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Abstract

Looking at a video sequence where a foreground person
is represented is not as time ago anymore. Deepfakes have
revolutionized our way to watch at such contents and nowa-
days we are more often used to wonder if what we are seeing
is real or is just a mystification. In this context of general-
ized disinformation, the need for reliable solutions to help
common users, and not only, to make an assessment on this
kind of video sequences is strongly upcoming. In this pa-
per, a novel approach which leverages on temporal surface
frame anomalies in order to reveal deepfake videos is intro-
duced. The method searches for possible discrepancies, in-
duced by deepfake manipulation, in the surfaces belonging
to the captured scene and in their evolution along the tem-
poral axis. These features are used as input of a pipeline
based on deep neural networks to perform a binary assess-
ment on the video itself. Experimental results witness that
such a methodology can achieve significant performance in
terms of detection accuracy.

1. Introduction
Throughout history, the proliferation of disinformation has
posed a significant challenge in our communication society.
However, with the advent of deep learning (DL), this issue
has escalated beyond control. The term “Deepfake” (DF)
has become widely known and it is frequently encountered
on the internet, on social networks and news platforms.
It refers to content generated through DL models like
text-to-image and GAN-based tools. Anyway, at the
beginning, Deepfake specifically referred to the fabrication
of convincingly realistic video sequences, achieved by
manipulating facial expressions or swapping faces to
alter the original video’s context and significance. This
specific application remains highly detrimental, as it seeks

to deceive audiences by presenting distorted audio-visual
narratives. On the other side of the barricade, there are
the deepfake detectors that try to reliably detect such
fabricated content. Typically, detection techniques exploit
the traces left behind during the fake content generation
process. These methods aim to uncover alterations in order
to identify falsified content. Various features have been
explored in literature for this purpose, inspecting images
at the pixel level, employing frequency domain analysis or
investigating temporal inconsistencies in the specific case
of videos.
In this work, we precisely focus on this last issue and we
propose a method which, by resorting to novel features
based on the entire environmental conditions existing at the
time of video capturing, analyses the temporal anomalies
present within the sequence to make an assessment on its
integrity. In fact, it is reasonable to presume that Deepfake
creation alters this intrinsic information, particularly in its
evolution during time, providing a basis for manipulation
detection. Hopefully, the manipulation process should not
be good enough to coherently reproduce frame-by-frame
all these small relations that are dependent on physical
elements present during scene capture, such as variations
of the illumination sources, changes in the correlations
between the different objects/surfaces and the camera due
to their respective spatial positions in time and so on.
In order to exploit such possible inconsistencies, we
have explored novel features which provide a thorough
pixel-level description of the diverse surfaces involved
during sequence capture. These features are named surface
frames (SF) and they have been introduced in [24] with the
objective, through a learning-based approach, to estimate
2DoF (degrees of freedom) camera orientation from a
single RGB image. Though designed for indoor scenes,
they give a complete and detailed characterisation of the
observed scene (see Sec. 3.1). In particular, these surface
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Figure 1. A visual example of the surface frames (local SFL and global SFG) for a group of consecutive frames; we also calculate the
logarithm of each surface frames, i.e. log(SFL) and log(SFG) for sake of visibility.

frames provide both a global (SFG) and a local (SFL)
description of the captured scene. A sample visualisation
of such surface frames (both global and local) for a group
of consecutive frames is pictured in Fig. 1 where their
logarithmic function is also depicted for sake of visibility.
The considered video shows a fake case in which the
facial expressions have been altered. We can observe that
thoroughly temporal variations can be highlighted while
processing consecutive images in terms of surface frames.
For instance, the upper part of the forehead is changing
through time for both the surface representations (see
log(SFL) and log(SFG), even though the face positions
are almost steady. Such scene characteristics can be noted
using surface frame representations and this will happen
for any other kind of video and content. However, our
purpose is to exploit these temporal evolving surface details
that could significantly change between real and fake
videos, since the deepfake alterations are often applied
frame-by-frame. We believe that such discrepancies can
be temporally observed using recurrent architectures like
LSTMs, able to retain spatio-temporal contexts such as
sequential surface frames. In other words, in this paper
the evolution in time of such surface frames has been
investigated particularly to highlight possible anomalies in
deepfake videos with respect to pristine sequences.

