
 

Abstract 
 

The delineation of tumor target and organs-at-risk 

(OARs) is critical in the radiotherapy treatment planning. 

It is also tedious, time-consuming and prone to subjective 

experiences. Automatic segmentation can be used to 

reduce the physician’s workload. However, the quality 

assurance of the segmentation is an unmet need in clinical 

practice. In this study, we developed an automatic model 

that detects the errors of the contouring using one-class 

classifier. The OARs included left and right lungs, heart, 

esophagus, and spinal cord. Each data includes the ground 

truth, which is manually contoured by experienced doctor, 

and contour generated by a contouring software. We used 

three metrics to determine whether the contour of an OAR 

is “high” or “low” quality. A resnet-152 network 

performed as a feature extractor, and a one class support 

vector machine determines the quality of the contour. We 

generated certain contour errors to evaluate the 

generalizability of this method. Furthermore, to enhance 

the interpretability of this method, we conducted a set of 

experiments to assess its detection limit and discussed the 

correlation between this limit and metrics such as volume, 

DSC, HD95, and MSD. The proposed method showed 

significant improvement over binary classifiers in handling 

various types of errors. The relationship between the 

detection limit and multiple factors of the OARs indicates 

that our method is highly interpretable. Moreover, the 

model's fast execution speed can significantly reduce the 

burden on physicians. 

1. Introduction 

According to the extent of user interaction, segmentation 
techniques could be categorized into manual, automatic, 
and semi-automatic methods. There are mainly two types 
of automatic contouring methods, atlas-based and deep 

learning methods. Atlas-based methods created atlas from 
previously annotated dataset, deformed the atlas templates 
to the target images, and generated the target anatomical 
structures.[1, 2] Deep learning methods applied multiple 
level of filters and max-pooling processes to extract image 
features (encoder), and inflated the encoder’s output into a 
segmentation mask using convolution and up-sampling 
(decoder). Deep learning has demonstrated superior 
performance in image segmentation, including U-Net [3], 
3D U-Net [4], V-Net[5], Seg-Net [6], DeepMedic[7], 
DeepLab[8], VoxResNet[9] and Mask RCNN [10]. 
However, deep learning-based systems were considered as 
black boxes, challenging to interpret, and prone to errors. 
Therefore, we need to establish a Quality Assurance (QA) 
system. Several studies suggest issues with the accuracy of 
automatic delineation models in complex scenarios and 
poor generalization performance. Additionally, adopting a 
higher-precision model may result in shorter runtime and 
the challenge of increased runtime. 

To assess the quality of auto-segmentation, conventional 
practice applied an independent test dataset and diverse 
metrics such as DSC, HD95 and MSD. [11] These metrics 
assessed the consistence between predicted contours and 
the reference "ground truth", which was manually 
delineated by the experienced physicians. DSC reflects the 
degree of overlap between two delineations, HD95 reflects 
the maximum error, and MSD reflects the average 
boundary error. To mitigate the substantial time and 
resource costs involved in generating a "ground truth" 
segmentation for every case, there is a need to develop an 
efficient and labor-effective method for identifying low-
quality segmentations 

2. Related Work 

Previous researchers have designed methods for automated 

 

One class classification-based quality assurance of organs-at-risk delineation in 

radiotherapy 
 
 

Yihao Zhao1, Cuiyun Yuan2, Ying Liang2, Yang Li2, Chunxia Li2, Man Zhao2, Jun Hu1, Ningze 
Zhong1, Chenbin Liu2* 

 
1School of Electronic and Communication Engineering, Sun Yat-sen University, China 

Zhaoyh69@mail2.sysu.edu.cn 
2National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen 

Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College 
liuchenbin@cicams-sz.org.cn 

This CVPR Workshop paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.

