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Abstract

Despite having completely different configurations, deep
learning architectures learn a specific set of features that
are common across architectures. For example, the initial
few layers learn the low-level edge features from the images.
Based on this fact, in this research, we have showcased the
potential of deep neural network fusion for simple and effec-
tive deepfake detection. The advantage of building an archi-
tecture in such a manner is to build a low-power-consuming
and accurate defense that can be deployed on mobile de-
vices. To utilize the pre-trained knowledge and obtain
downstream task-specific knowledge, we have identified a
breakpoint in different networks and divided the obtained
knowledge of a network into fixed and adaptive information.
We have kept the fixed knowledge intact while modifying the
adaptive knowledge along with entirely new knowledge for
the deepfake detection task. In the end, the decision of mul-
tiple deep architectures trained based on their breakpoint
are combined for improved performance. Extensive com-
parisons performed with existing state-of-the-art architec-
tures demonstrate the effectiveness of the proposed deepfake
detection algorithm. The proposed algorithm not only sur-
passes the existing state-of-the-art (SOTA) algorithms but
also needs low computational power. We have further chal-
lenged the proposed algorithm by evaluating it by collecting
real-world deepfake images.

1. Introduction

Fake images especially where few components of the im-
ages are swapped can lead to a significant decrease in the
image classification performance [8, 35]. Further, with the
advancement in machine learning and generative networks,
both the generation and modification of images including
face images have become easy, and few tap-based tasks
[3, 6]. These manipulated face images can not only pro-
vide illegal access but can serve as a medium to spread false
and hateful information. One of the popular and powerful

manipulation techniques in today’s time is called Deepfake.
Deepfake is a technique where deep neural network archi-
tectures are used to create synthetic media which consists
of the manipulation of either expression or identity. Since
the coining of the term Deepfake, several advancements
have been noticed in the generation of these synthetic me-
dia which range from the generation of low-quality videos
to high-quality and resolution images [15, 26, 45]. Not only
the sophisticated machine learning algorithms but also the
availability of several social media applications which gen-
erally operate in a tap/click fashion can also be used to gen-
erate deepfake synthetic media. The generation of deepfake
from these platforms is also stealthy and can fool several
machine learning and face recognition algorithms [3, 6].
The presence of these fake media is not limited to any plat-
form or devices and low-power devices are also huge con-
sumer social media content. Therefore, we can assert the
impact of fake videos in society due to their widespread and
hence demands an effective solution.

By looking at the negative impact of these synthetic me-
dia which poison social media contents, harm the security of
restricted access systems, and incur personal loss including
reputation and monetary aims for the development of deep-
fake detection algorithms. Similar to the generation of syn-
thetic media, the development of detection algorithms has
also seen tremendous growth. The detection approaches can
be broadly grouped into image features equipped with tradi-
tional classifiers and fully automated deep neural networks
for detection. For example, it is asserted that the physiolog-
ical signals like eye blinking [30], inconsistent head poses
[58], and biological signals not preserved in fake videos
[15] as well as phoneme-viseme mismatches in videos [9]
are the basis for detecting deepfake content. Agarwal et al.
[3, 6] have proposed a novel image engineering artifacts en-
hancement technique for face manipulation detection. Re-
cently due to the popularity and huge success of deep neural
networks in image recognition, several deepfake face ma-
nipulation algorithms have been proposed. Motion magni-
fied 3DNet [39], Face Warping Artifacts (FWA) [29], FWA
with spatial pyramid pooling (DSP-FWA) [31], Locality
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Figure 1. The concept of knowledge evolution is adopted in the proposed research. In the novice case, the knowledge obtained through
pre-training for a different task is used to make a judgment for the downstream task as well. However, in the adaptive case, the pre-trained
knowledge is divided into fixed knowledge which consists of generic features (part A), and adaptive knowledge which needs to be changed
(part B) for the specific downstream task.

