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Abstract

Facial deepfakes are becoming more and more realistic,
to the point that it is often difficult for humans to distinguish
between a fake and a real video. However, it is acknowl-
edged that deepfakes contain artifacts at different levels; we
hypothesize a connection between manipulations and visi-
ble or non-visible artifacts, especially where the subject’s
movements are difficult to reproduce in detail. Accord-
ingly, our approach relies on different quality measures, No-
Reference (NR) and Full-Reference (FR), over the detected
faces in the video. The measurements allow us to adopt a
frame-by-frame approach to build an effective matrix-based
representation of a video sequence. We show that the results
obtained by this basic feature set for a neural network archi-
tecture constitute the first step that encourages the empow-
erment of this representation, aimed to extend our investi-
gation to further deepfake classes. The FaceForensics++
dataset is chosen for experiments, which allows the evalua-
tion of the proposed approach over different deepfake gen-
eration algorithms.

1. Introduction
Deepfakes have emerged as one of the most noteworthy and
potentially dangerous innovations. With the term ”deep-
fake”, we identify all the techniques related to alterations
of digital contents affecting humans; such alterations are
carried out by deep learning methods [36]1. In deepfakes
[23], we may have a face-swap, where the face of a targeted
subject replaces the face of another one, or an expression-
swap, also called reenactment, where the facial expressions
are manipulated, till the manipulation of attributes (soft-
biometrics) such as age, gender, makeup and so on. Finally,
the face synthesis generates the whole appearance ex novo.

1In the Merrian-Webster and Oxford dictionaries, deep learning ap-
proaches to obtain deepfakes are not mentioned and the definition simply
refers to “an image or recording that has been convincingly altered and
manipulated to misrepresent someone as doing or saying something that
was not actually done or said”.

Besides the benign use of deepfakes, the phenomena of
bullying among teenagers, fake news, and, in general, mis-
information are fertile ground for their malicious use. It is a
common opinion that the two most harmful types of deep-
fakes are based on face-swap and reenactment [36]: use
cases include spreading fake news, fake pornography, and
blackmailing. In such deepfakes, the salient information
that can be exploited for detection is mainly concentrated in
the face. For example, in [5], the authors drive the attention
of their system to the targeted subject’s mouth, nose, and
ears.

Extending their intuition, in this paper we hypothesize
that targeting movements of specific facial parts allows us to
track artifacts induced by deep learning techniques. These
”temporal artifacts” change the variation dynamic of the
pixel in those areas, impacting the quality of the view. Ac-
cordingly, we investigate the use of quality measures com-
puted for each video frame (no-reference methods) and by
comparing subsequent frames (full-reference methods). We
focus on the mouth and the eyes, for example, where we hy-
pothesize a possible quality degradation due to the impos-
sibility of reproducing the facial movements in detail. We
also include the same computation approach on the whole
face image to keep a high-level quality dynamic. A hand-
crafted matrix-based representation is obtained and used to
train a neural network classifier to determine whether the
video is manipulated. Only facial deepfakes are considered.

We selected the FaceForensics++ [28] dataset for ex-
periments, where different generation approaches of facial
deepfakes are sampled. Reported results show that the se-
lected quality measures are suitable for obtaining classifiers
that can generalize over never-seen-before manipulation ap-
proaches. In our opinion, this is the first evidence of the
possibility of detecting artifacts that are invariant with re-
spect to the methods of manipulation, although in here we
are limited by those adopted in the FaceForensics++ dataset.

The remainder of this paper is organized as follows. Sec-
tion 2 reviews the current literature on deepfake detection.
Section 3 describes the proposed approach. Section 4 re-
ports the data and the experimental protocol employed to
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conduct our evaluation, while Section 5 reports the obtained
results. Finally, conclusions are drawn in Section 6.

