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Abstract

When deploying pre-trained video object detectors in
real-world scenarios, the domain gap between training and
testing data caused by adverse image conditions often leads
to performance degradation. Addressing this issue be-
comes particularly challenging when only the pre-trained
model and degraded videos are available. Although various
source-free domain adaptation (SFDA) methods have been
proposed for single-frame object detectors, SFDA for video
object detection (VOD) remains unexplored. Moreover,
most unsupervised domain adaptation works for object de-
tection rely on two-stage detectors, while SFDA for one-
stage detectors, which are more vulnerable to fine-tuning,
is not well addressed in the literature. In this paper, we
propose Spatial-Temporal Alternate Refinement with Mean
Teacher (STAR-MT), a simple yet effective SFDA method
for VOD. Specifically, we aim to improve the performance
of the one-stage VOD method, YOLOV, under adverse im-
age conditions, including noise, air turbulence, and haze.
Extensive experiments on the ImageNetVOD dataset and
its degraded versions demonstrate that our method consis-
tently improves video object detection performance in chal-
lenging imaging conditions, showcasing its potential for
real-world applications.

1. Introduction

Object detection in images and videos represents a pivotal
task in computer vision, primarily owing to its extensive
range of applications across diverse scenarios, such as intel-
ligent surveillance systems and automated driving vehicles.
Video object detection (VOD) aims to predict the bounding
box and category information of all targeting objects in all
video frames. Compared to single-frame object detection
tasks, VOD enjoys the advantage of accessing additional
information from the temporal dimension [34, 45], which
often contains consistent semantics and multiple views of

Figure 1. The scope of this work: we aim to adapt the video ob-
ject detection model trained on clean image sequences to degraded
image sequences under the condition that the data from the source
domain and ground truth labels of the target domain are unavail-
able during the adaptation.

the same target to help enrich the feature space and facili-
tate superior performance.

When deploying object detectors in real-world settings,
adverse imaging conditions caused by rain, haze, low light,
or air turbulence often lead to a notable domain gap. These
adverse conditions frequently result in a significant reduc-
tion in performance, underscoring the necessity for domain
adaptation to bridge the gap. Typical domain adaptation
(DA) methods require access to data and labels in both
source and target domains, with labels in the target domain
being relatively scarce [28]. Due to the prohibitive cost
of labeling target domain data, unsupervised domain adap-
tation (UDA) is sometimes required to facilitate effective
fine-tuning on the target domain without any labels [27]. In
most DA and UDA cases for image detection, source do-
main data is provided to serve as anchors for adaptation.
However, in some UDA scenarios, source data may not be
available due to storage or privacy constraints, necessitating
the optimization of detection networks under such limita-
tions. To address this challenge, source-free domain adap-
tation (SFDA) is gaining increasing attention in the field of
object detection, as it enables adaptation to target domains
without relying on source domain data.

Although multiple approaches, such as those proposed
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Figure 2. Overview of the proposed STAR-MT for source-free adaptive video object detection. The domain adaptive fine-tuning alternately
operates in two stages: (a) Temporal Refinement Stage (TRS) and (b) Spatial Refinement Stage (SRS).

in [3, 7, 17, 18, 20, 23, 36], have been developed recently
to address SFDA for object detection, they predominantly
focus on two-stage object detectors [30]. To date, no prior
work has specifically targeted SFDA for one-stage object
detectors [29], as their weights are more sensitive to fine-
tuning, and intermediate features are highly abstract. More-
over, no SFDA method has been proposed for the video ob-
ject detection task, primarily due to the scarcity of cross-
domain video object detection datasets. However, given
the unsupervised nature of SFDA, it is possible to explore
source-free domain adaptation methods for video object de-
tection using synthetic data. The scope of this work is il-
lustrated in Fig. 1. One can expect those methods to be re-
liably applied to real-world scenarios where source domain
data may not be readily available or accessible.

In this paper, we conduct analysis and experiments about
basic SFDA techniques for the video object detection task
and propose a novel SFDA method for the one-stage video
object detector YOLOV [34]. Specifically, we aim to adapt
YOLOV [34] to challenging adverse image conditions by
alternately fine-tuning the video object detection model in
the teacher-student learning framework. We summarize the
contributions of this paper as follows:
• We conduct the pioneering study exploring source-free

unsupervised domain adaptation for video object detec-
tion (VOD). Specifically, we aim to adapt the YOLOV
detector to adverse image conditions.

• We introduce a novel SFDA algorithm for VOD,
termed Spatial-Temporal Alternate Refinement with

Mean Teacher (STAR-MT). It alternately trains in two
stages: the Temporal Refinement Stage works in a tra-
ditional mean-teacher learning scheme, while the Spatial
Refinement Stage leverages temporally enhanced features
to guide the single-frame backbone module.

• We demonstrate the effectiveness of our method through
experiments on different synthetic adverse image condi-
tions, including noise, air turbulence, and haze. Given
its unsupervised nature, STAR-MT is anticipated to yield
reliable performance boost for video object detectors in
real-world and unseen scenarios.

