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Figure 1. As an end-to-end framework for angiography image analysis, Dr-SAM first extracts the segments of blood vessels, then detects
the centerlines and estimates the diameters of the vessels (shown with circles), then, finally, recognizes the anomaly points indicating
stenoses or aneurysms (green points).

Abstract

Recent advancements in AI have significantly trans-
formed medical imaging, particularly in angiography, by
enhancing diagnostic precision and patient care. However
existing works are limited in analyzing the aorta and il-
iac arteries, above all for vascular anomaly detection and
characterization. To close this gap, we propose Dr-SAM,
a comprehensive multi-stage framework for vessel segmen-
tation, diameter estimation, and anomaly analysis aiming
to examine the peripheral vessels through angiography im-
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ages. For segmentation we introduce a customized posi-
tive/negative point selection mechanism applied on top of
the Segment Anything Model (SAM), specifically for medi-
cal (Angiography) images. Then we propose a morphologi-
cal approach to determine the vessel diameters followed by
our histogram-driven anomaly detection approach. More-
over, we introduce a new benchmark dataset for the compre-
hensive analysis of peripheral vessel angiography images
which we hope can boost the upcoming research in this di-
rection leading to enhanced diagnostic precision and ulti-
mately better health outcomes for individuals facing vascu-
lar issues.

This CVPR Workshop paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.
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1. Introduction
The blood supply to the lower body, including the legs
and pelvic organs, relies heavily on the infrarenal aorta and
pelvic arteries. Any narrowing (stenosis) [19] or widening
(aneurysms) in these vessels can lead to serious health is-
sues. Angiography, an imaging technique that uses X-rays
and contrast agents, is utilized for the precise diagnosis and
treatment of these conditions. This imaging technique is
particularly effective in identifying stenosis and aneurysms
in the infrarenal aorta and pelvic arteries. With the advance-
ment of technology and the introduction of minimally in-
vasive procedures, angiography has significantly enhanced
the outcomes for patients with vascular diseases. With the
raise of AI angiography images got a chance to be analyzed
semantically and assist the doctors more effectively in diag-
nosis forecasting.

To conduct an angiographic examination, the doctor in-
serts a catheter into the arteries and through the catheter in-
jects a contrast agent containing iodine into the blood ves-
sel. The vessels can now be visualized using x-rays, usu-
ally in a substraction technique, to identify potential nar-
rowing or widening. These images are used to evaluate the
vessel diameter, stenoses or aneurysms, as well as the pre-
cise localization. If a relevant stenosis is detected during
angiography, immediate treatment may be required, espe-
cially if it significantly impairs blood flow. In such cases,
balloon or stent angioplasty may be an effective interven-
tion. In this procedure, a small balloon at the end of the
catheter is introduced to the narrowed area and then inflated
to widen the narrowing and restore normal blood flow. For
this reason, rapid and precise assessment of vascular diame-
ters and their changes are crucial for stenosis/aneurysm de-
tection and characterization.

Simultaneous treatment of stenoses during angiographic
examination offers a number of advantages. First, it can
reduce the risk of complications that could arise if the pa-
tient had to return later for a separate operation. Second, it
allows blood flow to be restored more quickly, minimizing
the risk of tissue damage and complications such as tissue
loss or necrosis. In addition, prompt treatment of stenosis
may reduce the need for repeat interventions and improve
long-term prognosis. For this reason, rapid and precise as-
sessment of vascular changes is crucial.

With the assistance of our tool, doctors can analyze im-
ages more quickly than manual examination allows. This
efficiency shortens the time between diagnosis and the start
of treatment, which is essential for conditions that need
quick action. It also importantly minimizes the risk of diag-
nostic errors that can occur due to human factors like fatigue
or subjective interpretation.

For this purpose we develop Dr-SAM, an end-to-end
framework designed for vascular angiograpgy image anal-
ysis with vessel segmentation, diameter determination, and

Figure 2. SAM result on X-Ray image without any prompts. Mid-
dle - ground truth mask, right - SAM predicted mask.

anomaly detection/characterization.
Various filter-based, learning-based, or regionally grow-

ing approaches have been developed for angiographic seg-
mentation [6, 11] including a wide usage of convolutional
neural networks (CNNs [3, 17]). CNNs have proven effec-
tive in segmentation across various applications and offer a
potential solution to address the shortcomings of traditional
methods in this complex area.