2. Related Work
The deepfake generation process tends to leave traces in the
form of artifacts in both the spatial [6] and frequency do-
mains [11], especially in specific regions of the face [31].
For this reason, several studies concentrate their analysis on
face image portions. In [18], for example, the authors pro-
pose DFT-MF, a deepfake detection model based on mouth-
driven features. Their purpose is to crop the mouth region
and analyze the movement of the lips individually. Sim-
ilarly, the high-level semantic irregularities of the lips in
videos are exploited by the LipForensics approach [14],
employing a pre-trained spatio-temporal network for a lip
speech analysis task, fine-tuned to accomplish deepfake de-
tection. Lip movement is also exploited in [37] where the
authors use a self-supervised audio-visual transformer; the
mouth motion representations are learned in such a way that
the paired video and audio representations are close, while
unpaired ones are not. The audio information is also ex-
ploited in [38], which proposes synchronizing visual and
auditory modalities, allowing for better generalization of
unknown deepfakes. Similarly, this information is exploited
in RealForensics [13], trying to generalize to never-seen-
before forgery methods. This is done by focusing on natu-
ral facial behavior and appearance in real videos to detect
visual-only forged videos.

In 2021, Li et al. [20], starting from the observation
that fake samples usually lack symmetry in corresponding
face portions, extracted the features from symmetrical face
patches and computed an angular distance to verify how
similar the two portions are. In 2022, the authors of [2]
tried to find a metric to accurately describe the structural
similarity between real and fake images. They considered
MSE (Mean Squared Error) and SSIM (Structural Simi-
larity Index Measure) in combination with morphological
tools. They found that combining SSIM with erosion and
dilation yields the most satisfactory results. In [10], starting
with the observation that during deepfake production most
traces are left on the edges of faces, the authors separate the
face edges from the video frames, extract the edge bands,
and train an EfficientNet-B3 network. To exploit the infor-
mation in specific patches of the images, Ju et al. [19] fuse
the global information related to the whole image with the
local information contained in multiple patches, picked by
a dedicated selection module.

We want to add to the contributions above a further step
into understanding the role of local and global artifacts gen-
erated in the video by the deep learning process. Analyzing
many deepfake videos by visual inspection points out that
similar artifacts are common to many deepfake generation
algorithms and could be roughly described in a similar way.

This is also recalled in the previously cited works. The ac-
knowledged fact that artifacts alter the normal variation flow
of a certain facial feature (the mouth, for example) during
its movements also suggests a degradation of the visual im-
age quality. Moreover, a large plethora of quality measure-
ments have been proposed in the literature to assess image
quality with an ”objective” value or set of values. Accord-
ingly, we chose a selection of quality measurements as the
best mean to verify our hypothesis about deepfake-made ar-
tifacts. Our idea is supported by their successful use in pre-
sentation attack detection concerning many biometric traits
since 2013 [12] and 2016 [26]. In both these works, the
authors employed Full-Reference and No-Reference qual-
ity assessment measures: when dealing with Full-Reference
metrics, the authors of [12] filtered the considered image
with a low-pass Gaussian kernel. Then, they computed the
quality between the original image and the filtered one.

Section 3 details our approach and lists the selected qual-
ity measurements.

3. Proposed Approach
As already reported in previous sections, this paper’s main
aim is to develop a deepfake detection method with a
stronger relationship with the alterations of visual image
quality than classical end-to-end deep learning-based ap-
proaches, keeping satisfactory detection accuracy also on
unseen manipulation (i.e., generalizability). We have care-
fully selected manually engineered features to achieve this
goal for a comprehensive analysis strategy that combines
spatial and temporal information extracted from a video se-
quence. Specifically, the proposed methodology is based
on the hypothesis that deepfake videos exhibit unique arti-
facts, particularly in regions of the face subject to motion,
like mouth, nose, and eyes, and that these artifacts can be
detected through a combination of quality measures.

