four RTX 3090
GPUs. Our pre-training setup followed a previously out-
lined configuration on VideoMAE [39]. The ViT-Large and
MLP classifier were fine-tuned through several steps. Ini-
tially, frames were randomly re-scaled to a range of 256
to 320 pixels, cropped to 256x256 pixels, and subjected
to random horizontal flipping with a 50% probability. The
AdamW optimizer [32] was used, setting the learning rate to
2.5e-4 and the weight decay to 0.05. A layer-wise learning
rate decay [4] of 0.75 was implemented. The batch size was
128 (32 per GPU). Due to the insufficient VRAM capacity
of the 3090 GPUs for a batch size of 128, gradient accu-
mulation was employed during training. The training pro-
cess spanned 30 epochs, including an initial 5-epoch warm-
up phase, and utilized a cosine decay schedule [31] for the
learning rate.

Table 1. Average Precision. Our approach outperforms the exist-
ing vision-based approach.

Activity ConvNet [47] Our method
C-collar placement 0.57 0.94

IV placement 0.02 0.45
Log roll 0.87 0.98

Warm blanket 0.65 0.84
Temperature measurement 0.02 0.69

mAP 0.42 0.78

4.3. Results

The effectiveness of our approach was measured using
the average precision (AP) metric. The results (Table 1)

showed that our method outperformed an existing medi-
cal activity recognition method that uses i3D [47], partic-
ularly in detecting small-scale activities like IV placement
and temperature measurement. Despite the substantial im-
provements in two small-scale activities, a performance gap
remains when compared to other large-scale activities. This
gap occurred because essential features in IV placement
and temperature measurement, such as tourniquets and ther-
mometer probes, are frequently hidden for extended peri-
ods. To address this issue, we planned to enhance accuracy
by incorporating multiple viewing angles in future work.

4.4. Ablation study

We conducted several ablation experiments to gain in-
sights into the characteristics of our approach and its influ-
ence on the performance of medical activity analysis. We
varied actor tracker, ensemble fusion, and video-MAE in
Table 2 and studied backbones in Table 3.

Ensemble fusion. Our method showed improvements in
performance across all activities compared to the approach
without ensemble fusion. A notable improvement in recog-
nition of c-collar placement activity was observed. In this
task, an actor’s hand often covers the C-collar for periods
as brief as 1 second. Ensemble fusion helped mitigate the
effects of these short-term occlusions. We observed no dif-
ference in the recognition of activities like log roll and IV
placement after applying ensemble fusion. The log roll ac-
tivity was less likely to be occluded by actors. IV place-
ment, however, was often long-term obscured by a warm
blanket. Based on these observations, the ensemble fusion
proved particularly beneficial for activities prone to brief
occlusions.

Actor tracker. To assess the impact of using an actor-
tracking-based focus mechanism, we developed a baseline
method, i.e., “W/ actor tracker”. This method took the en-
tire feature map as input for an MLP classifier. Performance
significantly dropped without the actor tracker, particularly
for small-scale activities like IV placement and temperature
measurement, which have small critical regions and are sus-
ceptible to noise. Our improved focus explained the success
of our method on small-scale activities. Insufficient training
data prevented model learning from focusing on relevant re-
gions. We introduced an actor-tracking-based focus to re-
duce the difficulty of learning focus and the requirement of
training data.

Video-MAE based label-free pre-training. We stud-
ied the impact of pre-training with our own unlabeled video
dataset, as the benefits of pre-training with a large vol-
ume of public videos have already been examined in pre-
vious research [39]. We conducted an ablation experiment
where we did not pre-train the model using the unlabeled
trauma video dataset (“W/O VideoMA”), still pre-training
on publicly available data [26]. VideoMAE pre-training
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Table 2. Ablation study to system flow. The average precision of our method was reported by removing ensemble fusion, actor tracking,
or Video-MAE pre-training

Activity Our method W/O ensemble fusion W/O actor tracker W/O VideoMAE
C-collar placement 0.94 0.75 0.55 0.89

