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Abstract

This paper introduces a novel cross-camera domain
adaptation method to address the challenges associated
with achieving consistency and adaptability in cardiovascu-
lar disease (CVD) risk assessment using retinal images cap-
tured by conventional and portable cameras. The proposed
method leverages an enhanced ordinal CVD risk classifica-
tion approach to predict CVD risk levels, effectively cap-
turing the ordinal relationship and implicit information em-
bedded within retinal images. Additionally, a plug-and-play
risk consistency loss is incorporated into the image transla-
tion model to ensure alignment in risk assessment between
different image domains. Experimental evaluations on di-
verse datasets demonstrate the effectiveness and superior-
ity of the proposed method in achieving consistent CVD
risk assessment across various camera models. The results
highlight the potential of the proposed approach to enhance
early detection and intervention of CVD, utilizing the con-
venience and cost-effectiveness of portable retinal imaging
technology. Overall, this research contributes to the field
of computer-aided medical imaging by providing a robust
and adaptable solution for CVD risk assessment, ultimately
benefiting patients and healthcare providers in their efforts
to combat CVD.

1. Introduction
Cardiovascular Diseases (CVD) are prevalent conditions re-
quiring early detection and intervention for effective treat-
ment and patient recovery. While medical guidelines, such
as the WHO-CVD score [6], exist for predicting CVD risk
based on patient physical data, they often require compre-
hensive and invasive examinations. Retinal image analy-
sis offers a non-invasive approach to visualize microcircu-
lation, and changes in retinal vessel calibers can indicate

CVD risk factors [1]. Retinal cameras have emerged as a
cost-effective alternative for efficient and convenient CVD
risk assessment based on retinal images. Machine learn-
ing methods have also been employed for CVD risk evalua-
tion using retinal images [18][11]. However, the commonly
used retinal cameras in clinical practice and research, such
as Topcon, Canon, Zeiss, and Heidelberg, are bulky desktop
models, and high-quality retinal samples ideal for cardio-
vascular risk inference are primarily captured using these
devices. Due to variations in specifications among differ-
ent brands and models of retinal cameras [3][4], images ob-
tained from low-cost portable retinal cameras may suffer
from compromised image quality, such as overexposure of
the optic disc, and exhibit significant stylistic differences
compared to results obtained using large-scale devices [16].
These factors contribute to domain discrepancies and adapt-
ability challenges in retinal camera-based research, conse-
quently hindering the generalizability and robustness of ma-
chine learning-based CVD risk assessment tasks across dif-
ferent cameras.

To tackle camera domain variations in cross-camera
CVD risk assessment tasks, prominent emphasis has been
placed on feature and image alignment techniques in exist-
ing methods. For instance, Liu et al. [8] proposed a collab-
orative feature ensembling adaptation method for optic disc
and cup segmentation, while Lei et al. [7] developed an un-
supervised domain adaptation approach for the same task.
Additionally, Yang et al. [17] introduced a camera adap-
tation method based on Residual-CycleGAN for diabetic
retinopathy screening. Moreover, Ran et al. [12] leveraged
a source-free active domain adaptation method to generate
features of color fundus images by noise, and Wei et al.
[15] explored the use of transformers to mitigate this issue.
Despite their focus on the explicit quality of target domain
images, requiring a substantial number of challenging-to-
acquire training images, these approaches often overlook
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the implicit image features and fall short in addressing the
issue of consistency in risk assessment across different cam-
eras.

In this paper, we propose a novel plug-and-play cross-
camera domain adaptation method aimed at transform-
ing images captured by portable cameras into images that
closely resemble those acquired by standard clinical prac-
tice cameras. Our method ensures consistency in CVD risk
assessment between the different image domains. Firstly,
we introduce an enhanced ordinal CVD risk classification
model based on retinal images, named Enhanced Ordinal
CVD Risk (EOCRisk) classification. This model leverages
ordinal loss to improve performance in predicting CVD risk
levels, providing a more nuanced approach compared to tra-
ditional classification methods. Secondly, we design an in-
sertable risk consistency loss that can be applied to any im-
age translation framework. Through ablation experiments
conducted on pix2pixHD [14] and CycleGAN [19], we
demonstrate the effectiveness of the EOCRisk classification
model and the risk consistency loss in improving the consis-
tency of CVD risk assessment in different image translation
tasks across portable and conventional retinal cameras. Fur-
thermore, our method is validated on external datasets cap-
tured by three different portable cameras, showing promis-
ing results in addressing domain variations introduced by
various cameras.