4898



quality control.[12-21] These methods included feature-
based methods, [14, 16, 22, 23], and deep learning based 
methods.[13, 15, 19, 20] feature-based methods employed 
in quality prediction involved the extraction of 2-D 
features, such as Dice Similarity Coefficient (DSC), 
Hausdorff Distance (HD), and texture features and 3-D 
features like contour volume, surface area, and orientation 
for predicting contour quality employed. Feature-based 
methods required the OAR delineations by physicians 
before quality can be assessed by comparing them with the 
automatically generated delineations. Therefore, they 
either consumed a significant amount of internal medicine 
doctors' time or consumed a large amount of computational 
resources. In recent years, the convolutional neural 
network (CNN) belongs to a category of deep neural 
networks commonly utilized for the analysis of visual 
imagery. [24, 25] Rhee et al. [13] proposed a deep-learning 
based system that first generate a contour and calculate the 
11 quantitative metrics of contour and the test contour. 
However, some datasets in this study originate from the 
same automated delineation system, which may result in 
challenges when it comes to recognizing delineations from 
other systems. Chen et al. [20] proposed a deep learning 
based method that classifies the contouring into “good”, 
“medium” and “bad” automatically by dice value. Duan et 
al. [19] introduced a method that is based on k-fold cross-
validation dataset, which addressing the issue of a limited 
dataset. While their methods demonstrate commendable 
accuracy and efficiency, there are still areas in which we 
can make improvements.  

Nevertheless, they use the whole CT image as the input of 
the network, but the OARs occupy only a small region of 
the image. CNN may extract a lot of useless information in 
the other region. We need to find a way to make the 
network focus on the regions where the OARs located in. 
Uijlings et al. propose a method that is generate candidate 
boxes and then proceed with identification.[26] It is called 
Region-CNN(R-CNN). With R-CNN, we can pay more 
attention on the object we want to analysis. He, K et al 
proposed a method called Mask R-CNN to simultaneously 
generating a high-quality segmentation mask for each 
instance, which further improved the performance of R-
CNN.[10] In the quality assurance of the OARs 
segmentation, the mask is given by either the automatic 
model or by the doctor. We use a method similar to mask 
R-CNN to improve accuracy. What’s more, as we 
mentioned above, none of the researchers developed a 
method that can detect types of different errors. Their 
methods can only adapt to specific contouring networks 
and lack of universality. One class support vector machine 
(OCSVM) provides a method to train the network in the 
absence of counter-examples. [27-30] It is widely used in 
abnormal detection. We noticed that one-class classifier 
was not utilized for quality control in organ delineation. By 

incorporating a one-class classifier, we can address the 
challenge of identifying various errors and enhance the 
compatibility of the quality control process. Oza et al. [31] 
introduced a method to add zero centered gaussian noise to 
the latent space as the pseudo-negative class and train the 
network. With the one class convolution neural network, 
we can train a network to detect different types of errors 
with high quality contours. 

As shown in Figure 1, this section provides an overview 
of several key components in our process, including data 
acquisition, contour evaluation, data preprocessing, 
feature extraction, machine learning model, and 
evaluation metrics. 

3. Materials and Methods 

3.1. Data Acquisition 

The patient data utilized in our study comprised CT images 
and manually delineated contours from the AAPM 
Thoracic CT Segmentation Challenge competition, 
encompassing a total of 60 cases [32]. The CT images were 
reconstructed to encompass the entire thoracic region, with 

Figure 1. The whole workflow of the proposed quality 
assurance model. 
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the number of slices ranging from 103 to 279. These CT 
scans had a consistent field of view of 50 cm and a 
reconstruction matrix size of 512 x 512. There was 
variation in slice spacing across institutions, ranging from 
1 mm to 3 mm. The reported pixel size of the images 
ranged between 0.98 mm and 1.37 mm, with a median 
value of 0.98 mm. 