Recently, with the advancements of CNNs in the general
domain segmentation task the Segment Anything Model
(SAM) [10] was developed as an interactive tool for ulti-
mate segmentation. However directly using SAM for vessel
segmentation in angiography images usually leads to incor-
rect region selections (see Fig. 2) due to the limitation of
SAM requiring positive label points for precise segmenta-
tion. Therefore we designed a special positive point selec-
tion mechanism, tailored to use with SAM for the vascular
angiography images.

After segmenting the vessels in their corresponding re-
gions, we further estimate vessel diameters and analyze
stenosis/aneurysm anomalies. To achieve this, we utilize the
topological skeleton of the binary mask by pruning certain
branches. Due to the noise from the binary mask, the topo-
logical skeleton [2] may contain branches that are not actual
vessel branches. Our algorithm identifies these branches by
their size and prunes them, resulting in a clean tree-based
vessel structure. This process improves the accuracy of ap-
proximate diameter estimation for vessel segments, aiding
in the identification of stenosis/aneurysms.

Furthermore, we introduce a benchmark dataset for the
segmentation and anomaly detection on vascular angiogra-
phy images crafted by domain specialists. We validate our
approach on the proposed benchmark, and hope our dataset
can further boost the research in this direction.

To summarize, our contributions are three-fold:

• We propose a positive point selection mechanism for seg-
menting blood vessels from angiographic X-ray images
using SAM.

• We introduce an algorithm for detecting stenoses and
aneurysms over binary masks of the vessels.
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• We introduce a new benchmark dataset containing X-ray
images of peripheral vessels along with the vessel binary
masks and anomaly point labels.

2. Related work
2.1. Segmentation of blood vessels in x-ray images

In our study, we explored both image processing [23] and
learning-based [10] methods for angiography image seg-
mentation. The lack of data in the community and also the
novelity of the problem itself are limiting the fine-tuning or
training specialized models. Hence we choose to go with a
zero-shot approach by leveraging pre-trained segmentation
models. The Segment Anything Model (SAM) [10] from
Meta AI showcases the advancement, providing a system
that can identify and segment a wide range of objects with-
out needing prior training on them.

Similar to this paper, some existing works [4, 12, 20, 21]
leverage SAM for medical image segmentation. However
they majorly choose to fine-tune SAM on medical 2D and
3D images of wide range, including ophtalmology images.
[5] employs multi-box prompts to segment the optic disc.
In [15] the authors use SAM to annotate their dataset for
training a new network for OCTA vessel segmentation. [16]
suggests a new learnable prompt layer for segmenting oph-
thalmology images. In [22] the authors have trained a model
on 64 open-source medical datasets and added prompt op-
tions.

Regardless impressive results of the previous works,
most of them either segment convex regions in medical
images or vessels of different regions. To the best of our
knowledge Dr-SAM is the first end-to-end pipeline for an-
giography image analysis, including the vessel segmenta-
tion stage specified on peripheral vascular angiography im-
ages. Our contribution on segmentation part extends SAM’s
utility through a novel methodology of positive point se-
lection which, along with user-specified bounding boxes, is
guiding SAM for refined vascular segmentation.

2.2. Anomaly detection

Some previous works [9, 13, 14] also touch the anomaly
detection problem on medical images. To detect anomalies,
AngioNet [9] segments vessels and calculates the minimum
and maximum diameters within each segment. In contrast,
our approach identifies extremum points within each seg-
ment and designates anomalies in the areas between these
extremum points. For finding diameters, we use skeleton
detection algorithm [2], which is a tool used for thinning or
skeletonizing objects within an image to a single-pixel wide
skeleton. The algorithm iteratively removes pixels from the
edges of objects until only the minimal set of pixels that
constitutes the ”skeleton” remains, preserving the topology
and general shape of the original object.

In [14] the authors utilize Coronary CT Angiography
(CCTA) to extract coronary artery characteristics and as-
sess stenosis significance with a CNN, focusing on artery
geometry’s impact on blood flow and local appearance
for accurate stenosis assessment. In [13] the authors en-
hance key frame detection with vessel extraction and em-
ploy CNN models with self-attention modules to classify
stenosis, validating the algorithm through extensive cross-
validation and external dataset evaluation, highlighting the
use of heatmaps for visualization. These methods illustrate
the evolving complexity and specificity of techniques in de-
tecting coronary anomalies, contrasting with our extremum
point identification strategy for anomaly detection.