Aware Autoencoder (LAE) [18], Face X-Ray [28] and Spa-
tial Phase Shallow Learning (SPSL) [33] are the few effec-
tive detection architectures. FWA and DSP-FWA mimic ar-
tifacts left behind by transforming and reinserting faces in
the deepfake creation pipeline. using a similar concept Face
X-Ray uses a self-supervised learning framework for deep-
fake detection. Based on the assertion of contextual infor-
mation inconsistencies Zhao et al. [62] and Nirkin et al.
[43] have proposed source image features and face contex-
tual information extraction networks for deepfake detection.
The deepfake detection network proposed by Zhao et al.
[61] uses the multi-attention convolution network consist-
ing of spatial attention heads and textural feature enhance-
ment block. Not only raw images but also their transformed
counterparts and combination of video and audio have also
shown significant success in image manipulation and deep-
fake detection [4, 5, 19, 24, 35, 64]. Combination of fea-
tures from different networks whether obtained through dif-
ferent layer types such as attention and Siamese [11] or dif-
ferent input processing [63] are also explored; however, not

found robust against the compression artifacts. For further
details of the existing works, the readers can refer to the sur-
vey papers [40, 48, 52]. The significant limitations of the
majority of the existing defense works are three folds:
(i) extensive computational load both in terms of a large
amount of supervised data, (ii) time to optimize million
or billion of parameters, and (iii) unseen dataset gener-
alization [5, 55, 61, 62].

In this research, by taking these limitations seriously, we
propose a deepfake detection architecture that is not only
computationally efficient in terms of training but needs less
labeled data and is generalized across multiple datasets and
real-world videos in unseen testing settings. Fig. 1 shows
the gist of the proposed deepfake detection algorithm. The
proposed deep neural network architecture is inspired by
the fact that different networks learn the same set of fea-
tures but for a different amount of time in the network. In
our case, it can be seen as a fixed knowledge of a network
before its breakpoint. On top of that adaptive knowledge
needs to be tweaked, and new features which are specific
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to a downstream task are stacked together. Once the dif-
ferent breakpoints identified networks are trained, their de-
cisions are combined to improve the overall performance.
The comparisons performed with several sophisticated and
computationally heavy architectures show the proposed ar-
chitecture is not only towards green artificial intelligence
but also achieves either state-of-the-art or comparable per-
formances on multiple databases.

2. Proposed Algorithm
In this research, we have showcased the potential of pre-
trained networks by effectively adapting them for deepfake
detection and fusing their decision for state-of-the-art per-
formance. In the literature, hundreds of deep learning archi-
tectures are proposed which consist of different layer setups
ranging from sequential to residual [10, 34]. However, the
majority of these networks which are pre-trained on Ima-
geNet datasets learn the same set of features, especially in
their beginning [23, 59, 60] and are independent of the class
labels. Due to being generic, the modification of these fea-
tures does not make sense; however, the higher-level fea-
tures are specific to the class information and hence need to
be adjusted for different downstream tasks.

Inspired by this fact, in this research, we have proposed
the concept of breakpoints of different networks, where the
layers before the breakpoint contain these generic features.
The layers after the breakpoint consist of mid and high-
level shapes and object-related features which are iteratively
adapted for the deepfake detection task. In the end, new
knowledge containing random layers is added which aims
to learn the deepfake detection features only. Since the
generic feature layers might be at different breakpoints, a
fusion of the decision obtained from the different architec-
tures can boost the detection performance.

The architecture of the proposed deepfake detection al-
gorithm is shown in Fig. 2. The proposed architecture can
be broadly divided into four parts: (i) fixed-based knowl-
edge which can directly be motivated by the fact that initial
layer features are generic and class-independent, (ii) adap-
tive knowledge: which is the knowledge that might need to
be finetuned due to bias knowledge or misinformation ac-
quired at the time of gaining the knowledge for a specific
task, and (iii) new knowledge: bias-free and downstream
task-specific features, and (iv) fusion: the combination of
the networks consists of contrasting architectures can boost
the overall performance [7, 20]. Hence, in the proposed al-
gorithm we combined the decision of multiple architectures
by assigning weight to their decision probabilities. While
we have assigned equal weight without being partial to any
network, the weights can easily be tuned on the validation
set. In the proposed algorithm, we have studied several deep
CNN architectures including VGG-16 [47], DenseNet-121
[22], and InceptionNet [49].