The gold standard atlas for organ-at-risk (OAR) 
delineation in this study consisted of manual contours. The 
OARs included the left and right lungs, heart, esophagus, 
and spinal cord. These manual contours were created by 
expert clinicians following the contouring atlas guideline 
outlined in RTOG 1106 [33]. They served as a reference for 
accurately identifying and delineating these anatomical 
structures and were considered as the "ground truth" for 
comparison. To automatically generate contours, a 
commercially available contouring software, 
AccuContourTM (Manteia Medical Technologies Co. Ltd., 
Xiamen, China), was employed, utilizing deep learning 
techniques. The auto-generated contours were divided into 
two datasets based on quality: a high-quality contour 
dataset and a low-quality contour dataset. The objective of 
this study was to develop a quality assurance model 
capable of identifying low-quality contours. A total of 60 
cases were included in this study, with 48 cases allocated 
to the training set and 12 cases to the test set. The selection 
of cases for both sets was performed randomly.  

3.2. Contour Evaluation 

We used Dice similarity coefficient (DSC) [34], the 
maximum Hausdorff distance (HD95) [35], and mean 
surface distance (MSD) [36] to measure the contour quality. 
They were calculated by the follows: 

������，���� = 2|GT∩AGC ||GT|+|AGC | �1� 

where GT is the ground truth and AGC is the automatically 
generated contours.  ��� → �� = max��� min��� ���→��  �2� 

HD95���, ���� = "#$�d(GT → ���),d(AGC → ��)� �3� 

where d is the one-sided Euclidean distance from point set 
X to point set Y. HD95 is the longest bidirectional distance 
between the ground truth and automatically generated 
contours. 

MSD���, ���� = 1&'( + &*'+
, - min�∈*'+‖$ − ������‖

�∈'( + - min�∈'(‖1 − �����‖
�∈*'+ 2 �4� 

where NGT and NAGC are the number of the pixels in the 
contour of ground truth and automatically generated 
contours respectively.  ‖∙‖ denotes the Euclidean distance. 
S(∙) denote the point set of surface voxels. 

Based on the aforementioned measurement, we established 
the criteria for the assessment of contour quality. The high-
quality contour was defined as one that met all the 
following requirements: DSC > mean9:+ − σ9:+ �5� =�>? < meanA9>? − σA9>? �6� C�� < meanD:9 − σD:9 �7� 

In the equations (5)-(7), meanDSC, meanHD, and meanMSD 
are the average value of DSC, HD95 and MSD calculated 
in the training set, respectively. σ9:+, σA9>?, and σD:9 are 
the standard deviation of DSC, HD95 and MSD calculated 
in the training set, respectively. Contours that fail to meet 
any of the aforementioned requirements were labeled as 
low-quality contours. In our dataset, the proportion of low-
quality contours in different organs ranges from 12% to 
16%. Eight representative contours were shown in figure 
2. 

3.3. Data Preprocessing 

To accommodate the variability in CT scan formats from 
different sources, we performed normalization by 
converting each scan into uint8 format, where pixel values 
ranged from 0 to 255. This normalization not only 
standardized the pixel value range, but also resulted in 
reduced training time and GPU memory usage. 
Subsequently, we converted both the manual and 
automatic generated contour into binary mask. By 
identifying non-zero pixels in the binary mask, we 
extracted corresponding regions of interest from the CT 
scans, which served as training images. To meet the input 
requirements of the ResNet-152 network [24], we resized 
the images to dimensions of 224 × 224. 

3.4. Feature Extraction 

We used Resnet-152 as the feature extractor of our model 
[24]. Its network architecture introduced the concept of 
residual learning, addressing the issues of vanishing and 
exploding gradients during the training of deep neural 
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networks through skip connections and identity mappings 
across layers. ResNet-152 has gained renown for its 
exceptional depth and high performance, characterized by 
its 152 layers and proficiency in large-scale image 
recognition tasks. The key innovation of this network lies 
in the introduction of residual blocks, enabling the model 
to learn residual mappings. This meant the network could 
optimize by learning the residual between the target 
mapping and the input and our model will have a better 
performance [24]. 