2. Related works
2.1. Video object detection.

Object detection, one of the most fundamental problems in
computer vision, aims to predict the location and class of
objects of interest within an input image. Neural networks
for object detection can be roughly categorized into one-
stage and two-stage detectors [46]. Two-stage detectors,
represented by Faster RCNN [30] and FPN [21], predict the
feature proposals and detection results in a two-step, coarse-
to-fine manner. These detectors generally exhibit good per-
formance and are relatively easy to train. In contrast, one-
stage detectors, such as YOLO [29], SSD [24], and DETR
[4], predict all detections in a single inference stage, mak-
ing them faster and easier to deploy in real-world applica-
tions. However, training one-stage detectors often requires
more tricks, and they may struggle when detecting dense
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and small targets.
Video object detection (VOD) presents a unique set of

challenges distinct from still image object detection, pri-
marily due to the dynamic nature of video content. In VOD,
temporal consistency across frames in the same sequence
can be exploited to enhance the robustness of features and
reduce the potential ambiguity of the object information in
a single image. Given an image sequence I ∈ RH×W×T

where H , W and T are image height, image width, and tem-
poral length of the sequence. Most recent VOD algorithms
predict the object location {yloc} and category {ycls} by
extracting spatial features via a single-frame backbone and
temporal aggregation [39]. Those solutions are customized
for two-stage image object detectors [14, 30] or transform-
ers [11, 38, 44]. These detectors, while effective, often incur
high computational costs due to their model size or complex
processing pipeline [18].

In contrast, YOLOV [18] integrates the one-stage ob-
ject detector YOLOX [12] as its spatial backbone. This
configuration benefits from a cost-effective temporal ag-
gregation module, which significantly enhances YOLOX’s
performance, endowing YOLOV with both superior per-
formance and efficiency. YOLOV’s methodology involves
selecting key regions from the dense prediction map pro-
duced by the detection head, minimizing the processing of
numerous low-quality candidates. Furthermore, it assesses
the affinity between extracted features from both target and
reference frames, facilitating a lightweight feature aggrega-
tion process. This strategy presents an efficient alternative
to more cumbersome methods, particularly advantageous in
scenarios demanding real-time responsiveness.

2.2. Source-free domain adaptation

Domain adaptation for object detection involves data from
two domains with different data distributions: the source
domain, in which the detector is initially trained, and the tar-
get domain, where the detector will be ultimately deployed.
Typically, labeling in the target domain is relatively scarce
[28]. In addition to supervised domain adaptation, meth-
ods for semi-supervised [15, 32] and unsupervised domain
adaptation [2, 6, 33, 37] for object detection have been stud-
ied based on the availability of labels. These methods have
achieved significant success in domain adaptation, regard-
less of whether labeling is available in the target domain
data. However, they all require access to source domain
data, which may not always be available due to privacy or
storage constraints. To address this issue, methodologies for
source-free domain adaptation (SFDA) have been recently
proposed [16, 19, 25, 35, 40–42].

SFDA aims to adapt the detector to the target domain
using only the pre-trained model and target domain data,
without requiring access to the source domain data, mak-
ing it a promising approach for real-world applications

where source data may be unavailable or inaccessible. Ini-
tial SFDA strategies have harnessed self-supervised tech-
niques and pseudo-labeling [19]. The mean-teacher method
[35] employs a student-teacher paradigm where the teacher
model’s parameters are an exponential moving average of
the student model’s parameters. This approach has shown
effectiveness in stabilizing training and improving robust-
ness as the teacher model accumulates and refines knowl-
edge over time, aiding in generating more reliable pseudo-
labels. Such methods underscore the essence of SFDA:
leveraging target domain intrinsic properties while circum-
venting the need for source data, thereby aligning domain-
specific feature distributions.

Mean-teacher has been a fundamental technique in
SFDA for object detection. Most existing works [3, 7,
10, 17, 20, 23, 36] employ the mean-teacher as part of
their frameworks. Besides mean-teacher, other methodolo-
gies include self-entropy descent and pseudo-label refine-
ment [18], style enhancement and graph alignment con-
straint [17], adversarial alignment [10], instance relation
graph [36] and contrastive representation learning [3, 36].
However, most existing algorithms are designed for two-
stage detectors, particularly the Faster RCNN [30], and can-
not be directly applied to the domain adaptation for one-
stage detectors such as the YOLO series. This is partially
because the region proposals in two-stage detectors could
provide high-quality semantic information for additional
feature alignment, providing meaningful additional training
signals for SFDA. Another reason is that one-stage detec-
tors usually need complicated training tricks; their feature
space is more intractable and vulnerable to fine-tuning. Re-
cently, YOLOV [34] provided an efficient feature selection
and fusion mechanism for the one-stage detector YOLOX
[12] among multiple frames, SFDA for YOLOV would pro-
vide valuable experience in both domain adaptation for one-
stage detectors and VOD tasks.

3. Method
In this section, we detail our STAR-MT method and the do-
main adaptation benchmark. The overall scheme of the pro-
posed solution is illustrated in Fig.2.

3.1. Mean-teacher for domain adaptive VOD

In developing our method, we leverage the advanced unsu-
pervised domain adaptation strategies found in the mean-
teacher self-training approach [35]. We introduce the im-
plementation of this method in this paradigm.