The steps involved in the proposed deepfake detection
algorithm training can be described as follows: 1 the in-
dividual networks are assigned with the weights adopted
on the large-scale object recognition database namely Im-
ageNet [16]; 2 the networks are divided into two parts
at different breakpoints. For instance, the VGG-16 and
MobileNet networks are broken down into two pieces at
layer 10, and the DenseNet-121 model is cut out into two
pieces at layer 110; 3 the broken piece corresponds to
the fixed knowledge and adaptive knowledge. The moti-
vation for keeping a few layers fixed comes from the ob-
servation that initial layers of different architectures learn
somewhat similar low-level image information, i.e., edge
and lines information [23, 59, 60]. Whereas, the layers fol-
lowed to learn the high-level features which can be adapted
for the problem and data in hand; 4 in each network few
new layers are added to being entirely new perspective and
learn task-specific features only; 5 the above three parts:
(i) fixed knowledge, (ii) adaptive knowledge, and (iii) new
knowledge forms a complete architecture and then trained
for deepfake detection; 6 once each architecture is trained
for deepfake detection, a final decision fusion has been per-
formed using the following decision/score fusion equation:

[r, f ] = w1 ⊙ [r1, f1] + · ·+ wn ⊙ [rn, fn]

where, [r1, f1] and [rn, fn] are the scores computed from
the deepfake architectures belonging to real (r1 and rn val-
ues) and deepfake class (f1 and fn values). ⊙ represents
the dot product. w1 and wn are weights for combination
for decision. The final decision on an image is taken based
on the max value between final scores r and f belonging to
real and deepfake classes, respectively.

2.1. Implementation Details

Each architecture is trained for 50 epochs using Adam opti-
mizer [25] with an adaptive learning rate. The initial learn-
ing rate is set to 1e−4, batch size of 32, and categorical
cross-entropy loss is used for parameter optimization. The
seed variable is set to 1000 for the reproducibility of the
experiments. The codes are implemented in Python using
Keras [14] run through TensorFlow [1] as the backend. The
NVIDIA GeForce RTX 2080 GPU machine is used with the
CUDA v11+. The weight values for score fusion are set to
0.5. To compute the score, the softmax activation function
has been used at the final layer in each network. The ReLU
activation function has been used in the intermediate layers
of the networks.

3. Experimental Observations
In this section, we first present a brief overview of the ingre-
dients needed to perform the experiments such as database,
protocol, and evaluation metrics.
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Figure 2. Visualization of the proposed multi-level and multi-branch deepfake detection architecture. The proposed architecture consists
of ‘N’ deep CNN architecture divided into fixed base knowledge and adaptive knowledge. In both networks’ novel layers which are bias-
free from any specific set of training images layers are added and initialized with random weights. In the end, decision fusion has been
performed to achieve better performance. GAP refers to the global average pooling layer. w1 and wn (where w1 + ·· + wn = 1) are
weights for fusion.

3.1. Experimental Ingredients

The strength of the proposed multi-branch and multi-point
deepfake detection architecture is extensively evaluated
using three different datasets namely Face Forensics++
(FF++) [45], Celeb-DF2 [32], and Deepfakes [15]. The
deepfake subset of FF++ contains 1000 videos compris-
ing 720 videos for training and 140 videos for validation
and testing. The dataset comes with three quality variants,
in which we have used C23 (HQ) and C40 (LQ) videos
for comparisons with the existing works. The Celeb-DF2
is the high-quality variant of deepfake attack compared to
FF++ aims to reflect the high-quality videos surfacing over
the internet. The dataset contains 590 real and 5639 deep-
fake videos. Ciftci et al. [15] have introduced another di-
verse deepfake dataset which consists of 142 high-quality
real and deepfake videos. The results are reported using
the pre-defined protocols and evaluation metrics used in the
existing papers to make direct and fair comparisons. For in-
stance, intra-dataset training testing on FF++ is performed
using the pre-defined train-test split of the individual com-
pression quality has been performed. In the cross-datasets,
the FF++-trained model is tested on Celeb-DF2. Apart from
these datasets, we have also collected images from the real-
world environment for an open-set evaluation.

3.2. Results and Analysis

First, we present the results and comparative analysis on the
FF++ dataset [45] followed by the results on the deepfakes
dataset [15]. In the end, the generalizability and robustness
of the proposed and existing algorithms are tested on the
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Figure 3. Quantitative frame-level detection results on the FF++
dataset under medium compression (HQ) and high compression
(LQ). Average represents the average performance of each algo-
rithm obtained on both the LQ and HQ datasets. The results are
compared with state-of-the-art algorithms. The proposed algo-
rithm yields state-of-the-art performance on low-quality (LQ) im-
ages where each algorithm suffers severe degradation and show-
cases its limited generalizability.

