A Deep Biclustering Framework for Brain Network Analysis

Supplementary Material

1. Brain network Construction: sSFENC

Group ICA decomposes the brain imaging volumes into in-
trinsic connectivity networks (ICNs), Functional network
connectivity (FNC) provides a way to study functional in-
teraction and integration. FNC is defined as the temporal
dependency among ICNs and is commonly estimated using
Pearson’s correlation coefficient between ICN time courses
[7]. At first, we run the Infomax ICA algorithm to identify
the independent sources (ICNs) in the image collection. In-
fomax has been widely used and compares favorability with
other algorithms [4]. For each model order (N = 25, 50, 75,
and 100), the Infomax ICA algorithm was run 100 times and
clustered together within the ICASSO framework [5]. The
run with the closest independent components to the cen-
troids of stable clusters (ICASSO cluster quality index >
0.8) was selected as the best run. This is an important point
and facilitates replicable results. Next, the subject-specific
independent components time courses were calculated us-
ing the spatial multiple regression technique [3]. At each
time point, the contribution of each independent component
to the BOLD signal was calculated using linear regression
[3]. Then, we select a subset of independent components
as ICNs if they are stable (ICASSO stability index > 0.8)
and depict common ICN properties including (a) dominant
low-frequency fluctuations of their time courses evaluated
using dynamic range and the ratio of low-frequency to high-
frequency power; (b) peak activations in the gray matter; (c)
low spatial overlap with vascular, ventricular; and (d) low
spatial similarity with motion and other known artifacts. Fi-
nally, ICNs were grouped into functional domains based on
prior knowledge of their anatomical and functional proper-
ties [1].

We calculated static functional network connectivity be-
tween every single pair of ICNs across all model orders
to effectively capture functional integration and interaction
across different spatial scales [6]. For a subset of data (15
percent) with a sampling rate different from 2 s, ICN time
courses were interpolated to 2 s. Minimum data length
across all subjects was selected for further analysis. Static
FNC (sFNC) was estimated by calculating the Pearson cor-
relation between each pair of ICN time courses. This result-
ing matrix is the adjacency for the brain network. The ICNs
are given in figure 1.

2. Biclusters demographics

Table 1 shows the extracted biclusters and their included
brain network edges and subjects from both patient and
healthy control groups. These results are computed on the

combined dataset (fBIRN, COBRE, and MPRC).

Table 1. Biclusters Demographics

Bic sFNC connections SZ subjects HC subjects

1 63 47 72
2 74 61 87
3 48 65 57
4 38 41 67
5 46 43 37

3. Hyper Parameters Sensitivity

We also review the sensitivity of the model for diverse con-
figurations and tuning parameters. While examining the
outcome of the tweak in a parameter, we kept others un-
changed. Figure 6(a) demonstrates the APCC in extracted
bicluster for k = 5 for a range of values of « and 3. These
thresholds are used in the metaheuristic for selecting sub-
jects and features based on activation and weight matrix.
We observe the best results for o = 0.5, and 8 = 0.3. How-
ever, the bicluster identification is not strictly dependent on
these thresholds as we observe there is a wide range of val-
ues for « and 3 that can achieve competitive results. Fig-
ure 6(b) presents the model’s performance analysis based
on the tweaks in tuning parameters -y, d. Likewise, we can
see slight variations in APCC for the distinct value of v and
0 that manifest the weak dependency on the tuning param-
eters. These analyses also evidence the robustness of the
model to initialization.

4. Cognitive Measurements

The cognitive scores are obtained using two different
batteries for three datasets and harmonized across post hoc
implementations. Computerized Multiphasic Interactive
Neuro-cognitive System (CMINDS)[8]. Neurocogni-
tive domain z-scores are calculated from computerized
neuropsychological tests, from computerized neuropsycho-
logical tests, which are similar to those in the MATRICS
Consensus Cognitive Battery (MCCB) system [2]. The
CMINDS includes computerized neuropsychological tasks
that are structurally and functionally similar to standard
paper-and-pencil neuropsychological tasks and allows
for immediate electronic raw data capture and automated
scoring of test results.



Sub-cortical Domain (SC: 5)

X =49 mm Y =-26 mm

Cerebellar Domain (CB: 4)

L

De®
SV 2o &P

X =-31 mm Y=-61mm Z=-43 mm

Auditory Domain (AU: 2)

-
lk"

Y =-55mm Z =33 mm

Network templates

Figure 1. Brain parcellation using group ICA. Spatial maps of the 53 ICNs are arranged into 7 functional domains according to anatomic

and functional prior knowledge.

The CMINDS-based cognitive domains, based on com-
parable tests to those assessed by the MCCB, were as fol-
lows: (1) Speed of Processing. This domain score was
based on the mean of (a) the log-transformed, negated
(worse performance is lower) elapsed transformed, negated

(worse performance is lower) elapsed time (in seconds) dur-
ing Trails A, (b) the number of correct in set responses in 60
seconds on trial 1 of Category Fluency Test - Animals, and
(c) the number of correct responses during the Symbol Digit
Association Test z-scores; (2) Attention/Vigilance. This do-
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Figure 2. Model’s sensitivity towards the tuning parameters and
bi-cluster formation thresholds. 6(a) for various values of o and
B. 6(b) various values if tuning parameters (v, 9).

main score was based on the d-prime across blocks A-C
of the Continuous Performance Test z -scores; (3) Work-
ing Memory. This domain score was based on the mean
of (a) the sum of the number of correct on the Visual-
Spatial Sequencing Test —Forward and backward condition,
and (b) the total correct on the Letter Number Span z -
scores; (4) Verbal Learning. This domain score was based
on the total number of correctly recalled target words for all
three trials on the Semantic Verbal Learning Test z-scores;
(5) Visual Learning. This domain score was based on the
square-transformed total of the Visual Figure Learning Test
z-scores, and (6) Reasoning/Problem Solving. This domain
score was based on the square transformed Maze Solving
Test total score z-scores. Finally, the CMINDS composite
score was defined as the mean of all six normalized domain
scores.

For the COBRE dataset, composite cognitive scores are
measured by the MATRICS Consensus Cognitive Battery
(MCCB) system, introduced by NIMH. It includes one
more domain (social cognition) than CMINDS. Both batter-
ies CMINDS and MCCB are analogous in measuring cog-
nitive deficits in schizophrenia. However, there are some
differences between these systems reported in this study [8].
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