The main contributions of the present work are the follow-

ing:
(i) we propose the temporal evolution of surface frames

(t-SF) to provide a pixel-level description of the di-
verse surfaces involved during sequence acquisition.

(ii) we show how such time surface frames can be adopted
to exploit inconsistencies and consequently to distin-
guish between pristine and fake video sequences.

(iii) we carry out an experimental analysis by taking into
account of various deepfake forgeries and neural net-
work architectures, achieving a significant detection ac-
curacy up to 90% on average.

This is the paper layout: Sec. 2 gives a general overview of
the related works in particular dealing with video deepfake
detection, while Sec. 3 is dedicated to the proposed method-
ology with some specific details about surface frames pro-
vided in Sec. 3.1. Sec. 4 presents and discusses some of
the main experimental results, and Sec. 5 draws conclusions
giving some ideas for eventual future works.

2. Related Works

The capability to generate synthetic contents is one hot topic
in the field of Deepfakes. The last decade has registered
dramatic advancements in generative models, e.g. [1, 4, 9],
that nowadays is making possible to recreate or manipulate
the information, such as images and videos. It is notewor-
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thy that altering human faces mines the privacy and the se-
curity of people. Several implementations [16] have been
designed to change facial expressions or directly substitut-
ing faces between a source image and a target one, that can
also be done e.g. via CNNs [12], conditional GANs [18]
or based on facial landmark alignment [3]. To contrast this
phenomenon, Deepfake detection methods [17] have arisen
as a mean to prevent misinformation using deep learning.
To do that, existing works look for inconsistencies that are
inherently left into the content during the fake manipulation
process. Such anomalies can be analysed either at image
or video level. Most of the existing methods addresses the
detection task as a binary classification problem. Several
works [15] have posed the detection problem by looking for
dissimilarities within single images, in terms of specialised
features, e.g. depth map [14], even exploiting subtle local
attention mechanism [28] or feature consistency across re-
gions [29]. More recently, other approaches have proposed
to employ the spatial and frequency domains via a graph
learning [23], or to uncover common forgery features in a
multitask learning strategy [26], or to consider differences
between the explicit (source) and implicit (target) identity
of face in swapping manipulations [10], or even to look for
subtle geometrical aspects related to facial regions [5].
Although some of the literature works facing the detection
problem by processing single images, video-level discrep-
ancies have been also investigated. Video deepfake ap-
proaches exploit spatio-temporal contexts by means of re-
current architectures, e.g. RNNs and LSTMs, so to pay at-
tention to visual inconsistency across consecutive frames.
To this aim, Sabir et al. [21] propose to use a CNN-RNN
approach, in order to catch temporal discrepancies, as ma-
nipulations are performed frame-by-frame. Also LSTMs
have been used to detect fakes by exploiting consecutive
frame-level features [7]. Rather than elaborating features
from the entire face images, Li et al. [13] observed the eye
blinking frequency over the time in order to catch possibly
crucial anomalies in the eye area across consecutive faces.
Observing that deepfakes are generated by splicing synthe-
sized face region into the original image, Yang et al. [27]
propose to reveal errors in landmark locations from head
poses estimated, by using the 2D landmarks in real and fake
parts of the face. Also connected with the motion artifacts
over the video frames, Caldelli et al. [2] demonstrate that
synthetic motion patterns can be found in fake sequences
by looking into abnormal optical flows calculated over the
faces. Differently, Sun et al. [22] propose to look for precise
geometric features that can reveal subtle unnatural expres-
sions or facial organ movements using sequences of facial
landmarks, by exploiting temporal information from a two-
stream RNN. Xu et al. [25] transform a video clip into a
predefined layout in order to retain relevant spatio-temporal
contexts in video frames. Gu et al. [6] integrate both spa-