Celeb-DF2 dataset [32] which is used for unseen database
training-testing. The quantitative results and comparison of
the proposed algorithm on two different quality subsets of
the FF++ dataset are reported in Fig. 3. The comparisons
have been performed using several complex state-of-the-art
and recent algorithms to demonstrate the effectiveness of
the proposed algorithm. The algorithms chosen for com-
parison are: DSP-FWA [29], Face X-ray [28], ProtoPNet
[12], Xception [45], Two Branch [37], MaDD [61], DPNet
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[53], F3-Net [44], and M2TR [55]. It is generally seen that
the deepfake detection algorithms do not generalize well
against different image qualities which here in the dataset
refers to different compress rates. For instance, the existing
state-of-the-art algorithm M2TR [55] yields more than 99
AUC value when it is evaluated on the high-quality subset of
the dataset. Whereas, the algorithms see a significant drop
of more than 5% when tested on low quality or high com-
pression (LQ) subset of the dataset. The proposed algorithm
which yields 98.01% AUC value on the high-quality or low
compression (HQ) subset shows a marginal drop (0.5%) in
the AUC value when it is tested on the low-quality sub-
set of the dataset. It shows that the proposed algorithm is
not only able to detect the deepfake images/videos effec-
tively but is generalized against different image qualities.
The generalizability can be easily checked through the av-
erage AUC computed from the results on HQ and LQ sub-
sets of the dataset. The proposed algorithm can outperform
several recent algorithms such as MaDD [61] and DPNet
[53] which are highly computationally expensive and lack
generalizability. The generalizability of the deepfake detec-
tion algorithms is a serious concern and needs proper atten-
tion [36, 57]. Our proposed simple fusion algorithm puts a
strong step toward that goal by yielding thrilling results and
shows an exciting direction to achieve generalizability at a
lower computational overhead.

Apart from existing state-of-the-art deepfake detection
algorithms, we have also compared the performance of the
proposed algorithm with recent deep architecture namely
vision transformers (ViT)1. We have used two architectures
termed ViT-v1 [17] and ViT-v2 [27]. The ViT-v1 and ViT-
v2 yield 85.43% and 80.18% accuracy of high-quality (HQ)
deepfake videos, respectively, which is at least 8.58% lower
than the proposed algorithm. On the LQ videos of the FF++
dataset, the performance of ViT-v1 and ViT-v2 is 9.40% and
11.97% lower than the proposed algorithm, respectively.
We assert that the superior performance of the proposed
simple fusion and knowledge-enhanced network than these
complex networks pave the way for a revisit to the funda-
mentals of the image classifiers to develop simple and effec-
tive classifiers. The prime reason for our effective deepfake
identification study contrary to literature is the fact that the
deepfake detection research is highly biased [5, 45, 65] to-
wards the utilization of Xception and ignored the potential
of other networks such as VGG and MobileNet.

Another dataset that is used for experimental evaluation
is the Deepfakes dataset [15] and the experimental results
along with comparison are reported in Table 1. Contrary
to the FF++ dataset, the Deepfakes dataset contains high-
resolution and high-quality deepfake videos/images. The
reason for the generation of high-quality as explained by

1We want to mention here that these ViT are trained from scratch on
the training set of the FF++ dataset only.

Algorithm Face ↑ Video ↑
Simple CNN 54.56 48.88
InceptionV3 [49] 60.96 68.88
Xception [13] 56.11 75.55
ConvLSTM [56] 44.82 48.83
V1 [51] – 82.22
V3 [51] – 73.33
Emsemble [51] – 80.00
Fake Catcher [15] 87.62 91.07
Proposed 91.26 94.78

Table 1. Deepfakes database [15] results. Comparison of the pro-
posed image engineering enhanced attention network with the sev-
eral networks in terms of detection accuracy (%). The proposed al-
gorithm yields almost perfect deepfake detection performance and
achieves existing state-of-the-art algorithms. The existing results
are taken from [15].