As a class of student-teacher training approach, the
mean-teacher method keeps two identical networks: the stu-
dent network and the teacher network. They are initialized
by the weights trained on the source domain. During train-
ing, the weights of the teacher model are fixed, while the
student model is trained with the supervision signal from the
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prediction output and features generated from the teacher
model. On the other hand, the teacher model takes the expo-
nential moving average (EMA) of consecutive student mod-
els for its parameter update:

θtT ← αθt−1
T + (1− α)θt−1

S , (1)

where the θT and θS denote the weights of teacher and stu-
dent models, t denotes the training iteration, and α ∈ (0, 1)
is the momentum coefficient which is usually set close to 1
for a smooth temporal ensemble [3].

3.2. Spatial-Temporal Alternate Refinement

YOLOV utilized the pre-trained backbone of YOLOX as
its frame-wise feature extractor, followed by feature selec-
tion and affinity measurement that identifies features from
the same object among frames to guide temporal aggrega-
tion. However, training the spatial backbone and temporal
aggregation module simultaneously on the video object de-
tection dataset is suboptimal because they require different
training schemes. Hence, we propose to adapt the YOLOV
in a two-stage alternate optimization manner, consisting of
the temporal refinement stage (TRS) and spatial refinement
stage (SRS).

3.2.1 Temporal Refinement Stage (TRS).

In the TRS, the entire teacher model, including the frame-
wise backbone and temporal aggregation module, is up-
dated via EMA. In the beginning, both teacher and stu-
dent models are initialized the same. Like a typical mean-
teacher-based algorithm, the same image sequences with
different augmentations are fed into those models. The
teacher model processes the weakly augmented images,
and the heavily augmented images are fed into the student
model. Moreover, we randomly mask out r% frames and
enforce the student model to produce the same output with
fewer frames than the teacher model. This masking mecha-
nism can supposedly enhance the generalization capability
of temporal aggregation. The student model is trained by
aligning frame-wise features and soft pseudo labels with the
features and predictions of the teacher model. The loss in
this stage is defined as:

L = LMSE(fT , fS) + LBCE(y
cls
T , yclsS ), (2)

where the first term is the mean square error between the
feature maps fT and fS , produced by the backbone module
of the teacher and student models, respectively. The term
LBCE denotes the binary cross entropy loss. yclsT refers to
the top-k classification prediction after the temporal aggre-
gation of the teacher model, and yclsS refers to that of the
student model. k is the number of proposals in the feature
selection module before the temporal aggregation. We set

k = 30 following the default setting of YOLOV. We do not
particularly compute the loss of objectiveness and bounding
box prediction because they are unchanged in the temporal
aggregation module.

3.2.2 Spatial Refinement Stage (SRS).

TAM consists of two key components: a Feature Selection
Module, which selects high-quality prediction proposals,
and a Feature Aggregation Module, which fuses these pro-
posals across multiple frames. However, due to the incon-
sistency between the training pipelines of the single-frame
detection head (backbone) and the TAM, the TRS, which
mostly follows the training setting of the TAM, may lead
to suboptimal adaptation on the backbone side. Recogniz-
ing that the TAM can reliably improve prediction quality,
we propose using the output class score of YOLOV, in-
stead of YOLOX, in the teacher model as higher-quality
pseudo labels to guide the fine-tuning of the detection head
of YOLOX in the student model. In the SRS, only the back-
bone of the teacher model is updated via EMA, ensuring
that the adaptation focuses on the spatial feature extraction
process while leveraging the enhanced temporal informa-
tion from the TAM. The loss is given as follows:

L = LMSE(fT , fS) + LBCE(y
cls
T , yclsS ) + γLcls, (3)

where γ is the weighting factor. The new loss term Lcls is
the certainty-aware binary cross entropy loss between the
filtered class score from the teacher and student model:

Lcls = −
1

N

N∑
i

piS

[ 1

nc

nc∑
c

(
si,cT log(si,cS )

+(1− si,cT ) log(1− si,cS )
) ]

,

(4)

where c is the index of the category, nc = 30 is the num-
ber of classes, and i and N are the index and number of
detected objects in the sequence. si,cS and si,cT are the i-th
output scores of class c for the student and teacher models,
respectively. piS ∈ (0, 1) is the normalized objectiveness
score in the student model output, serving as the weight of
the pseudo-label. It can be viewed as the certainty measure-
ment of the object’s existence; the greater piS indicates the
higher confidence of the particular pseudo label.