2. Methods
2.1. Enhanced Ordinal CVD Risk Classification

To address the task of CVD risk score prediction, we
propose the Enhanced Ordinal CVD Risk Classification
(EOCRisk). EOCRisk utilizes an ordinal multi-label clas-
sification method that transforms the original CVD scores
into a 10-level ordinal scale, treating each level as a distinct
class for multi-class classification. The core component of
EOCRisk is the Weighted Logarithmic Loss (LossWL) func-
tion, defined as follows:

LossWL(p, l, im) = mean
(
−

N∑
i=1

(
log(s(p)i,1) · li

+ log(s(p)i,0) · (1− li)

)
· imi

)
,

(1)

where p refers to the raw, unprocessed output predictions, l
indicates the CVD risk level for each sample, im contains
the importance weights assigned to each sample, and N rep-
resents the number of samples in the batch. The term s(p)i,1
denotes the probability for the i-th sample to be classified
as a high-risk signal, while s(p)i,0 represents the probabil-
ity for the i-th sample to be classified as a low-risk signal.
The variable li corresponds to the one-hot vector indicating

the CVD risk level (ranging from 0 to 9) for the i-th sample,
and imi denotes the importance weight assigned to the i-th
sample.

Explanatorily speaking, we use the softmax probabili-
ties of high-risk and low-risk signals to calculate a weighted
sum for the loss function. This involves taking the negative
logarithms of these probabilities and weighting them based
on the corresponding risk levels and importance weights as-
signed to each sample. By summing up these weighted val-
ues and taking the mean across the batch, we obtain the
overall loss. This methodology ensures that the logarith-
mic probabilities are appropriately weighted, taking into ac-
count both the risk levels and the importance assigned to
each sample. The final predicted risk level by EOCRisk is
determined by the cumulative value of the predicted logits
across the various risk signals, with higher values indicat-
ing a higher risk level. The overall network architecture is
illuminated in Fig. 1.

EOCRisk effectively captures the consistency and ordi-
nal relationship between risk levels while mitigating the im-
pact of category imbalance. By leveraging this approach,
we enhance the accuracy of CVD risk assessment across
various cameras and facilitate implicit learning of relevant
retinal image features associated with CVD diagnosis.

Figure 1. The network structure of the EOCRisk classification
model and the calculation method for predicting the final risk val-
ues.
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2.2. CVD Risk Consistency Loss

Building upon the aforementioned risk prediction model
EOCRisk, we introduce a risk consistency loss that can be
seamlessly integrated into any image translation framework.
To illustrate this concept, we consider the pix2pixHD gen-
erative adversarial network architecture [14], as depicted in
Fig. 2 (right). Specifically, we focus on the translation of
images captured by an Optain camera to images resembling
those from a Topcon camera.

Figure 2. The model architecture of applying the risk consistency
loss in pix2pixHD.

In the proposed approach, the generator network takes
Optain camera images as input and synthesizes correspond-
ing fake Topcon camera images. To quantify the consis-
tency in CVD risk assessment between the two image do-
mains, we employ the mean squared error (MSE) as a mea-
sure of agreement between the risk values of the target do-
main images and the generated fake images. This MSE-
based metric captures the level of concordance in CVD
risk evaluation. Mathematically, the risk consistency loss
(Lconsistency) is formulated as:

Lconsistency =
1

N

N∑
i=1

(
Risk(x(i)

target)− Risk(G(x
(i)
target))

)2

,

(2)
where N represents the batch size, x(i)

target denotes the i-th
target domain image, G(·) signifies the image translation
function responsible for mapping target domain images to
their fake counterparts, and Risk(·) represents the CVD risk
assessment function. The loss term captures the squared
difference between the risk value of a target domain image
x
(i)
target and the risk value of the corresponding generated fake

image G(x
(i)
target). By averaging these squared differences

across the batch, we obtain the overall risk consistency loss.
During training, minimizing this loss aids in aligning the
CVD risk assessment between the target domain and the
generated fake images.

3. Experiments

3.1. Datasets

For the training of the EOCRisk assessment model, we uti-
lized two datasets: the UK Biobank (UKB) Study [13] and
a Chinese cohort dataset, with the aim of ensuring diversity
in camera types and subjects’ ethnicities. The UKB dataset
consists of retinal images captured using the Topcon 3D
OCT-1000 MKII camera, while the Chinese dataset com-
prises images obtained from the TRC-NW6S camera (Top-
con, Tokyo, Japan). After quality assessment and screening,
the final dataset included a total of 105,277 retinal images
from the UKB development set and 30,092 retinal images
from the Chinese dataset. The data were divided into train,
validation, and test sets at a patient-level ratio of 3:1:1, with
random allocation across the datasets.