IV placement 0.45 0.41 0.02 0.46
Log roll 0.98 0.96 0.99 0.97

Covering warm blanket 0.84 0.79 0.85 0.82
Temperature measurement 0.69 0.56 0.03 0.64

mAP 0.78 0.69 0.49 0.75

only marginally enhanced model performance in recogniz-
ing the C-collar placement and temperature measurement
activities. This minor improvement may be due to the close
association of these activities with specific medical equip-
ment (e.g., C-collars and thermometers). Pre-training us-
ing VideoMAE likely aided the model’s adaptation to the
medical domain by learning the spatial features of medi-
cal equipment from unlabeled videos. Given that learning
these spatial features appears sufficient for domain adapta-
tion, we planned to use imageMAE, which focuses on spa-
tial features only, for domain adaptation to reduce training
expenses.

Pre-training with VideoMAE may have helped the model
adapt to the medical domain by learning spatial features of
medical equipment from unlabeled videos. Due to learn-
ing spatial features being enough for domain adaptation,
We planned for the future evaluation of performing domain
adaptation using imageMAE [20] to save training costs.

Backbone selection. Different backbone architectures
were tested, including ViT-Large [13], ViT-Base [13],
i3D [9], and SlowFast [14], to assess their impact on recog-
nition performance. Among these, ViT-Large achieved the
highest performance, likely due to its greater model capac-
ity and complexity. ViT-Large models had more param-
eters and layers than smaller models, likely leading to an
enhanced ability to discern more detailed features in video
data. When comparing ViT-based backbones with conven-
tional convolutional backbones, it is observed that ViT mod-
els derive greater benefits from transfer learning and pre-
training on extensive datasets. This advantage allowed them
to acquire more generalizable features during pre-training,
a function allowing models to be efficiently fine-tuned for
activity recognition.

5. Conclusion and future work

A fine-grained medical activity recognition system was
developed. This system addressed several challenges, in-
cluding complex environments, crowded scenes, subtle
movements, and a lack of labeled data. An actor tracker
was used to better focus the model on relevant actions. Its
performance was enhanced by implementing video-MAE-

Table 3. Ablation study to backbone. The average precision of our
method was reported by varying backbone.

Activity ViT-L ViT-B i3D SlowFast
C-collar placement 0.94 0.89 0.57 0.59

IV placement 0.45 0.40 0.32 0.27
Log roll 0.98 0.91 0.87 0.68

Covering warm blanket 0.84 0.78 0.66 0.77
Temperature measurement 0.69 0.65 0.43 0.45

mAP 0.78 0.73 0.57 0.56

based self-supervised learning for domain adaptation and
by using ensemble fusion to improve prediction reliabil-
ity. Testing confirmed the effectiveness of our approach,
especially in identifying fine-grained activities. Our system
has limitations. First, our method does not entirely resolve
long-term occlusion problems, as it mainly reduces the ef-
fects of short-term obstructions. Second, deploying our ViT
model in clinical settings might be challenging due to re-
source constraints (e.g. without GPU).

To address the issue of occlusion, we intend to set up
multiple cameras to provide different perspectives (e.g., top,
side, and front). This multi-view approach, however, also
has challenges. Activities may look different from each an-
gle, complicating the task of consistently recognizing the
same activity across various views. Our system must be
scalable and capable of accommodating more cameras or
adapting to environmental changes without losing perfor-
mance. Given the limited availability of labeled videos,
self-supervised learning, such as constructive learning, is
a promising strategy for training models for this purpose.
This technique uses the inherent structure and relationships
in multi-view data to build strong representations, reducing
the dependency on extensive labeled datasets.

Our goal is to create an efficient recognition model that
any hospital can use because the computation resource (e.g.,
GPU VRAM) is limited in hospitals. Privacy concerns
prevent us from using cloud-based services (like AWS or
Azure) to host our recognition servers. To overcome the
challenges of computation resources, we aim to develop a
more compact model that retains its effectiveness while re-
quiring less computational power and memory. We plan to
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compress our model through several techniques, including
model distillation, pruning, quantization, and the use of effi-
cient transformer variants. These methods will help reduce
the model’s size and resource needs, making it more feasi-
ble for widespread deployment.
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