3.2.3 Alternate Refinement.

STAR-MT training is periodical, with the TRS and SRS
having identical iterations τ in each period. Given k the in-
dex of the period, TRS is executed in iterations [2kτ, 2kτ +
τ) and SRS in iterations [2kτ+τ, 2kτ+2τ). During the ex-
periment, it was observed that the order of those two stages
only had a trivial impact on the overall performance.
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Although early stopping is not explicitly implemented in
our approach, we utilize the mean self-entropy [18] of the
class score from the teacher model as a performance cri-
terion for all output checkpoints. This mean self-entropy,
denoted as H , serves as a measure of reliability for pseudo
labels; a lower H indicates greater confidence in the teacher
model in guiding the student. The checkpoint correspond-
ing to the minimal value of H is selected as our output
model. The formula to compute H is as follows:

H = − 1

Nnc

N∑
i

nc∑
c

si,cT log(si,cT ). (5)

4. Experiment
4.1. Adverse image condition synthesis

Real-world VOD often faces the challenge of domain gaps
caused by adverse image conditions. Because of the com-
plexity of image degradation, testing domain adaptation al-
gorithms under various conditions is desired. However, ap-
propriate datasets for testing the domain adaptation algo-
rithm for VOD models trained on the ImageNetVOD dataset
are unavailable. In this work, we synthesized videos in
three common imaging conditions: noise, air turbulence,
and haze. Each video has its distinct degradation param-
eter, with the profile varies temporally. A sample image
sequence from the original dataset and the associated three
degraded sequences are shown in Fig. 3. The unsupervised
property of the algorithm guarantees that our method will
be effective in real-world unknown degradations. The sim-
ulation of the three adverse image conditions is described
below:
Noise. Noise is the predominant degradation in the low-
light conditions. The noise in our experiment is modeled
with:

Ĩ(h,w, t) = I(h,w, t) + n(h,w, t), (6)

where I is the input image sequence, Ĩ is the degraded im-
age sequence, h, w, and t are the sequence’s height, width,
and frame indices. n(h,w, t) ∼ N (0, σ2) is the Gaussian
noise. We randomly sample the variance of the noise in
σ2 ∈ [10/255, 50/255]. Each sequence has its distinct vari-
ance.
Air Turbulence. In long-range imaging conditions, air
turbulence may affect the performance of computer vi-
sion models significantly [22]. The air turbulence primar-
ily causes random pixel displacement and spatially varying
blur on the image [5]. We utilized the popular P2S simulator
[8, 26] to synthesize the degraded video:

Ĩ(h,w, t) = P2S(I(h,w, t);n(h,w, t)). (7)

The P2S simulator converts the Gaussian random seed n
to spatially varying pixel displacement and blur. Inspired

by [9, 43], we applied the temporal correlation and vary-
ing kernel size to improve the diversity and fidelity of the
synthetic turbulence. Each image sequence has a distinct
turbulence strength and profile.
Haze. Haze is a crucial adverse image condition in VOD
application scenarios, especially in surveillance systems
and automated driving. The hazy video can be modeled
with the transmission function [1]:

Ĩ(h,w, t) = I(h,w, t)e−βd(h,w,t) +A(1− e−βd(h,w,t)),
(8)

where e−βd(h,w,t) is the transmission rate, β is the scatter-
ing coefficient, A = 255 is the maximum intensity of a
pixel, and d(h,w, t) is the relative depth value measured
by [13]. Like other degradations, each sequence has its own
scattering coefficient randomly sampled from a uniform dis-
tribution β ∈ [0.5, 1.5].

4.2. Dataset and baselines

In Section 4.1, for each degradation type identified, we gen-
erated a corresponding synthetic target-domain dataset uti-
lizing the ImageNetVID dataset [31] as the source. Com-
prising 30 classes set against diverse natural backdrops,
ImageNetVID provides over 1 million training frames and
more than 100,000 validation frames. We used all frames
from this source dataset to synthesize the target-domain
datasets. Consequently, each domain can retain the same
set of labels. Fig 4 shows a snippet of the testing set of
our synthetic degradations, along with the visualization of
the detection results before and after the domain adaptation.
The visual comparison proves the efficacy of the proposed
method.

Following its publicly available codebase, we trained the
YOLOV in all three scales — small (S), large (L), and
extra-large (X) — using the source dataset. In our exper-
iment, the post-processing method was omitted as it does
not pertain to our algorithms. These models were then di-
rectly tested on target domains, with the findings detailed in
Table 1. The Average Precision at 50% threshold (AP50)
on the source domain is registered as 77.3%, 83.6%, and
85.0% for YOLOV-S, YOLOV-L, and YOLOV-X, respec-
tively. The significant degradation in performance, when we
test the source-train model on the target domain dataset, in-
dicates that challenging image conditions markedly reduce
the performance of the VOD models.

In addition to the initial training, we used a supervised
approach to fine-tune the source-trained YOLOV models
on the target domain datasets. This supervised fine-tuning
serves as a theoretical benchmark for the upper limit of per-
formance achievable through unsupervised adaptation. De-
viating from the original pipeline, which involves training
the base detector prior to the temporal aggregation module,
we discovered that directly fine-tuning the temporal aggre-
gation module leads to improved outcomes. Therefore, our
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Figure 3. A snippet of the ImageNetVOD dataset and three forms of degradation. The original frames are from the testing video
ILSVRC2015 test 00028000.mp4 and t = 32.