the authors is to reflect the real-world videos that exist on
social media websites and are of high quality. The authors
claim that the detection of high-quality deepfake videos is
hard and this makes their dataset challenging compared to
other datasets. Similar to the FF++ dataset, the comparison
on the deepfake dataset has been performed with several
benchmark algorithms: InceptionV3 [49], Xception [13],
ConvLSTM [56], Emsemble [51], and Fake Catcher [15].
The existing algorithms range from the training of straight-
forward deep CNNs to the development of sophisticated
classifiers such as Fake Catcher. The proposed algorithm
achieves state-of-the-art (SOTA) deepfake detection perfor-
mance on another challenging Deepfakes dataset. In com-
parison to the SOTA works the performance of the proposed
algorithm is at least 3.64% better when only the face im-
ages are used for testing. Even when the videos that con-
tain an ensemble of information from different face regions
are used for evaluation, the proposed algorithm outperforms
the SOTA algorithm by 3.71%. On the previous dataset,
through the experimental evaluation, we observed that the
proposed algorithm is agnostic to compression effect and
achieves SOTA performance. Now, here through the exper-
iments on a high-quality deepfake dataset, it is established
that the proposed algorithm surpasses multiple existing al-
gorithms by a large margin and is agnostic to image quality.

In the literature, another experimental setup has been
used to evaluate the strength of the deepfake detection al-
gorithm i.e., to perform the testing on an entirely unseen
dataset which does not used in the training. The dataset
that is extensively used for that purpose is Celeb-DF2 [32].
Table 2 shows the performance of the proposed algorithm
and several existing algorithms when trained on the FF++
dataset and tested on FF+ and Celeb-DF2. The results
showcase how the accuracy of each existing algorithm suf-
fers due to variations in the distribution of the testing set.
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Method FF++ Celeb-DF2
Mesolnception4 [2] 0.8300 0.5360
HeadPose [58] 0.4730 0.5460
FWA [29] 0.8010 0.5690
VA-MLP [38] 0.6640 0.5500
Xception-raw [45] 0.9970 0.4820
Xception-c23 [45] 0.9970 0.6530
Xception-c40 [45] 0.9550 0.6550
Multi-task [41] 0.7630 0.5430
Capsule [42] 0.9660 0.5750
DSP-FWA [29] 0.9300 0.6460
F 3-Net [44] 0.9797 0.6517
Two-Branch [37] 0.9318 0.7341
EfficientNet-B4 [50] 0.9970 0.6429
Nirkin et al. [43] 0.9900 0.6600
Multi-Attention [61] 0.9980 0.6744
DPNet [53] 0.9920 0.6820
M2TR [55] 0.9950 0.6570
MD-CSDNetwork [5] 0.9970 0.6877
Proposed 0.9801 0.7035

Table 2. Cross-dataset evaluation (AUC) on Celeb-DF2 [32]. The
model is trained on FF++ and tested on the Celeb-DF dataset. The
results in the first column report the AUC values when tested only
on the deepfake class in FF++. Our method outperforms most of
the listed methods in cross-generalization.

It is seen from the quantitative results that the majority of
the recent algorithms have achieved almost perfect AUC
when trained and tested on the same FF++ dataset. How-
ever, the performance of each algorithm drops significantly
when evaluated on the unseen Celeb-DF2 dataset. For
instance, the recent multi-attention algorithm [61] which
achieves 99.80% AUC value on the seen dataset testing,
reported a significant drop and yields only 67.44% AUC
on the unseen dataset testing set. The proposed algorithm
shows slightly lower performance on the seen dataset test-
ing images but achieves a significantly higher generalizabil-
ity score when tested on the unseen dataset testing images.
The best-generalized algorithm is the Two branch algorithm
which achieves the AUC value of 73.41% on the Celeb-
DF2 dataset. However, the performance of the two-branch
is 4.83% lower than the proposed algorithm on the seen
dataset testing images. It shows that the proposed algorithm
is not only effective but also generalized in handling the
images whether coming from seen or unseen dataset test-
ing images and agnostic to the image/video quality. Fig. 4
shows the average AUC performance of the existing SOTA
and the proposed energy-efficient algorithms. The evalua-
tion has been done on the testing set of FF++ and Celeb-
DF2 while the algorithms are trained on the FF++ dataset.
The proposed algorithm shows the highest average AUC
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Figure 4. Average AUC (%) performance when the deepfake de-
tection algorithms that are trained on the training set of the FF++
dataset and tested on the test set of FF++ and Celeb-DF-2. The
top three values are bold and colored and the proposed algorithm
reported the highest value. (Best viewed in color)