tial and temporal features in a unified 2D CNN framework.
Zheng et al. [30] propose to restrict the network capability
to classify by temporal-related artifacts rather than looking
into spatial artifacts for detection to improve generalisation.
Leveraging of semantically high-level irregularities through
time has been even investigated on mouth movements [8].
Raza et al. [19] introduce a unified multimodal approach,
by analysing both visual and audio streams simultaneously.
Different than [10, 23, 26], we deal with deepfake video de-
tection in a single modality approach, avoiding the need of
processing additional data [19]. Considering that temporal
inconsistency relates to video sequences, we propose to fo-
cus on anomalies that are connected with the surface frames
estimated over the time. Instead of analysing 2D landmark
positions [22] or limiting our approach to just look into dis-
crepancy within single images, as done e.g. in [14, 28, 29],
we introduce to investigate geometrical temporal anomalies
in terms of surface frames. Such characteristics can exploit
the per-pixel facial properties that are described according
to orientations of unit vectors, namely normals, tangents
and bitangents, with respect to certain points of view. In
particular, we consider to analyse spatio-temporal contexts
of consecutive surface frames extracted from an input video
sequence, either in the local camera coordinates t-SFL or
in the global up-right coordinate system t-SFG (see Fig. 2).
These two diverse scene aspects that are acquired in pristine
images can be inherently affected by manipulations, that
could show with different variability through time with re-
spect to the fake content. In Sec. 3 we will provide more de-
tails about our proposed approach and the surface frames.

3. Proposed method
When a deepfake manipulation is applied to a pristine video
to alter the face and/or the expressions of the represented
person, this has to be consistently performed for all the
frames belonging to the sequence or, at least, for a consecu-
tive group of pictures related to that intended modification.
It is expected that such alteration should impact, in some
way, on the original time flow of the different correlations
existing among frames temporally close; such correlations
are basically due to the way the acquisition has happened.
In fact, at the time of video capturing diverse components
contribute to the construction of the final grabbed video that
is then represented in terms of RGB pixels. All of this is
due to the sources of illumination, to the presence of dif-
ferent objects and surfaces in those specific positions and,
above all, with respect to the camera that is recording the
video. Furthermore, the shadows, the partial occlusions and
the light reflections can generate an univocal intrinsic fin-
gerprint that is embedded within the recorded video file.
In addition to this and most importantly, it is consequen-
tial to think that this will have a particular evolution in time
throughout the frames. It is plausible to deem that deepfake
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Figure 2. The proposed video deepfake detection pipeline. Given a sequence S, a group of 2k + 1 frames, i.e. {It−k, . . . , It, . . . , It+k}
is considered. For each video frame It, we first extract the face crop C, then we calculate its surface frame SF through UpRightNet [24]
and we scale the values in [0, 255]. Next, we extract the features θi by using a CNN backbone and we give them to a bidirectional LSTM
in order to retain spatio-temporal contexts. We then append a linear layer to map the t-SF feature into two classes. Finally, we end-to-end
train the whole architecture to classify whether the content is real or fake.

manipulation should break all of this and generate some in-
consistencies accordingly, in particular along the temporal
axis.

The idea of the here proposed method (see Fig. 2 for the
whole procedure pipeline) is to try to exploit such anoma-
lies in order to perform video deepfake detection.
Let us consider a frame It at a certain time t of a video
sequence S. Moreover, let us take, around this frame, a
group of pictures so that It±k with k which defines the
semi-length of the group {It−k, . . . , It, . . . , It+k} made of
2k + 1 frames. For each frame, firstly the person’s face
is detected by using dlib [11] and then cropped at a pre-
defined resolution of 224 × 224. After that, the bunch of
2k + 1 cropped faces are passed to a pretrained model Up-
RightNet [24], which extracts the surface frames of every
face crop, indicated as SF in Fig. 2 and presented in detail
within Sec. 3.1. This packet of pictures is then used as in-
put of a convolutional neural network (CNN) that plays the
role of a backbone to generate feature vectors θi. Such vec-
tors are then passed to a bi-directional LSTM (Bi-LSTM)
which will learn the spatio-temporal contexts determined
by the subsequent surface frames and we retain the last out-
put named t-SF. In order to finally provide an assessment
on the authenticity of the central frame of the group (It),
we append at the end of the pipeline a linear layer that maps
t-SF into a 2D feature, which is used to classify the content
as real or fake. This is done iteratively for the other frames
of the sequence. At training time, we first pre-train the CNN
backbone on a single frame instance without Bi-LSTM and
then the whole architecture is end-to-end trained. Different
kinds of CNN backbones have been investigated.