Degradation Noise Air Turbulence Haze
Model YOLOV-S YOLOV-L YOLOV-X YOLOV-S YOLOV-L YOLOV-X YOLOV-S YOLOV-L YOLOV-X
Source-only 38.0 57.0 60.4 63.2 72.7 73.9 57.2 70.7 73.0
PL w. SE [18] 47.8 61.4 62.3 64.3 73.2 74.1 61.1 73.2 74.5
Basic MT 54.8 70.3 70.6 64.1 74.2 74.4 64.7 75.3 76.9
STAR-MT 57.6 71.4 71.5 65.2 75.0 75.7 68.1 78.0 78.9
Oracle 61.0 72.5 72.7 66.7 76.4 78.3 69.7 79.6 80.2

Table 1. Performance comparison on AP50(%). The larger, the better. “PL” refers to the pseudo-label method, and “Source-only” refers to
the models trained by only using labeled source domain data.

fine-tuning focuses solely on the temporal aggregation mod-
ule for the target domains, as detailed in [34]. The results
of this supervised fine-tuning, labeled as “oracle”, are also
presented in Table 1.

Before implementing the mean-teacher-based methods,
we conducted a preliminary experiment with the pseudo-
label (PL) algorithm. In this approach, models trained on
the source domain are employed to process all videos in the
target domain’s training set, generating initial predictions.
They are then filtered by threshold 0.5 on the product of ob-
jectiveness and the maximal class scores to generate pseudo
labels. Since fine-tuning the single-frame backbone always
causes catastrophic failure, we fixed the parameters in the
backbone module and only trained the temporal aggrega-
tion module with pseudo labels. After training, we utilized
the self-entropy [18] as the indicator to select the potential

best model. The result is also demonstrated in Table 1.

4.3. Implementation details of STAR-MT

Adhering closely to the YOLOV codebase, we maintained
most of the original settings unaltered. For hyperparam-
eter configuration, we empirically set the teacher model’s
smoothing coefficient, α, to 0.9995 and the weighting fac-
tor, γ, of the Lcls to 0.2. The model training was executed
using Stochastic Gradient Descent (SGD) with a batch size
of 1 over 10,000 iterations. We initialized the learning rate
at 2×10−4 and applied a cosine annealing scheduler, taper-
ing it down to 1 × 10−4. In the evaluation phase, only the
teacher model was utilized for inference. The mean Aver-
age Precision (mAP) was calculated with an IoU threshold
of 0.5. All experiments are conducted on NVIDIA 3080 Ti
and V100 GPUs.
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Figure 4. Visual comparison before and after the SFDA by STAR-MT. All experiments are conducted with YOLOV-S.
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Figure 5. The teacher model’s AP50 and mean self-entropy H
variation in the STAR-MT training of YOLOV-S and YOLOV-L.
Both experiments are conducted on clean → haze. The H indicat-
ing the best teacher model are marked in the figures with “+”.

For each sequence in our domain adaptation experi-
ments, 32 frames are loaded. Mosaic augmentation was
disabled for all these experiments. However, we have re-
tained both random flip and perspective transformations,
applying these consistently to both weakly and strongly
augmented sequence pairs. The key distinction between
weak and strong augmentation lies in the strength of ran-
dom chromatic transformation. Random erasing is involved
only in the strong augmentation. In the TRS, random mask-
ing is applied to restrict the temporal information the stu-
dent model can access, compelling it to enhance the tempo-
ral aggregation capability. The masking rate is r% where r
is randomly sampled from [0, 75].

The performance of the STAR-MT method is demon-
strated in Table 1. Our method shows a significant im-
provement in the SFDA for VOD under all three adverse
image conditions. It also demonstrates a clear advantage

over conventional methods like pseudo-labeling and ba-
sic mean-teacher learning. Notably, although the method
seems straightforward and not complicated, the perfor-
mance of our method closely approaches that of supervised
fine-tuning. To illustrate the correlation between mean self-
entropy H and the performance of SFDA, we drew the vari-
ations in model performance alongside the change in H
value on the evaluation set, as shown in Fig 5. The H values
were calculated using a sliding window average over 100 it-
erations. We can observe the lowest value of H aligns well
with the peak performance of the model.

4.4. Ablation study

Efficacy of alternate refinement. One major novelty in
this paper is the spatial refinement stage, as an alternately
updated module in addition to the normal mean teacher
learning framework. The key insights behind this are 1)
temporally enhanced features of the teacher model can be
used to generate reliable pseudo labels for the training of
the single-frame detection head, and 2) training the single-
frame detection head under the YOLOV setting is subop-
timal. Thus, it needs additional guidance. From the com-
parison between the basic mean-teacher method (TRS only)
and the proposed STAR-MT in Table 1, we can verify the
efficacy of alternate refinement with the spatial refinement
stage. To demonstrate that the pseudo labels from the
YOLOV are of higher quality, we conducted source-free
domain adaptation for the YOLOX. We follow the mean-
teacher framework and use the pseudo labels generated by
YOLOX and YOLOV to guide the training of the student
network. The result is shown in Table 2. The model guided
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Model YOLOX-S YOLOX-L
Source-only 35.9 56.6
PL guided by YOLOX 49.2 61.3
PL guided by YOLOV 51.0 62.9
Oracle 56.7 66.0

Table 2. The efficacy of YOLOV as the teacher model for the
SFDA of the single-frame detection backbone. All experiments
are conducted on clean → noise. The metric is AP50(%), the
larger, the better.