CNN-1 CNN-2 HQ LQName BP Name BP
VGG-16 10 Inception-V3 10 0.9715 0.9534
VGG-16 10 Xception 10 0.9745 0.9682
VGG-16 10 DenseNet-121 110 0.9801 0.9701
VGG-16 10 MobileNet 12 0.9755 0.9529
Inception-V3 10 DenseNet-121 110 0.9278 0.9406

Table 3. Ablation study of the deepfake detection task on the dif-
ferent quality of FF++ when varying CNNs are trained with their
corresponding breakpoints (BP). The results are reported in terms
of AUC.

value and surpasses several computationally hungry exist-
ing algorithms in challenging open-set evaluation settings.

3.3. Ablation Studies

In this section, different ablation study results are reported.
For instance, the performance of the proposed algorithm
when different types of deep architectures are used and their
broken points are adaptively set to segregate the features
into fixed and adaptive. Later, computational complexity or
the time taken by the proposed algorithm in its training and
testing is also reported to reflect the sustainability strength
helpful in deploying the algorithm on mobile devices.

CNN Architectures: The results reported earlier using
the proposed algorithms are computed when VGG-16 [47],
MobileNet [21], and Xception [13] models are used for the
model training and fused for evaluation. Each model is bro-
ken down at layer 10, the layers before breakpoints are kept
fixed with the assumption that they consist of generalized
image features as mentioned above, and to learn the task-
specific features the future layers are made adaptive. After
that few extra layers are added that do not have any previ-
ous knowledge of any image recognition task, i.e., they are
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Figure 5. Different deepfake evolved architecture based on what
knowledge they already persist and what they acquire for the task
at hand.

unbiased and are randomly initialized and trained for only
deepfake detection. Each network containing fixed, adap-
tive, and new layers is trained independently, in the end,
their decision probabilities are combined for the final deci-
sion. In the first ablation study, we have used other popu-
lar deep CNNs including DenseNet [22] and InceptionV3
[49] to see their impact on deepfake detection. The quan-
titative comparison with different CNNs on the different
quality subsets of the FF++ dataset is reported in Table 3.
Through the results, we have found that the combination
of VGG, MobileNet, and Xception outperforms the com-
bination of other networks. Apart from using the break-
points (BP) shown in Table 3, we have also studied sev-
eral other BP for different networks; however, empirically
found that these BP as the best points concerning compu-
tational cost and detection performance. For instance, we
have also evaluated the different BPs of the VGG network
to layers 6 and 3; however, no significant improvement in
accuracy is observed but the finetuning cost of the network
increased. Similarly, for DenseNet, the different BPs varied
from layer 90 to layer 60 are applied. Due to the trade-off
between computational cost and accuracy improvement, in
this research, we have set the BP shown in Table 3.

Biased and Unbiased Network Feature Fusion Detec-
tors: In this study, we have performed the experiments us-
ing two different architectures (shown in Fig. 5) other than
the proposed one which utilizes the score fusion strategy.
In the first case, i.e., biased knowledge, the feature fusion
strategy is adopted; however, the networks might be bi-
ased due to their pre-training on the ImageNet dataset, and
a few new layers are added to learn task (deepfake detec-
tion) specific knowledge. The second architecture (termed
unbiased network) also utilizes the feature fusion strategy;
however, now both the networks are randomly initialized
and trained end-to-end for deepfake detection. The first ar-
chitecture yields an AUC value of 0.7353 using VGG16

Figure 6. Real-World disinformation deepfake videos from the
Ukraine-Russia War. The first row is deepfake and the second row
is real images.

Predicted →

True
↓

Real DF Total
Real 639 42 681
DF 17 664 681
Total 656 706 1362

Table 4. Confusion matrix of the real-world disinformative deep-
fake examples detection using the proposed fast and generalized
deepfake detection algorithm.

and DenseNet121. Whereas, the second architecture uti-
lizes one shallow (5 conv layers) and one deep (11 conv
layers) and achieves 0.9275 AUC on the C40 set of the
FF++ dataset. The experiment shows that the finetuning of
features and pre-training of a network can have a huge im-
pact on the downstream task. We want to mention that, the
proposed algorithm which consists of all three: biased, un-
biased, and task-specific new features achieves the highest
AUC of value 0.9701 and shows the importance of contrast-
ing knowledge.