3.1. The Surface Frames

When a scene is captured, being a single image or a video,
inherent information about objects’ surfaces and, for in-
stance, specific regions of a human face are grabbed; all
these physical structures intrinsically contribute to define
the diverse shapes, lights and colors finally represented by

the image pixels. In fact, all the pixel values are determined
by various combined factors directly related to both the
pixel position (i, j) in the image plane and also to the cor-
responding camera location; moreover, further external fac-
tors, such as illumination (magnitude and direction), shad-
ows and reflections, provide an additional contribution that
is recorded when using a digital camera. Presumably, it can
be assumed that an altered video (image), though visually
looking realistic and consistent, probably does not contain
anymore the same innate characteristics as obtained during
the camera acquisition process and could evidence some in-
consistencies. According to this, we have decided to model
such anomalies by resorting to surface frames (SF) that
can be obtained as output of a pretrained surface estimator
named UpRightNet [24]. Such estimator is basically a su-
pervised encoder-decoder network that, given a single RGB
picture, can compute the two degrees of freedom (DoF, that
is roll and pitch) of the camera; to achieve this, UpRightNet
generates two intermediate representations, called surface
frames, one calculated from a global (scene) up-right coor-
dinate system SFG and one from the local camera reference
system SFL. Such surface frames can be considered as ef-
fective descriptors of the acquired scene and possibly useful
to the task of deepfake detection. Every surface frame SF
is basically constituted, at each pixel location (i, j), by a
3 × 3 matrix which describes the components of three mu-
tually orthogonal vectors, i.e. normal, tangent and bitangent
respectively (n(i, j), t(i, j),b(i, j) ∈ R3). Given that such
surface frames convey important and diverse information of
the scene characteristics, we have decided to verify if a pos-
sible combination of them could provide effective features
in particular for the task of video deepfake detection. A
preliminary view of this has been shown by just using the z-
component of the global surface frame in [5]. In this work,
we have tried to examine both the surface frames (SFG and
SFL) and, in addition to this, their temporal evolution in
order to enhance the capabilities to reveal some discrepan-
cies in a fake video sequence with respect to a pristine one.
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Surface frames contain different valuable information con-
cerning the recorded scene. There are several possible com-
binations of these surface representations that could be de-
signed to address our task. We left this depth investigation
for future works. However, by getting inspiration from [5],
it has been decided to just use the z-component of the three
vectors (nz , tz and bz) whose values are rescaled to [0, 255]
so obtaining a three channel image (RH×W×3 where H and
W are height and width of the cropped face respectively). In
particular, we consider to analyse these specific surface fea-
tures in both the local and global representations, by tempo-
rally parsing them over time in a video sequence. In the ex-
periments, we calculate the surface frames from 224× 224
face patches; to do that, the UpRightNet pretrained weights
are frozen, as in [5], and then we follow [24] by rescaling
the input image to 288×384 before running the model on it.
Then the generated output is successively downscaled from
288× 384 to the original dimension of 224× 224.

4. Experimental results
Different experimental tests have been carried out in order
to verify if the proposed approach and, above all, the fea-
tures based on the temporal surface frames could grant a
significant distinctiveness for deepfake video detection pur-
poses. The following Sec. 4.1 describes the adopted set-up
while Sec. 4.2 presents the main experimental results.

Table 1. Accuracy for the global and local surface frames (with or
without temporal) with respect to the five forgeries for ResNet50.

Accuracy (↑) Surface Frames
FF++ forgeries SFG [5] t-SFG SFL t-SFL

F2F 0.734 0.761 0.895 0.929
NT 0.667 0.696 0.829 0.929
DF 0.761 0.785 0.893 0.900

FSH 0.728 0.735 0.798 0.874
FS 0.693 0.727 0.851 0.851

Average 0.717 0.741 0.853 0.897

Table 2. Accuracy for the global and local surface frames
(with or without temporal) with respect to the five forgeries for
EfficientNet-B0.