LMSE LBCE Lcls YOLOV-S YOLOV-L
✗ ✓ ✓ 62.1 71.5
✓ ✓ ✗ 67.6 77.4
✓ ✗ ✓ 67.8 77.3
✓ ✓ ✓ 68.1 78.0

Table 3. The efficacy of losses. All experiments are conducted on
clean → haze. The metric is AP50(%), the larger, the better.

Model τ = 50 τ = 100 τ = 200 τ = 500
YOLOV-S 68.0 68.1 67.6 67.8
YOLOV-L 76.9 77.5 78.0 77.7
YOLOV-X 78.2 78.4 78.9 78.8

Table 4. The impact of the number of iterations in each stage.
All experiments are conducted on clean → haze. The metric is
AP50(%), the larger, the better.

by the temporally refined labels in YOLOV gets better per-
formance, which provides evidence for the efficacy of SRS.
Efficacy of losses. In our study, the three utilized loss func-
tions are categorized as feature alignment loss LMSE and
pseudo-label based losses (LBCE and Lcls). We experi-
mented with various reasonable combinations of these loss
terms to assess their impact. In all combinations, at least
one pseudo-label-based loss was maintained. The results
are detailed in Table 3. Initially, we excluded the feature
alignment loss LMSE and observed a significant decline in
adaptation performance. This indicates the model’s high
sensitivity to label quality and the importance of restricting
the feature space generated by the detection head. Further,
we excluded LMSE and Lcls separately to evaluate their
individual contributions. The results confirmed the effec-
tiveness of both losses.
Number of iterations for each stage. We also evaluated
the optimal number of fine-tuning iterations, τ , for each
stage within a period. For this purpose, we conducted exper-
iments that set τ to various values: 50, 100, 200, and 500,
while maintaining 10,000 training iterations. The determi-
nation of optimal results within this range was based on the
mean self-entropy H values, where the teacher model asso-
ciated with the first local minima of H is selected. This as-

sessment was carried out across all three model scales, and
the findings are presented in Table 4. The results indicate
that different scales of the model may require distinct hy-
perparameters to achieve optimal adaptation performance.

5. Conclusion
In this paper, we propose a pioneering approach to explore
the source-free domain adaptation (SFDA) for video object
detection (VOD). Specifically, we developed a novel SFDA
method for a one-stage-based detector, YOLOV. The pro-
posed STAR-MT technique significantly improves the per-
formance of the video object detector in adverse image con-
ditions without access to the target domain label or source
domain data. Owing to its unsupervised nature, this work
can be seamlessly applied to real-world scenarios requiring
VOD models. The proposed method could serve as a base-
line for future research in unsupervised domain adaptation
for video object detection.

6. Acknowledgment
Futurewei Technologies Inc. funded this research while the
first author was an intern there. We are grateful to the com-
pany’s IC Lab for the research assistance.

References
[1] Bolun Cai, Xiangmin Xu, Kui Jia, Chunmei Qing, and

Dacheng Tao. Dehazenet: An end-to-end system for single
image haze removal. IEEE Transactions on Image Process-
ing, 25(11):5187–5198, 2016. 5

[2] Qi Cai, Yingwei Pan, Chong-Wah Ngo, Xinmei Tian, Lingyu
Duan, and Ting Yao. Exploring object relation in mean
teacher for cross-domain detection. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 11457–11466, 2019. 3

[3] Shengcao Cao, Dhiraj Joshi, Liang-Yan Gui, and Yu-Xiong
Wang. Contrastive mean teacher for domain adaptive ob-
ject detectors. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR), pages
23839–23848, 2023. 2, 3, 4

[4] Nicolas Carion, Francisco Massa, Gabriel Synnaeve, Nicolas
Usunier, Alexander Kirillov, and Sergey Zagoruyko. End-to-
end object detection with transformers. In European confer-
ence on computer vision, pages 213–229. Springer, 2020. 2

[5] Stanley H Chan and Nicholas Chimitt. Computational
imaging through atmospheric turbulence. Foundations and
Trends® in Computer Graphics and Vision, 15(4):253–508,
2023. 5

[6] Yuhua Chen, Wen Li, Christos Sakaridis, Dengxin Dai, and
Luc Van Gool. Domain adaptive faster r-cnn for object de-
tection in the wild. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 3339–3348,
2018. 3

[7] Zhihong Chen, Zilei Wang, and Yixin Zhang. Exploiting
low-confidence pseudo-labels for source-free object detec-

5017



tion. In Proceedings of the ACM International Conference
on Multimedia, pages 5370–5379, 2023. 2, 3

[8] Nicholas Chimitt and Stanley H Chan. Simulating anisopla-
natic turbulence by sampling intermodal and spatially cor-
related zernike coefficients. Optical Engineering, 59(8):
83101–83101, 2020. 5

[9] Nicholas Chimitt, Xingguang Zhang, Zhiyuan Mao, and
Stanley H Chan. Real-time dense field phase-to-space sim-
ulation of imaging through atmospheric turbulence. IEEE
Transactions on Computational Imaging, 8:1159–1169,
2022. 5

[10] Qiaosong Chu, Shuyan Li, Guangyi Chen, Kai Li, and Xiu
Li. Adversarial alignment for source free object detection.
In Proceedings of the AAAI Conference on Artificial Intelli-
gence, pages 452–460, 2023. 3