3. Method
In this section we introduce Dr-SAM, a universal algo-
rithm for anomaly detection in blood vessels, incorporat-
ing zero-shot technology for vessel extraction followed by
anomaly detection with the integration of topological skele-
ton. Moreover, here we also present our benchmark dataset
collected for thorough evaluation of our method and other
approaches.

Our streamlined approach for anomaly detection not
only reduces computational costs having pipeline without
training process, but also ensures applicability demonstrat-
ing effectiveness on angiographic images. The overview of
the framework can be found in Fig. 3.

3.1. Vessel extraction using point-conditioned SAM

We employ SAM [10] for extracting vessels from X-ray im-
ages. In order to enhance results, we tailor SAM’s prompt,
particularly focusing on input points. In our approach, we
propose a novel algorithm for identifying positive points to
feed SAM during segmentation (see Fig. 3).

It is worth to mention that due to our experiments, incor-
porating negative points does not significantly impact seg-
mentation outcomes hence we choose to design a special
algorithm only for positive point selection. For the initial
point, we select the most probable vessel point within the
bounding box through the following procedure:
1. We generated a probability map for each pixel being

a vessel pixel, assigning higher probabilities to pixels
with lower values by assuming that darker points in the
X-ray angiographic images are part of the vessel. We
obtained the probability map by scaling and reverting
the input values to [0, 1] (255 to 0 and 0 to 1, i.e.
x 7→ 1 − x/255 = Probability(xis a vessel pixel) for
x ∈ [0, 255]).

2. Excluded the pixels with probabilities lower than pre-
defined threshold.

3. Sampled 100 random points from the remaining set to
prevent concentration of points in densely populated ar-
eas.
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Figure 3. The overview of Dr-SAM: For each bounding box provided by the user, first we determine five positive points using our point
finder algorithm. This is followed by vessel extraction by SAM [10] conditioned on our positive points. Then for anomaly detection we
extract the centerline of the binary mask, obtained from the previous stage, by finding its skeleton, and use that skeleton for estimating
vessel diameters, which are later being used to detect anomaly points on the vessels.

4. Selected a point with the highest number of neighboring
points within the predefined radius of SelectionRadius
from the sampled set as a positive point.

For the second step, we select the most proba-
ble point that lies outside the region defined by the
ExcludeRadius from the first point and with the radius of
SecondPointSelectionRadius.

To further enhance results, we implement a repeatable al-
gorithm for identifying positive points. In simple words, the
algorithm starts segmenting images by available points de-
scribed in the previous paragraph. After segmentation, for
selecting the next positive point, the algorithm avoids con-
sidering points on the previously predicted mask, selecting
the most possible positive point from the remaining image
in the same way as described in the previous paragraph. For
each iteration algorithm uses all available positive points
collected from previous steps for segmentation, thereby en-
suring consistent results after each iteration. However, to
preserve previously segmented good results with minimal
changes, we repeat this process three times at the result hav-
ing overall 5 positive points, including 2 points from last
paragraph, for the final segmentation.

3.2. Anomaly detection using topological skeleton

For anomaly detection, we utilized a topological skeleton
[2], a method widely employed in X-ray image studies
within Computer Vision. The topological skeleton is a vital
component in identifying or approximating the centerline of
a vessel, aiding in the determination of its diameter in spe-
cific regions. Our proposed algorithm involves the use of a
topological skeleton, which is subsequently pruned by re-
moving unnecessary branches while preserving the vessel’s
structural integrity.

To do so, our algorithm uses PlantCV [7] techniques

to extract branches from the topological skeleton. After
getting the branches separated, we identified low-length
branches. Our consideration was that branches with the
length less then MinBranchLength are not real branches
of the blood vessel and were generated because of the
anomalies in it. Removing low-length branches, we get
tree-like structured skeleton of the blood vessel, which is
better to estimate diameters along the segments.