Computational Time: The proposed algorithm with
VGG, MobileNet, and XceptionNet as base architectures is
trained on a single RTX 2080 GPU machine. The training
of the proposed algorithm took approximately 50 minutes
on the FF++ dataset and achieved state-of-the-art perfor-
mance on several datasets. On top of that, it is found gen-
eralized against several data variants such as compression
quality and image quality. We also want to highlight that
for the training, a limited number (10 only) of frames/faces
are randomly selected from each training video given in the
datasets. It shows that the proposed algorithm is neither
computationally hungry nor data-hungry. We want to men-
tion that the evaluation has been performed on the standard
test set of each dataset.

3.4. Real-World Disinformation Prevention

While the proposed algorithm has shown exciting results
on the existing research dataset; however, the question we
raise is whether can it detect the deepfake videos spreading
over the Internet mediums such as YouTube2? The recent

2https://www.youtube.com/watch?v=pfsdvbacYac
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VGG

Figure 7. Grad-CAM [46] heatmap visualization reported on unconstrained images collected as part of our evaluation dataset. The heatmap
information is computed using the three CNN architectures used for the development of a deepfake detection algorithm.

surge of deepfake videos on the Russian-Ukraine conflict
including the disinformation spread due to fake videos of
both Russia and Ukraine’s president shocked the world and
raised the question of whether one can trust digital media
blindly. Therefore, to protect the digital media from false
news and also to further test the robustness of the proposed
algorithm in an open-set setting, we have collected 681 real
and 681 deepfake images captured in unconstrained set-
tings, i.e., varying in terms of poses, expression, and im-
age quality. A few samples of the real-world disinformative
deepfake samples are shown in Fig. 6. No special pre-
processing has been applied to the collected images, only
the face regions are cropped using the Viola-Jones face de-
tector [54] and resized to a fixed size to provide them as
input to the classifier. The proposed score fusion algorithm
which is trained on the FF++ dataset evaluated on the col-
lected real-world yields 95.68% deepfake detection accu-
racy. In terms of AUC, the proposed algorithm achieves a
value of over 98%, and the confusion matrix of the eval-
uation is also provided in Table 4. The confusion matrix
shows that the proposed algorithm while the proposed al-
gorithm is effective and is not biased toward any class.
In other words, the proposed algorithm yields higher ac-
curacy on both classes. The evaluation of the real-world
videos/images and the high performance even when those
images are not seen at the time of training a classifier shows
that the proposed algorithm which is computationally light
might be one of the potential options to prevent the spread
of deepfake. The Grad-CAM [46] heatmap visualization
shown in Fig. 7 can be interpreted in the following man-
ner: (i) the different network focuses on the different re-
gions of faces and hence their combination yields better per-
formance, (ii) VGG architecture strongly focuses on high-
frequency regions such as mouth, eyes, and nose, and (iii)
MobileNet puts its focus on entire face region while making
a decision.

4. Conclusion

In recent times we have witnessed the use of deepfake
videos for a variety of purposes ranging from personal re-
venge to political advantages to monetary benefits. On top
of that, the existence of these videos is not limited to any
particular social media application and can easily be found
without restrictions on every possible social networking
platform. Due to their existence on different platforms and
due to varying electronic screen characteristics, deepfake
videos might suffer in terms of compression effects and
image quality. By looking at the stealthy purpose of these
videos their detection is critical and one important strength
of the detection algorithm should be the generalizability
to handle these variations. Another important factor that
needs to be tackled is the deployment of the algorithm on
computationally limited devices including mobile phones.
Therefore, keeping all this in mind, in this research, we
have proposed a multi-branch and multi-level deepfake
detection algorithm. The proposed algorithm consists
of the concept of knowledge breakout where the generic
features are kept intact and adaptive knowledge is finetuned
for the downstream task. The proposed algorithm is
evaluated in several challenging and generalized conditions
on several databases to demonstrate its effectiveness in
deepfake detection. The proposed algorithm surpasses
several existing algorithms in these challenging scenarios
by significant margins. In the future, similar to coun-
tering the video deepfake detection in a computationally
efficient fashion we aim to develop deepfake detection
to counter the audio and multi-modal deepfake contents.
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