[11] Masato Fujitake and Akihiro Sugimoto. Video sparse trans-
former with attention-guided memory for video object detec-
tion. IEEE Access, 10:65886–65900, 2022. 3

[12] Zheng Ge, Songtao Liu, Feng Wang, Zeming Li, and
Jian Sun. Yolox: Exceeding yolo series in 2021.
arXiv:2107.08430, 2021. 3

[13] Clément Godard, Oisin Mac Aodha, Michael Firman, and
Gabriel J Brostow. Digging into self-supervised monocular
depth estimation. In Proceedings of the IEEE/CVF interna-
tional conference on computer vision (ICCV), pages 3828–
3838, 2019. 5

[14] Tao Gong, Kai Chen, Xinjiang Wang, Qi Chu, Feng Zhu,
Dahua Lin, Nenghai Yu, and Huamin Feng. Temporal ROI
align for video object recognition. In Proceedings of the
AAAI Conference on Artificial Intelligence and Interactive
Digital Entertainment (AAAI), pages 1442–1450, 2021. 3

[15] Naoto Inoue, Ryosuke Furuta, Toshihiko Yamasaki, and Kiy-
oharu Aizawa. Cross-domain weakly-supervised object de-
tection through progressive domain adaptation. In Proceed-
ings of the IEEE conference on computer vision and pattern
recognition, pages 5001–5009, 2018. 3

[16] Jogendra Nath Kundu, Naveen Venkat, R Venkatesh Babu,
et al. Universal source-free domain adaptation. In Proceed-
ings of the IEEE/CVF conference on computer vision and
pattern recognition, pages 4544–4553, 2020. 3

[17] Shuaifeng Li, Mao Ye, Xiatian Zhu, Lihua Zhou, and Lin
Xiong. Source-free object detection by learning to overlook
domain style. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR), pages
8014–8023, 2022. 2, 3

[18] Xianfeng Li, Weijie Chen, Di Xie, Shicai Yang, Peng Yuan,
Shiliang Pu, and Yueting Zhuang. A free lunch for unsuper-
vised domain adaptive object detection without source data.
In Proceedings of the AAAI Conference on Artificial Intelli-
gence and Interactive Digital Entertainment (AAAI), 2021.
2, 3, 5, 6

[19] Jian Liang, Dapeng Hu, and Jiashi Feng. Do we really need
to access the source data? source hypothesis transfer for un-
supervised domain adaptation. In International Conference
on Machine Learning, pages 6028–6039. PMLR, 2020. 3

[20] L. Lin, Z. Yang, Q. Liu, Y. Yu, and Q. Lin. Run and chase:
Towards accurate source-free domain adaptive object detec-
tion. In IEEE International Conference on Multimedia and

Expo (ICME), pages 2453–2458. IEEE Computer Society. 2,
3

[21] Tsung-Yi Lin, Piotr Dollár, Ross Girshick, Kaiming He,
Bharath Hariharan, and Serge Belongie. Feature pyra-
mid networks for object detection. In Proceedings of the
IEEE conference on computer vision and pattern recogni-
tion, pages 2117–2125, 2017. 2

[22] Feng Liu, Ryan Ashbaugh, Nicholas Chimitt, Najmul Has-
san, Ali Hassani, Ajay Jaiswal, Minchul Kim, Zhiyuan Mao,
Christopher Perry, Zhiyuan Ren, Yiyang Su, Pegah Varghaei,
Kai Wang, Xingguang Zhang, Stanley Chan, Arun Ross,
Humphrey Shi, Zhangyang Wang, Anil Jain, and Xiaom-
ing Liu. Farsight: A physics-driven whole-body biometric
system at large distance and altitude. In Proceedings of the
IEEE/CVF Winter Conference on Applications of Computer
Vision (WACV), pages 6227–6236, 2024. 5

[23] Qipeng Liu, Luojun Lin, Zhifeng Shen, and Zhifeng Yang.
Periodically exchange teacher-student for source-free object
detection. In Proceedings of the IEEE/CVF International
Conference on Computer Vision (ICCV), pages 6414–6424,
2023. 2, 3

[24] Wei Liu, Dragomir Anguelov, Dumitru Erhan, Christian
Szegedy, Scott Reed, Cheng-Yang Fu, and Alexander C
Berg. SSD: Single shot multibox detector. In European Con-
ference on Computer Vision (ECCV), pages 21–37. Springer,
2016. 2

[25] Yuang Liu, Wei Zhang, and Jun Wang. Source-free domain
adaptation for semantic segmentation. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 1215–1224, 2021. 3

[26] Zhiyuan Mao, Nicholas Chimitt, and Stanley H. Chan. Ac-
celerating atmospheric turbulence simulation via learned
phase-to-space transform. In Proceedings of the IEEE/CVF
International Conference on Computer Vision (ICCV), pages
14759–14768, 2021. 5

[27] Poojan Oza, Vishwanath A Sindagi, Vibashan Vishnukumar
Sharmini, and Vishal M Patel. Unsupervised domain adapta-
tion of object detectors: A survey. IEEE Transactions on Pat-
tern Analysis and Machine Intelligence, pages 1 – 24, 2023.
1