3.5. One-class Support Vector Machine 

Due to the potential presence of various error types within 
the automatically generated contours and the predominant 
inclusion of high-quality contours in the training data, a 
binary classifier could encounter challenges associated 
with an imbalanced dataset. One-class classification 
algorithms, referred to as outlier or anomaly detection, is 
designed to identify instances that differ significantly from 
the majority class [28]. Its primary objective is to 
determine whether a given instance belongs to the target 
class or not, without explicit knowledge or training 
examples from other classes. In this study, one class 
support vector machine (OC-SVM) [28] was used. The 
advantage of OC-SVM is its capacity to detect diverse 

types of errors, even those that were not encountered 
during the training process. Furthermore, OC-SVM 
exhibits superior error detection capabilities compared to a 
binary classifier. The objective of the OC-SVM found a 
maximum margin hyperplane in feature space. It solved the 
following function: 

minF,G,H    12 ‖I‖JKL − ρ + 1νn - ξPQ
PRS �8� 

where U ∈ VW  , X is the distance from origin to hyperplane U. Nonnegative slack variables YZ allow the margin to be 
soft, but violations YZ get penalized. ‖I‖JKL  is a regularizer 

on the hyperplane U  and ‖[‖JKL  is the norm induced by 〈[,[〉JK . In our study, OC-SVM was trained using high-
quality contours and subsequently employed to identify 
low-quality contours. During the training of OC-SVM 
(Figure 1), we introduced zero-mean Gaussian noises as 
abnormal samples to the fully connected layer [33]. 

3.6. Evaluation 

3.6.1 Prediction Evaluation 

We used balanced accuracy, F score, sensitivity, 
specificity, and AUC to measure the performance of OC-

Figure 2. The representative contours created by expert clinicians and deep learning techniques. (a) high quality contour of left lung; 
(b) low quality contour of left lung; (c) high quality contour of spinal cord; (d) low quality contour of spinal cord; (e) high quality 
contour of esophagus; (f) low quality contour of esophagus; (g) high quality contour of heart; (h) low quality contour of heart. The 
yellow lines were contours generated by expert clinicians. The blue lines were contours created by deep learning techniques. 
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SVM model. Balanced accuracy is a metric that helps 
mitigate sample size imbalances. It is defined as follow: 

^�  =   12 ` �a�a + V& + �&�& + Vab �9� 

where TP is the number of the samples with low-quality 
contour that are accurately identified by the model, FN 
represents the number of samples with high-quality 
contour that are inaccurately predicted, TN is the number 
of samples with high-quality contour that are correctly 
detected, and FP is the number of samples with contour 
errors that are incorrectly identified. 

F-score measures the accuracy of a prediction model on a 
dataset. It is the harmonic mean of the precision and recall: 

V defgh  =   2�a2�a + V& + Va  �10� 

Sensitivity is the probability of a low-quality test result, 
given that the contour is truly low-quality, which evaluates 
the ability to identify low-quality contours. Specificity is 
the probability of a high-quality test result, given that the 
contour is truly high-quality, which reflects the ability to 
identify high-quality contours. They are defined as 
follows: 

�hjdklkmkl1  =   �a�a + V&  �11� 

�nhekokekl1  =   �&�& + Va �12� 

3.6.2 Extended Evaluation using Generated Errors 

To expand the sample size and thoroughly evaluate the 
performance of OC-SVM, we additionally generated 
various types of errors derived from the automatically 
generated contours. The errors encompassed translation 
and resizing. To simulate a translation error, we started by 
randomly selecting a direction and subsequently applied a 
displacement to the contour using the direction and a 
designated distance. To create an enlargement error, a 
dilation kernel with a disk of radius 2 was employed to 
progressively enlarge the contour until the low-quality was 
achieved. The reduction error was generated using an 
erosion kernel, following a similar procedure as the 
enlargement error, but with the aim of reducing the contour 
size. These generated contours that did not meet the criteria 
(equation 6-8) mentioned above were labeled as low-
quality as shown in Figure 3. For each high-quality 
contour, we generated three distinct types of low-quality 
contours, resulting in a total number of the generated low-
quality contours of 2634. 