During the camera adaptation experiment, we collected
1,292 pairs of images captured by the Topcon TRC-NW8
camera and the Optain portable camera. Out of these pairs,
65 pairs of images were set aside as the test set at the patient
level, while the remaining pairs were allocated for training
and validation, with a ratio of 4:1. The data does not contain
information related to the subjects’ CVD risk. For external
validation, we acquired images of the right and left eyes of
11 subjects on three different brands of Optain, CenterVue-
DRS, and SysEye portable fundus cameras, to assess the
generalization capability of our proposed method.

3.2. Implementation details

During the training process of the EOCRisk assessment
model, we selected Densenet169 [5] as the backbone ar-
chitecture and initialized it with pre-trained weights from
ImageNet [2]. The input images were consistently resized
to a fixed dimension of 224x224. We employed a learning
rate of 1e-5 with a batch size of 64 for optimization. To
enhance the model’s generalization capability, various data
augmentation techniques were applied, including horizon-
tal and vertical flipping, random zoom in and zoom out, and
RandomErasing.

Regarding the training of the image translation model for
camera adaptation, we set the weights for the risk consis-
tency loss in pix2pixHD [14] and CycleGAN [19] to 3 and
4, respectively. Throughout the training process, the im-
ages underwent random horizontal/vertical flips and crop-
ping and were then resized to a fixed size of 768x768 pix-
els. We utilized the Adam optimizer with optimization pa-
rameters beta1 = 0.5 and beta2 = 0.999. The learn-
ing rate was adjusted every 50 iterations using the PyTorch
lr scheduler, starting with an initial value of 0.0002. Each
training session consisted of 200 epochs and was conducted
on an NVIDIA GeForce RTX 3090 GPU.
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Table 1. The performance comparison between a conventional regression model and our proposed EOCRisk classification model for
predicting CVD risk.

Methods R2-Score MAE RMSE Explained Var. Correlation
General Regression 0.300 1.85 2.34 0.500 0.682
EOCRisk (Ours) 0.480 1.53 1.00 0.518 0.726

Figure 3. Two visualization examples of camera domain adap-
tation using pix2pixHD with our proposed EOCRisk consistency
loss.

3.3. Evaluation criteria

Performance evaluation metrics are defined to assess the
effectiveness of the proposed method in achieving consis-
tency in CVD risk assessment. The metrics include the
coefficient of determination (R2-score) [9], mean absolute
error (MAE), root-mean-square error (RMSE), explained
variance [10], and correlation coefficient. The R2 values
indicate the improvement in the predictive power of the
risk assessment models, while the RMSE and MAE values
demonstrate the reduction in the prediction errors. The ex-
plained variance and correlation coefficients highlight the
increased consistency and alignment between the risk val-
ues before and after applying the domain adaptation tech-
nique. Note that in the results below, the R2-score and ex-
plained variance may occasionally be negative. This im-
plies that the model’s performance is worse than that of a
horizontal line fitted directly to the data or than simply us-
ing the mean of the observed outcomes as a predictor. Such
negativity indicates exceptionally poor model performance.

3.4. Ablation studies

Firstly, we compared the performance of our proposed
EOCRisk classification model with a conventional regres-
sion model when both models were trained using the same
backbone and training scheme. The results of the CVD risk
prediction can be seen in Table 1. The calculation of the
ground-truth risk followed a recently calibrated WHO-CVD

risk calculation method [6]. Our approach outperforms the
regular regression model in all metrics, with an improve-
ment of 18 percentage points in R2-Score.

In addition, we conducted ablation experiments on two
image translation models to validate the effectiveness of the
risk consistency loss and the superiority of the EOCRisk
assessment model over the regular CVD risk regression
model. The results of the ablation experiments are pre-
sented in Table 2. Specifically, pix2pixHD [14] was primar-
ily applied to the translation from the image domain cap-
tured by the portable camera (Optain) to the image domain
captured by the upright camera (Topcon), while CycleGAN
[19] explored the translation in both directions. The find-
ings indicate that performing domain translation using the
two baseline models had limited impact in mitigating the
disparities in CVD risk across different camera domains.
However, with the introduction of the risk consistency loss,
the consistency of CVD risk assessment after domain trans-
lation improved for both datasets. Notably, the risk loss
based on the EOCRisk assessment model outperformed the
loss based on the regular regression model. By utilizing
pix2pixHD and incorporating the risk consistency loss with
EOCRisk for camera adaptation, the R2-score and correla-
tion coefficient for CVD risk between the two camera do-
mains reached 0.6404 and 0.8275, respectively, while the
MAE decreased to 0.8769, demonstrating the high efficacy
of our approach. The visualization of this method is pre-
sented in Fig 3.