Further, we leveraged extracted segments of the skele-
ton to examine anomaly regions within the vessel segment.
Treating segment-approximated diameters as values of a
function, we conducted anomaly detection on each segment.
Our primary consideration was that anomaly points consti-
tute a subgroup of extremum points of the real function.
However, the challenge arises from noise, which generates
inaccuracies in the sequence’s highs and lows. The primary
contribution of our approach lies in mitigating noise by
clustering close values in one region, facilitating the more
accurate identification of highs and lows. By applying a
threshold of MinChangeThreshold to the variations be-
tween these extremum point values and the mean of sur-
rounding point values, we identify anomaly points within
the segment. For details see Algorithm 1.

After detecting the anomaly points we leverage the dis-
tance transform [18] technique to better estimate the diam-
eters near the anomaly points. To do so for each centerline
point we calculate the distance between that point and the
nearest non-vessel point in the image by so estimating the
radius of the vessel at that particular location of centerline.
After that we estimate the percentage of the anomaly as fol-
lows:
1. Extract branch from the skeleton as an array of points.
2. Calculate the distance transform of anomaly point.

dtp = distanceTransform(segment[i]) (1)
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3. Calculate the distance transform of points located be-
fore and after anomaly point with the step equal to
length(segment)//5.

dte1 = distanceTrasform(segment[i− step] (2)

dte2 = distanceTransform(segment[i+ step]) (3)

4. For getting the percentage of the anomaly:

changep =
abs(mean(dte1, dte2)− dtp)

mean(dte1, dte2)
(4)

And finally, to get the type of the anomaly, we compare
mean(dte1, dte2) and dtp. If the first is more than the sec-
ond, we have stenosis and our percentage change will be
with − sign. Otherwise, we will have an aneurysm, and the
percentage change will have + sign.

Algorithm 1: Anomaly detection algorithm
Input : 2D Predicted binary mask
Output: List of anomaly points

1 anomalyPoints = [ ];
2 segmentedSkeleton← segmentize(skeletonize(mask));
3 skeletonThickness← getThickness(mask);
4 for seg in segmentedSkeleton do
5 seg ← segmentedSkeleton[i];
6 thickness← skeletonThickness[seg];
7 eps← length(seg)/10;
8 minSamples← 1;
9 localExtremums←

findLocalExtremums(thickness);
10 clusters←

DBSCAN(localExtremums, eps,minSamples);

11 newExtremums = [ ];
12 for c in clusters do
13 indices← c.indices;
14 center ← int(mean(indices));
15 newExtremums.add([center, thickness[center]])

16 end for
17 filteredExtremums = [ ];
18 N ← length(newExtremums);
19 for i← 1 to N − 1 do
20 current← filteredExtremums[i][1];
21 previous← filteredExtremums[i− 1][1];
22 next← filteredExtremums[i + 1][1];
23 if current < previous & current < next then
24 filteredExtremums.add(current);
25 end if
26 if current > previous & current > next then
27 filteredExtremums.add(current);
28 end if
29 end for
30 radius← length(seg)//5;
31 for point in filteredExtremums do
32 index← point[0];
33 meanThickness← (thickness[index− radius] +

thickness[index + radius])/2;
34 if abs(point[1]−

meanThickness)/meanThickness > 0.5 then
35 anomalyPoints.add(seg[index]);
36 end if
37 end for
38 end for
39 return anomalyPoints

3.3. Benchmark Dataset

Our dataset consists of carefully selected images from 500
angiographic examinations of the pelvic-iliac arteries, car-
ried out between 2018 and 2024 at Bad Oeynhausen Hospi-
tal and JWK Klinikum Minden, within their radiology de-
partments. The focus of these examinations was the abdom-
inal aorta below the renal arteries and the pelvic arteries.
Using Adobe Lightroom, only the pertinent areas of these
examinations were cropped to isolate the regions of inter-
est. Of these images, 450 have a resolution of 386x448 pix-
els, and 50 have a resolution of 819x950 pixels. The dataset
includes 170 images featuring at least one stenosis and 64
images with at least one aneurism. Following this initial
selection, Adobe Photoshop [1] was employed to create a
vessel mask for each cropped image, which outlines the
arterial structure. Additionally, any narrowing and widen-
ing observed within the arterial regions were meticulously
marked. This dataset is a comprehensive compilation that
provides a significant resource for studying the conditions
affecting the pelvic-iliac arteries, demonstrating a targeted
approach to vascular imaging research.

4. Experiments
In this section we first discuss some implementation details
of Dr-SAM, then make thorough analysis of its segmenta-
tion and anomaly detection (including the centerline detec-
tion, diameter and anomaly estimations) stages.