Our method consists of different stages described in
Fig. 1. Since temporal inconsistencies can be detected from
consecutive frames, we defined an appropriate time window
to analyze the set of frames. We extract several patches
from each frame focused on areas of the face most prone to
manipulation artifacts, such as the eyes, nose, and mouth.
From these patches, we extract different quality measures
capable of describing various artifacts.

Feature extraction is repeated twice: the first time on the
original frame and the second time after applying a high-
pass filter to the frame (Fig. 2). This second step is mo-
tivated by the literature [1], which points out that deep-
fake samples show different behaviors at high frequencies
compared to real samples. The extracted quality features
serve as input to two separate Convolutional Neural Net-
works (CNN). This architecture is chosen due to the faster
and more efficient calculation compared to more complex
solutions and the possibility of more easily interpreting the
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Figure 1. General scheme of the proposed approach: frames are
extracted from each video sequence, and the related quality mea-
sures are calculated from them for each facial patch. The resulting
matrix is input to a Convolutional Neural Network.

(a) Original Frame (b) High-pass filtered frame.

Figure 2. Example from the FaceForensics++ dataset [28]. The
original frame extracted from a video in the dataset (a) and its
high-pass filtered version (b).

network’s decision based on the particular input. We finally
perform a score-level fusion to get the system’s final deci-
sion.

In the following sections, the processing steps are de-
scribed in detail.

3.1. Frames and Patches Extraction

After the extraction of a sequence of frames according to
a pre-defined time window, we extracted several patches:
the entire face of the person, the left eye, the right eye, the
mouth, and four quadrants representing four facial regions,
as shown in Fig. 3. After this stage, we proceeded to com-
pute the quality measures, including Full-Reference (FR)
methods (i.e., methods that compare the considered image
to a reference image) and No-Reference (NR) methods (that
try to assess the quality of an image without comparison to
other images).

3.2. Quality Assessment Measures

An overview of the quality assessment measures can be seen
in Fig. 4. We selected five NR techniques, where a quality
score is assigned to the single patch, and five FR methods,
based on comparisons among patches.

(a) Original frame

(b) Face (c) Patches

(d) Eyes (e) Mouth

Figure 3. Example from the FaceForensics++ dataset [28]. The
patches are extracted from a single frame: original frame (a), face
(b), face patches (c), right and left eyes (d), and mouth (e).

Figure 4. Summary scheme of the different quality measures ap-
plied to the extracted patches.

3.2.1 No-Reference Measures

This section summarizes the NR quality measures adopted.
We refer to the original papers for further details.
• BRISQUE (Blind/Referenceless Image Spatial Quality

Evaluator) [24] generates a quality score by quantifying
potential losses of ”naturalness” in the picture as a result
of distortions using scene statistics of locally normalized
luminance coefficients. The statistical features of the im-
age are analyzed and compared to a model created start-
ing from pictures of known quality.

• Laplacian Operator [4] is a differential operator given by
the divergence of the gradient of a function in the Eu-
clidean space. It highlights the areas of rapid intensity
change, thus performing edge detection. By computing
the variance, it is possible to evaluate the edges contained
in the image and, therefore, the level of blurriness.

• Fast Fourier Transform (FFT) [9]; when the blur in-
creases, the number of high-frequency components de-
creases. We exploited this property by computing the
FFT, removing the low frequencies, and finally comput-
ing the mean value of the magnitude representation: the
smaller the mean, the blurrier the image.

• NIQE (Natural Image Quality Evaluator) [25] and PIQUE
(Perception-based Image QUality Evaluator) [34] mea-
surements. In particular, NIQE exploits the measurable
deviations from statistical regularities typical of natural
and undistorted images, while PIQUE extracts local fea-

3847



tures by considering only perceptually significant spatial
regions, as a human observer would do.

3.2.2 Full-Reference Measures

FR quality assessment measures are employed to compare
an image under analysis with a reference one. We pro-
ceeded accordingly, using two adjacent frames in the ob-
served time window.
• Signal-To-Noise Ratio (PSNR), which represents the ex-

pression for the ratio between a signal’s maximum power
and the noise’s power applied to the same signal. Several
studies analyze its effectiveness in evaluating the quality
of a compressed image with respect to the original un-
compressed one [17].