[28] Vishal M Patel, Raghuraman Gopalan, Ruonan Li, and Rama
Chellappa. Visual domain adaptation: A survey of recent
advances. IEEE Signal Processing Magazine, 32(3):53–69,
2015. 1, 3

[29] Joseph Redmon, Santosh Divvala, Ross Girshick, and Ali
Farhadi. You only look once: Unified, real-time object detec-
tion. In Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition (CVPR), pages 779–
788, 2016. 2

[30] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun.
Faster R-CNN: Towards real-time object detection with re-
gion proposal networks. Advances in neural information pro-
cessing systems, 2015. 2, 3

[31] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, San-
jeev Satheesh, Sean Ma, Zhiheng Huang, Andrej Karpathy,
Aditya Khosla, Michael Bernstein, et al. Imagenet large
scale visual recognition challenge. International Journal of
Computer Vision, 115:211–252, 2015. 5

5018



[32] Kuniaki Saito, Donghyun Kim, Stan Sclaroff, Trevor Dar-
rell, and Kate Saenko. Semi-supervised domain adaptation
via minimax entropy. In Proceedings of the IEEE/CVF inter-
national conference on computer vision, pages 8050–8058,
2019. 3

[33] Kuniaki Saito, Yoshitaka Ushiku, Tatsuya Harada, and Kate
Saenko. Strong-weak distribution alignment for adaptive ob-
ject detection. In Proceedings of the IEEE/CVF conference
on computer vision and pattern recognition, pages 6956–
6965, 2019. 3

[34] Yuheng Shi, Naiyan Wang, and Xiaojie Guo. Yolov: making
still image object detectors great at video object detection.
In Proceedings of the AAAI Conference on Artificial Intelli-
gence and Interactive Digital Entertainment (AAAI), pages
2254–2262, 2023. 1, 2, 3, 6

[35] Antti Tarvainen and Harri Valpola. Mean teachers are better
role models: Weight-averaged consistency targets improve
semi-supervised deep learning results. Advances in neural
information processing systems, 30, 2017. 3

[36] VS Vibashan, Poojan Oza, and Vishal M Patel. Instance rela-
tion graph guided source-free domain adaptive object detec-
tion. In Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition (CVPR), pages 3520–
3530, 2023. 2, 3

[37] Vibashan Vs, Vikram Gupta, Poojan Oza, Vishwanath A
Sindagi, and Vishal M Patel. Mega-cda: Memory guided
attention for category-aware unsupervised domain adaptive
object detection. In Proceedings of the IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition, pages
4516–4526, 2021. 3

[38] Han Wang, Jun Tang, Xiaodong Liu, Shanyan Guan, Rong
Xie, and Li Song. Ptseformer: Progressive temporal-spatial
enhanced transformer towards video object detection. In Eu-
ropean Conference on Computer Vision (ECCV), pages 732–
747, 2022. 3

[39] Haiping Wu, Yuntao Chen, Naiyan Wang, and Zhaoxiang
Zhang. Sequence level semantics aggregation for video ob-
ject detection. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR), pages
9217–9225, 2019. 3

[40] Yuecong Xu, Jianfei Yang, Haozhi Cao, Keyu Wu, Min Wu,
and Zhenghua Chen. Source-free video domain adaptation
by learning temporal consistency for action recognition. In
European Conference on Computer Vision, pages 147–164.
Springer, 2022. 3

[41] Shiqi Yang, Yaxing Wang, Joost Van De Weijer, Luis Her-
ranz, and Shangling Jui. Generalized source-free domain
adaptation. In Proceedings of the IEEE/CVF international
conference on computer vision, pages 8978–8987, 2021.

[42] Shiqi Yang, Shangling Jui, Joost van de Weijer, et al. At-
tracting and dispersing: A simple approach for source-free
domain adaptation. Advances in Neural Information Pro-
cessing Systems, 35:5802–5815, 2022. 3

[43] Xingguang Zhang, Zhiyuan Mao, Nicholas Chimitt, and
Stanley H. Chan. Imaging through the atmosphere using tur-
bulence mitigation transformer. IEEE Transactions on Com-
putational Imaging, 10:115–128, 2024. 5

[44] Qianyu Zhou, Xiangtai Li, Lu He, Yibo Yang, Guangliang
Cheng, Yunhai Tong, Lizhuang Ma, and Dacheng Tao.
Transvod: end-to-end video object detection with spatial-
temporal transformers. IEEE Transactions on Pattern Anal-
ysis and Machine Intelligence, pages 7853 – 7869, 2022. 3

[45] Xizhou Zhu, Yujie Wang, Jifeng Dai, Lu Yuan, and Yichen
Wei. Flow-guided feature aggregation for video object de-
tection. In Proceedings of the IEEE/CVF International Con-
ference on Computer Vision (ICCV), pages 408–417, 2017.
1

[46] Zhengxia Zou, Keyan Chen, Zhenwei Shi, Yuhong Guo, and
Jieping Ye. Object detection in 20 years: A survey. Proceed-
ings of the IEEE, 111(3):257–276, 2023. 2

5019