Accuracy (↑) Surface Frames
FF++ forgeries SFG [5] t-SFG SFL t-SFL

F2F 0.772 0.791 0.944 0.962
NT 0.701 0.628 0.885 0.869
DF 0.790 0.751 0.929 0.883

FSH 0.762 0.719 0.857 0.896
FS 0.756 0.756 0.905 0.809

Average 0.756 0.729 0.904 0.884

Table 3. Accuracy for the global and local surface frames (with or
without temporal) with respect to the five forgeries for Xception.

Accuracy (↑) Surface Frames
FF++ forgeries SFG [5] t-SFG SFL t-SFL

F2F 0.772 0.826 0.916 0.962
NT 0.713 0.742 0.855 0.890
DF 0.783 0.812 0.902 0.939

FSH 0.753 0.769 0.818 0.905
FS 0.739 0.796 0.848 0.936

Average 0.752 0.789 0.868 0.926

4.1. The experimental set-up

The experimental tests have been performed on FaceForen-
sics++ (FF++) [20] dataset. Such dataset is well-known
and mostly used in deepfake detection experiments. It is
composed by 1000 original videos and by 5000 fake ones,
derived from those real ones by applying 5 different deep-
fake forgeries (1000 for each forgery respectively): two
reenactment methods (identity does not change), Face2Face
(F2F) and NeuralTextures (NT), and three swapping meth-
ods, DeepFakes (DF), FaceShifter (FSH) and FaceSwap
(FS).

The video sequences have variable frame size in the in-
terval 272× 480 and 1920× 1080 and three types of com-
pression levels, we have taken into account the intermedi-
ate case named c23 (high quality - HQ). Each set of 1000
videos is subdivided into training/validation/testing respec-
tively with this ratio 72/14/14.

Frames are sampled by the video sequence and face im-
ages of size 224 × 224 are cropped following the proce-
dure described in [20]; such face crops are passed as in-
put of the pipeline in Fig. 2. In the experiments, we have
evaluated three different backbone architectures: ResNet50,
EfficientNet-B0 and Xception, all of them pretrained on Im-
ageNet. Due to the fact that Xception accepts inputs of size
299 × 299, the face crops are upscaled to the required res-
olution. The experimental tests have been done in Pytorch
with an NVIDIA TITAN RTX; the loss used during training
is the cross entropy with two classes. Training is run for
30 epochs with a batch size of 32 and SGD is the optimizer
with momentum 0.9, weight decay 0.0001 and learning rate
0.001.

4.2. Quantitative analysis of performances

In this section, different experimental results in order to
investigate the capacity of temporal surface frames to dis-
tinguish between pristine and fake videos are discussed.
Results are presented in terms of accuracy at frame-level
(Acc = TP+TN

TP+TN+FP+FN ) and of AUC (Area Under
Curve) by analysing the behaviours of the diverse kinds of
features: global and local without the temporal component
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Figure 3. AUC for the two reenactment FF++ forgeries (F2F and
NT) for the global and local surface frames (with or without tem-
poral) with respect to the three backbone architectures.

(SFG and SFL respectively) and with the temporal compo-
nent (t-SFG and t-SFL respectively). The case of global
surface frames (i.e. SFG) corresponds to what has been in-
troduced in [5]. It can also be pointed out that, in practice,
the case of the temporal surface frames reduces to the non-
temporal one when k = 0 (both for global and local). In the
experimental results presented hereafter, the value of k = 2
has been chosen so the group of pictures has a length of 5
(being 2k + 1) that has been considered as a sufficient tem-
poral interval to perceive an evolution in time. Therefore,
we assess the central frame It of the group on the basis of
{It−2, It−1, It, It+1, It+2}; groups of frames are sampled
without overlapping. For a complete analysis, the perfor-
mances related to the three different backbones and to each
of the five possible forgeries are provided.