In our experiment, an NVIDIA GeForce RTX 3080 was 
used in the proposed quality assurance model (Figure 1). 
Due to the limitation of our GPU memory, the batch size 
was set to 32. We used Adam optimizer in the training of 
ResNet-152. The total epochs was set to 50. The training 
process took about 3 hours. Testing involved identifying 
2000 contours within 5 minutes. On average, the prediction 
of quality assurance model for the contour on a single slice 
took 150 ms. 

Table 1. The comparison of CNN model and the proposed model on the test dataset. 
OAR BA F score Sensitivity Specificity AUC 

 CNN Proposed CNN Proposed CNN Proposed CNN Proposed CNN Proposed 

Esophagus 0.92 0.96 0.93 0.97 0.93 0.96 0.91 0.98 0.95 0.96 

Heart 0.95 0.98 0.96 0.98 0.96 0.97 0.94 1.00 0.95 0.97 

Left lung 0.98 0.99 0.91 0.98 0.96 0.98 1.00 1.00 0.93 0.97 

Right lung 0.97 0.99 0.92 0.98 0.97 0.98 1.00 1.00 0.94 0.97 

Spinal cord 0.91 0.96 0.92 0.96 0.93 0.94 0.89 0.98 0.91 0.95 

 

 
Figure 3. The contours with generated errors. (a) The 
automatically generated contour of the esophagus was 
labeled as high-quality, (b) the esophagus contour with 
translation error, (c) the esophagus contour with an 
enlargement error. (d) the esophagus contour with a 
shrinkage error 
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4. Result 

4.1. Comparison of CNN model and the proposed model 

We evaluated the performance of CNN model [20] and our 
proposed quality assurance model on the test dataset. As 
shown in table 1, the proposed model exhibited higher 
balanced accuracy compared to the CNN model 
(Esophagus: 0.96 vs. 0.92; heart: 0.98 vs. 0.95; left lung: 
0.99 vs. 0.98; right lung: 0.99 vs. 0.98; spinal cord: 0.96 vs. 
0.91). The F-scores of the proposed model outperformed 
those of the CNN model (Esophagus: 0.97 vs. 0.93; heart: 
0.98 vs. 0.96; left lung: 0.98 vs. 0.91; right lung: 0.98 vs. 
0.92; spinal cord: 0.96 vs. 0.92). The sensitivity of the 
proposed model was superior to that of the CNN model 
(Esophagus: 0.96 vs. 0.93; heart: 0.97 vs. 0.96; left lung: 
0.98 vs. 0.96; right lung: 0.98 vs. 0.97; spinal cord: 0.94 vs. 

0.93). The specificity of the proposed model surpassed that 
of the CNN model (Esophagus: 0.98 vs. 0.91; heart: 1.00 
vs. 0.94; left lung: 1.00 vs. 1.00; right lung: 1.00 vs. 1.00; 
spinal cord: 0.98 vs. 0.89). The AUC of the proposed 
model exceeded that of the CNN model (Esophagus: 0.96 
vs. 0.95; heart: 0.97 vs. 0.95; left lung: 0.97 vs. 0.93; right 
lung: 0.97 vs. 0.94; spinal cord: 0.95 vs. 0.91). The 
proposed model was able to achieve higher detection 
accuracy compared with CNN model. As shown in figure 
4, we showed some errors detected by our method and 
missed by the traditional CNN method. 

