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1. Additional Results
1.1. Top-k Search In The MIL Framework

We conducted experiments with three different k values in
the instance-level approach: approximately 12.5%, 25%,
and 50%. In the context of our experiments, which in-
volved input images of 224 × 224 resolution and patches
of 16 × 16 resolution, we dealt with a total of N = 196
patches. This implies that for the k ≈ 12.5% configuration,
we considered 25 patches; for k = 25%, we worked with
49 patches, and for k = 50%, we used 98 patches. To de-
termine the optimal k value for the top-k average operator
in the instance-level approach, we conducted experiments
using various backbones on the validation set of the ISIC
2019 dataset. A summary of these experiments is shown in
Figure 1.
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Figure 1. Search for the optimal k hyperparameter in the instance-
level top-k average MIL pooling operator. We explored three val-
ues for the hyperparameter: k ≈ 12.5%, k = 25%, and k = 50%.
Our experiments were conducted and evaluated on the validation
set of the ISIC 2019 dataset, employing different MIL backbones.
The backbones included RN-18, RN-50, VGG16, DN-169, EN-
B3, DEiT-S, DEiT-cls (DEiT with the CLS token), EViT-S, and
EViT-fused (EViT with the fused embedding). Notably, with EViT
backbones, k ≈ 12.5% resulted in only 9 patches, k = 25% re-
tained 17 patches, and k = 50% maintained 34 patches. These
results indicate that using more patches in the bag evaluation does
not necessarily lead to better performance.

The plot in Figure 1 shows that the choice of k for the
top-k average operator in the instance-level approach does
not significantly impact the performance of the different

MIL models. This observation suggests that not all patches
within a dermoscopy image contribute equally to the clas-
sification task, indicating that the discriminative informa-
tion lies within a (small) subset of image patches. Inter-
estingly, the k ≈ 12.5% and k = 25% scenarios con-
sistently yield the highest BA results across different MIL
backbones. Based on these results, we selected k = 25% as
the default configuration for the top-k average pooling op-
erator. To ensure a fair comparison between the embedding-
level and instance-level approaches, we have also adopted
k = 25% as the preferred setting for the column-wise global
top-k average operator in the embedding-level approach.

1.2. EViT Experimental Setup Complementary Ma-
terial
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Figure 2. Performance comparison between EViT-S models with
different keep rates. The experiments were conducted on the ISIC
2019 validation dataset, as well as on the two test datasets: PH2

and Derm7pt, for the binary classification task of melanoma versus
nevus. The x-axis represents the different Kr values, while the y-
axis represents the corresponding BA results.

The combination of layers in which token reorganization
takes place and the choice of Kr (keep rate) are the most
critical hyperparameters in the EViT architecture. Since we
decided to fix the token reorganization block in the 3rd, 6th,
and 9th layers, an extensive search for the best Kr config-
urations in the EViT-S model was required. Since the Kr

hyperparameter plays a crucial role within the EViT archi-
tecture, we conducted a series of experiments to examine its
impact on the EViT-S configuration. Figure 2 shows the BA



results across different Kr values for the ISIC 2019 valida-
tion set and both test datasets: PH2 and Derm7pt. These
results indicate that a higher Kr does not necessarily lead
to better performance, especially on the test datasets. It is
clear that Kr values of 0.6, 0.7, and 0.8 outperform the rest.
Therefore, in this work we used the Kr = 0.6 and Kr = 0.7
EViT-S configurations.

1.3. Selection Of MIL Backbones And Baselines

To facilitate the experiments conducted in this paper, we
carefully selected a representative model from each of the
CNN and Transformer baselines. This selection process in-
volved an extensive evaluation of each model on the valida-
tion set of the ISIC 2019 dataset, focusing on the binary
classification problem of melanoma (MEL) versus nevus
(NV). The results of this evaluation are summarized in table
1.