4.1. Implementation details

The experiments were conducted on a diverse set of
angiography images, encompassing various structures
and anomalies. We utilized angiographic X-ray im-
ages with bounding boxes and anomaly points validated
by two professional doctors in the field of vascular
imaging. Throughout the experiments, we config-
ured parameters as follows: SelectionRadius =
75, SecondPointSelectionRadius = 50,
ExcludeRadius = 100, MinBranchLength = 40,
MinChangeThreshold = 50%. Our code is imple-
mented using PyTorch. The mean time for the segmentation
part takes 0.66 seconds on average, while the anomaly
detection part takes 0.65 seconds on average.

4.2. Segmentation Analysis

For the segmentation aspect, we aim to evaluate our
methodology against two established techniques: The first
technique involves applying the Segment Anything Model
(SAM) to the original images, employing bounding boxes
as prompts without any enhancement or additional prompts.
The second, a naive positive point selection approach, at-
tempts to identify the pixel with the lowest value (i.e. the
highest probability of being a vascular pixel) within each
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Figure 4. Qualitative comparison of three different approaches for segmentation. From left to right: SAM, naive approach of selecting the
positive point as the most probable vascular pixel, our method

5118



Figure 5. Dr. SAM pipeline results for each step
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(a) (b)

Figure 6. Topological skeleton in (a), and processed skeleton by
our algorithm (b)

specified bounding box on the original image (normalized
to have values from the range [0,1]), and gives it as a posi-
tive point prompt. We present the analysis both visually and
through quantitative measures. For our quantitative metric,
we use the Intersection over Union (IoU) [8] to compare
our predictions with the ground truths. The ground truth is
derived from binary masks of each box, meticulously anno-
tated by experts.

In Tab. 1 we present the mean Intersection over Union
calculated on 450 various angiography images segmented
by 1. standalone SAM; 2. SAM with additional positive
point naively chosen as the highest probable point of being
a vascular pixel; 3. SAM with additional positive points
gathered by our method. The experiments clearly show the
advantage of our method for segmenting the vessels in an-
giography images.

SAM Naive approach Our method
MIoU 0.754 0.807 0.859

Table 1. Quantitative comparison by using the mean IoU metric.

We also perform qualitative analysis of our method
by comparing it with the above mentioned approaches of
vanilla SAM and highest probable positive point selection
approach. Fig. 4 shows the clear advantage of our method
in comparison, different colors are applied for more visually
appealing demonstration.

4.3. Anomaly detection

For centerline estimation, our objective is to assess its per-
formance relative to the topological skeleton. As depicted in
Figure 6, the distinction between skeletons is clearly illus-
trated. Our proposed algorithm effectively eliminates extra
branches from the skeleton (indicated by red circles) that do
not belong to the vessel structure.

In Figure 5, we present the successful centerline es-
timation results. These results clearly demonstrate the
adaptability of the centerline algorithm to anomalies, lead-
ing to improved accuracy in diameter estimation. Follow-
ing successful centerline detection, the distance transform
method yields excellent results in diameter estimation, in-
cluding in challenging anomal regions. And finally, our
anomaly detection algorithm excellently finds both steno-
sis and aneurysm parts of the segments, giving good results
in indicating the level of anomaly.

5. Conclusion
In this paper, we present Dr-SAM, a novel approach for
an end-to-end detection of stenoses and aneurisms in pe-
ripheral blood vessels. We introduce a customized positive
point detection for Segment Anything Model (SAM) to cap-
ture blood vessels in X-ray angiographic images without the
need for any additional training.

Through a series of experiments, we demonstrate the
effectiveness of our approach in vessel extraction and
anomaly detection. Our method offers significant advance-
ments over existing segmentation techniques in this partic-
ular task.

Additionally, we introduce a benchmark dataset of 450
angiography images of peripheral vessels, annotated and
labeled by highly qualified experts. We plan to make the
dataset and the codes publicly available.

In conclusion, our work contributes to expanding re-
search on medical image processing by introducing new
ideas and tools for future work. Addressing limitations of
the naive approaches, our approach has the potential to ad-
vance the state-of-the-art in anomaly detection in blood ves-
sels research, providing a more effective and efficient solu-
tion for a wide range of applications.
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