3.5. External validation

By comparing the CVD risk value indicators before and af-
ter applying our domain adaptation method for each com-
bination of camera models (Optain, DRS, and SysEye),
as summarized in Table 3, we observed improvements in
the consistency of CVD risk assessment across the differ-
ent camera domains after incorporating our risk consistency
loss based on the EOCRisk assessment model. Specifically,
for the Optain and DRS camera combination, the R2 score
improved from -3.1700 to 0.3928, the RMSE decreased
from 4.3684 to 1.1902, the MAE decreased from 3.9167
to 1.0833, and the correlation coefficient increased from -
0.3892 to 0.6513. Similar improvements in CVD risk as-
sessment consistency were observed for the Optain and Sy-
sEye, as well as the DRS and SysEye camera combinations.
This demonstrates the effectiveness of our method in im-
proving the consistency of CVD risk not only between the
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Table 2. The disparities in CVD risk levels after applying different camera adaptation methods to datasets collected from two retinal
cameras. The datasets are denoted as O for Optain data and T for Topcon data.

Models Methods R2 RMSE MAE Explained Var. Correlation
Original Data -0.3047 2.5115 1.9385 -0.2765 0.3782

Pix2pixHD[14] O->T
Baseline 0.5990 1.3923 0.9846 0.6186 0.7853
Baseline with

Regression Risk Loss 0.6245 1.3473 0.9231 0.6253 0.7886

Baseline with
EOCRisk Loss 0.6404 1.3185 0.8769 0.6463 0.8275

Cycle GAN[19]

O->T
Baseline -0.0094 2.0718 1.4615 0.0151 0.5150
Baseline with

Regression Risk Loss 0.0630 1.9962 1.3692 0.0924 0.5655

Baseline with
EOCRisk Loss 0.3524 1.6595 1.0615 0.3769 0.6788

T->O
Baseline 0.0883 2.1231 1.6462 0.0888 0.4467
Baseline with

Regression Risk Loss 0.2781 1.8892 1.4769 0.2812 0.5790

Baseline with
EOCRisk Loss 0.3372 1.8102 1.4615 0.3384 0.6256

Table 3. Comprehensive external evaluation of the CVD risk assessment performance for three image domains, illustrating the comparison
between the ”before” scenario (without domain adaptation) and the ”after” scenario (with domain adaptation using pix2pixHD with our
proposed EOCRisk classification consistency loss).

Data Methods R2 RMSE MAE Explained Var. Correlation
Optain
&DRS

before -3.1700 4.3684 3.9167 -2.3672 -0.3892
after 0.3928 1.1902 1.0833 0.3958 0.6513

Optain
&SysEye

before -2.7500 4.5644 3.8333 -2.7450 -0.3942
after 0.1981 1.5275 1.6667 0.2840 0.4436

DRS
&SysEye

before -0.6571 2.7538 2.0833 0.0121 0.4790
after 0.3214 1.2583 1.0833 0.4673 0.6222

upright camera domain and the portable camera domain, but
also across different portable camera models.

4. Discussion

Our proposed plug-and-play EOCRisk effectively mitigates
the inconsistency in predicting CVD risk using retinal im-
ages across different cameras and demonstrates efficacy
across various image translation networks. Existing camera
adaptation methods for retinal images often prioritize visual
fidelity across different cameras but overlook their implicit
information. This limitation hampers the enhancement of
implicit information consistency across cameras, especially
when data availability is limited. In contrast, our approach
addresses this challenge by focusing primarily on the im-
plicit CVD risk information embedded within the images.
As a result, our method yields superior performance and
practical utility in CVD risk prediction.

However, it is important to note that our primary focus

was on achieving consistency in CVD risk prediction and
implicitly enhancing domain translation. We did not exten-
sively explore the direct impact of our approach on the reti-
nal images themselves. In future research, we aim to delve
deeper into the interpretability of our method. Additionally,
we plan to investigate how camera adaptation can address
the generalization issues of other deep learning methods re-
lated to retinal images, such as specific lesion adaptation for
tasks like diabetic retinopathy classification and age-related
macular degeneration detection. This will provide a deeper
understanding of our methodology and contribute to further
advancements in the field.

5. Conclusion

In this study, we present a novel cross-camera domain adap-
tation method to enhance the consistency of cardiovascular
disease (CVD) risk assessment using retinal images cap-
tured by conventional and portable cameras. Our approach
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incorporates a risk consistency loss based on the enhanced
ordinal CVD risk classification model, seamlessly integrat-
ing it into any image translation model and ensuring reliable
CVD risk assessment across different cameras. Experimen-
tal results demonstrate the effectiveness and superiority of
our proposed method.
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