The accuracy at frame-level for the three different
adopted backbones is reported in Tab. 1, Tab. 2 and Tab. 3
for ResNet50, EfficinetNet-B0 and Xception respectively.
As it can be appreciated, all the different surface frames,
with and without the temporal component, generally pro-
vide a significant distinctiveness demonstrating that they
contain important information that allows to distinguish be-
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Figure 4. AUC for the three identity swapping FF++ forgeries
(DF, FSH and FS) for the global and local surface frames (with or
without temporal) with respect to the three backbone architectures.

tween real and fake videos. Going into details, it is possible
to highlight two main aspects: first, the local surface frames
SFL (t-SFL) achieve a superior level of accuracy with re-
spect to global ones SFG (t-SFG) and second, the use of
the temporal component gives an increment, though not al-
ways so evident, with respect to the non-temporal case. For
instance, the situation when t-SFL is used, very promis-
ing values of accuracy, often higher than 90%, are obtained:
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such values are in general comparable with the state-of-the-
art methods. If we look globally from Tab. 1 to Tab. 3, we
can individuate a quite uniform trend confirmed for all the
three diverse backbones, though in the case of Tab. 2 which
refers to EfficientNet-B0, this is not always so well defined.

In order to get another point of analysis of the achieved
performances, we have also computed the values of AUC
but, in this case, grouped with respect to the five differ-
ent deepfake manipulations. Such results are shown in
Fig. 3, where forgeries produce a deepfake reenactment
without changing the identity of the represented person and
in Fig. 4, in which forgeries determine an identity swapping.
For each forgery the behaviours of the tested features with
respect to the implemented backbone are depicted. Also in
this case, the overall trends evidenced by the results within
the previous tables are generally confirmed; by looking at
the different kinds of forgery a uniform behaviour is reg-
istered with AUC values averagely lower for SFG and t-
SFG, and higher for SFL and t-SFL. It is worthy noting
that, for instance, for the case of the F2F forgery, the AUCs,
for all the three different backbones, achieve remarkable
values around 0.99 for t-SFL (red columns). It is inter-
esting to verify again that using the temporal component
is globally beneficial; through a visual inspection, it is im-
mediate to appreciate that the columns in orange (t-SFG)
generally exceed in height the corresponding blue columns
(SFG) and that the same happens between red and green
columns which represent SFL and t-SFL respectively. A
slight exception to this can be noticed, as expected from
the results in Tab. 2, for the case of the EfficientNet-B0
which is reported in the central part of the Fig. 3 and Fig. 4
where, sometimes, the blue/green columns (SFG/SFL) are
a bit higher than their corresponding orange/red ones (t-
SFG/t-SFL) respectively. This issue related, to the use of
EfficientNet-B0, will be investigated in future works. It is
worth to point out that, using Xception as backbone, we
obtain best accuracy and highest AUC values, which is con-
sistent for all the forgeries. Since Xception processes inputs
at a size of 299×299, we had to upscale our 224×224 face
crops. This is rather interesting if we considering that, in
general, the operation of input rescaling affects the classi-
fication capability of a neural network. The performance
increase is much more pronounced when the temporal as-
pects are analysed, both for the global and the local sur-
face frames. In particular, we found that t-SFL achieves
best performance, by gaining on average +5.87% over the
SFL (see Tab. 3). As an overall evaluation, it can be as-
sessed that surface frames (with or without temporal com-
ponent) provide an interesting characterisation of the possi-
ble anomalies induced by the deepfake video crafting that
can be promisingly used to perform a distinction between
real and fake video contents.

5. Conclusions
Distinguishing pristine contents from falsified, but realis-
tic, ones is even more crucial, particularly in the case of
video sequences representing persons in foreground: reli-
able instruments to perform this task are strictly required.
In this work, we have introduced temporal surface frames,
which are able to provide a thorough and punctual descrip-
tion of the captured scene, that can be used to highlights
some anomalies injected by the deepfake generation pro-
cess. According to the obtained experimental results, such
features, in particular for the case when the temporal com-
ponent is used, can globally grant a significant accuracy
achieving AUC values of 0.99 as best cases. Being sur-
face frames still quite new, it is necessary to go ahead with
further investigations and this paves the way for various fu-
ture works. Specifically, we deem that would be strategic
to study the possible combination of these kinds of features
with spatial frames and, moreover, to verify the actual im-
pact of the number of pictures (related to the parameter k)
for the LSTM learning phase.
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