4.2. The performance of the proposed method on generated 
dataset 

The balanced accuracy of the predication on different 
generated errors was shown in Table 3. The proposed 
method achieved a higher balanced accuracy in identifying 
reduction errors compared to the CNN method 
(Esophagus: 0.82 vs 0.46; heart: 0.83 vs 0.67; left lung: 
0.85 vs 0.66; right lung: 0.85 vs 0.66; spinal cord: 0.81 vs 
0.44). In terms of identifying enlargement errors, the 
proposed method demonstrated a superior balanced 
accuracy in comparison to the CNN method (Esophagus: 
0.88 vs 0.50; heart: 0.86 vs 0.69; left lung: 0.88 vs 0.70; 
right lung: 0.88 vs 0.70; spinal cord: 0.83 vs 0.49). The 
balanced accuracy of the proposed method in identifying 
translation errors surpassed that of the CNN method 
(Esophagus: 0.88 vs 0.51; heart: 0.89 vs 0.70; left lung: 
0.89 vs 0.70; right lung: 0.89 vs 0.70; spinal cord: 0.87 vs 
0.49). As shown in figure 5, the generated errors were 
detected by our method and missed by the traditional CNN 
method (Figure 5c & Figure 5d). 

5. Discussion 

In traditional approaches, researchers use binary classifiers 
to categorize errors[18, 20]. However, this study 
introduced single classifiers and attention mechanisms, 
which provide the model with increased versatility and 
enhanced precision compared to previous research. For 
binary classifiers, when the test set contains errors 
significantly different from those in the training set, the 
model's recognition performance tends to deteriorate. 
Leveraging the characteristics of a one-class classifier, we 

Table 2. The comparison of the identification performance on generated dataset 
OARs Reduction Enlargement Translation 

 CNN Proposed CNN Proposed CNN Proposed 

Esophagus 0.46 0.82 0.50 0.88 0.51 0.88 

Heart 0.67 0.83 0.69 0.86 0.70 0.89 

Left lung  0.66 0.85 0.70 0.88 0.70 0.89 

Right lung 0.66 0.85 0.70 0.88 0.70 0.89 

Spinal cord 0.44 0.81 0.49 0.83 0.49 0.87 

Figure 4. The comparation of the errors detected by our 
method and CNN method. The contour errors in (a) and (c) 
were detected by both CNN method and the proposed 
method. The contour errors in (b) and (d) were only 
detected only by the proposed method. The red line was 
gold standard. The blue line indicated the contour generated 
by deep learning technique. 
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apply it to the proposed method to enhance the detection 
capability for errors that have not been encountered before. 
Apart from the initial training, this method, unlike the 
approach proposed by Duan et al. [19], doesn't require 
ground truth for quality assessment. 

The use of a one-class classifier effectively addresses the 
issue of having fewer error samples. However, in past 
studies, the majority of researchers[15, 19, 20] did not pay 
much attention to this issue. The scarcity of error samples 
has been a challenge, resulting in suboptimal performance 
for previous methods. However, even a simple approach of 
generating error samples using the method mentioned in 
this paper and training a binary classifier can significantly 
enhance the classifier's performance. Henderson et al. [23] 
proposed a method of voxel-wise to generate errors. They 
generated signed distance transforms of the ground-truth 
segmentations and introduced structured noise on a voxel-
wise basis. The structured noise was generated by drawing 
from a normal distribution, which was subsequently 
convolved with a 7.5 mm Gaussian kernel. The amplitude 
of the convolution was adjusted to ensure that the resulting 
structured noise had a standard deviation of 1 mm. The 
perturbed segmentation was obtained by utilizing the 
marching cubes algorithm (at level = 0) to generate a 
triangular mesh manifold. Subsequently, a connected 
components algorithm was employed to eliminate any 
disconnected spurious segmentations. However, 
implementing this method in three dimensions requires 
using 3D kernels for convolution, and this might lead to 
high-performance demands for the process. If not 
artificially generate error samples, we can mitigate this 
issue by using a weighted cross-entropy loss function or 
employing cross-validation methods.  

6. Conclusion 

We proposed a new QA model. This model incorporates 
two significant improvements, the one class classifier and 
attention mechanism. They can enhance the model's 
generality and precision. We can detect different errors 
with the model. Moreover, the model's fast execution speed 
can significantly reduce the burden on physicians. 
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