Baseline models ISIC 2019

BA R-MEL R-NV

C
N

N

RN-18 88.6 83.8 93.4
RN-50 88.9 82.6 95.1
VGG-16 87.7 83.6 91.8
DN-169 89.1 83.2 95.0
EN-B3 90.7 85.5 95.8

V
iT

ViT-S 91.3 86.8 95.8
ViT-B 90.6 85.3 95.8
DEiT-S 91.7 86.7 96.7
DEiT-B 91.7 87.2 96.2

Table 1. Evaluation results of a set of baseline models on the
validation set of the ISIC 2019 dataset. The baseline models in-
clude different architectures, including RN-18, RN-50, VGG-16,
DN-169, EN-B3 from the CNN-based category, and ViT-S, ViT-
B, DEiT-S, DEiT-B from the Transformer-based category. The
evaluation is performed for the binary classification problem of
melanoma versus nevus.

1.4. Multi-class MIL Complementary Material

A detailed summary of the results for the multi-class MIL
is shown in Table 2.

1.5. Additional MIL Heatmaps

Figure 3 provides a visual representation of the different vi-
sualizations produced by the instance-level MIL model us-
ing the top-k average pooling operator. In this case, the last
row shows the gradients associated with the patches classi-
fied as nevus.



Table 2. Results of multi-class image classification on the ISIC 2019 validation set. ’I-1’ and ’I-2’ denote the first and second instance-level
approaches, respectively, and ’E’ denotes the embedding-level approach.

Models ISIC 2019

BA R-AK R-BCC R-BKL R-DF R-MEL R-NV R-SCC R-VASC

EN-B3 82.2 71.1 87.8 79.4 81.3 76.5 91.6 72.2 98.0
DEiT-S 83.6 72.3 90.5 82.7 87.5 80.3 92.1 65.1 98.0

E
V

iT Kr = 0.6 83.6 71.7 89.0 80.4 93.8 77.8 91.3 66.7 98.0
Kr = 0.6 84.3 78.6 90.7 80.4 87.5 75.6 93.5 69.8 98.0

M
IL

-E
N

-B
3

I-1
Max 74.1 57.2 81.5 74.3 77.1 74.6 77.8 61.9 88.2
Topk 78.4 72.8 78.8 75.6 79.2 74.9 87.3 68.3 90.2
Avg 79.9 71.7 86.4 78.1 83.3 76.8 84.1 62.7 96.1

I-2
Max 76.4 72.3 82.4 75.4 72.9 66.7 80.0 65.1 96.1
Topk 76.2 75.7 77.1 65.5 79.2 71.0 82.5 66.7 92.2
Avg 77.5 68.2 86.5 74.1 77.1 73.5 81.2 69.0 90.2

E
Max 72.3 55.5 77.6 73.7 68.8 66.9 79.0 70.6 86.3
Topk 78.9 66.5 86.3 79.6 81.3 74.2 84.1 66.7 92.2
Avg 77.6 68.8 84.2 77.3 77.1 77.4 80.7 63.5 92.2

M
IL

-D
E

iT
-S

I-1
Max 82.2 72.8 88.7 81.1 89.6 80.1 82.7 64.3 98.0
Topk 81.7 78.0 84.0 73.0 66.7 78.4 88.4 68.3 90.2
Avg 81.6 76.3 85.7 72.0 89.6 75.4 88.6 69.0 96.1

I-2
Max 75.4 70.5 80.9 75.8 72.9 66.6 83.1 61.1 92.2
Topk 79.0 74.0 84.5 75.6 72.9 76.3 87.2 65.1 96.1
Avg 82.6 79.2 87.8 76.2 87.5 77.9 91.1 66.7 94.1

E
Max 82.4 80.9 87.8 75.1 83.3 76.4 89.0 74.6 92.2
Topk 82.2 73.4 83.6 74.3 93.8 75.6 92.2 69.1 96.1
Avg 82.6 70.5 88.7 79.8 89.6 75.1 91.5 65.9 99.9



Figure 3. Visualization of the heatmaps generated by the MIL classifier, specifically the instance-level MIL model using the top-k average
pooling operator. The backbone used for the MIL model is the RN-18. The images are taken from the validation set of the ISIC 2019
dataset, and belong to the binary problem of melanoma vs. nevus. The Figure shows the input images in the first row, followed by the patch
probability heatmap for the melanoma class in the second row. The third row shows the gradient heatmap for each patch. In this case, the
last row shows the gradients with respect to the patches that the model predicted to be nevus.
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