• Mean Squared Error (MSE) computes the error between
the distorted image and the original one at the pixel level
[3].

• Structural Similarity Index Measure (SSIM) [35] focuses
on the similarity between two images, trying to predict
their perceived quality.

• Pearson correlation coefficient (PCC) [7] measures the
linear correlation between the images.

• The ”Fréchet Inception Distance” (FID) method proposed
in [16], originally used to measure the similarity of pro-
duced pictures to genuine ones, to assess the effective-
ness of GANs (Generative Adversarial Networks) in im-
age generation.

3.3. Creation of the Feature Matrices

Starting from the sequence of Nf frames related to a pre-
defined time window of the video under analysis, the matri-
ces of features Mor and Mhf corresponding to original and
high-pass filtered images are computed as follows. From
each frame Ft, a set of Np patches are extracted (Pt =
{p1,t, p2,t, . . . , pNp,t}) selecting the regions most prone to
manipulation artifacts such as face, eyes, mouth, etc. (see
Fig. 3). The features related to the frame under analysis
Ft are then computed by exploiting the quality measures
defined in the previous sections. Specifically, considering
the set of patches Pt and a set of NNR

q No-Reference (NR)
quality measures QNR = {QNR

1 , QNR
2 , . . . , QNR

NNR
q

} the

following matrix of features MNR is computed:

MNR
r,t = QNR

k (pi,t) (1)

with pi,t ∈ Pt, QNR
k ∈ QNR, r = Np(k − 1) + i, i =

1, . . . , Np and k = 1, . . . , NNR
q .

Later, taking into account pairs of corresponding patches
related to consecutive frames, a set of NFR

q Full-Reference
(FR) quality measures QFR = {QFR

1 , QFR
2 , . . . , QFR

NFR
q

}
can be applied to compute a matrix of features MFR as
follows:

MFR
r,t = QFR

k (pi,t, pi,t+1) (2)

with pi,t ∈ Pt, pi,t+1 ∈ Pt+1, Q
FR
k ∈ QFR, r = Np(k −

1) + i, i = 1, . . . , Np and k = 1, . . . , NNR
q .

FR quality measures can also be applied to compare
patches of the same frame Ft. Specifically, in the proposed
solution, a further feature matrix MFRSF has been built
comparing patches related to the left eye and the right one.

MFRSF
r,t = QFR

k (pi,t, pj,t) (3)

where pi,t, pj,t are the left and right eye patches belonging
to Pt, r = k, k = 1, . . . , NFR

q .
Finally, the vertical concatenation of the computed ma-

trices MNR ∈ R(Np∗NNR
q )×Nf , MFR ∈ R(Np∗NFR

q )×Nf ,
MFRSF ∈ RNFR

q ×Nf allow us to generate the feature ma-
trix Mor ∈ R(Np∗NNR

q +(Np+1)∗NFR
q )×Nt . Note that start-

ing from the high-pass filtered version of the same video,
applying (1), (2), (3), the Mhr feature matrix can also be
derived.

Considering eight patches for each frame (Np = 8) as
depicted in Fig. 3, five No-Reference and Full-Reference
quality measures (NNR

q = 5, NFR
q = 5) as described in

Section 3.2, two 85 × Nf matrices of features (Mor and
Mhr) are computed.

3.4. Neural Network Architecture

The feature matrices Mor and Mhf are the input of two
CNNs with the same architecture. Note that our goal is not
to propose a new neural network architecture but a method
that could be applied to several, even more complex, mod-
els. Fig. 5 shows the architecture, which is made up of two
2D convolution layers followed by max-pooling layers and
a dropout to avoid the overfitting problem. A dense layer for
classification that ends with 2 neurons completes the net-
work.

According to the cross-entropy cost function, their out-
comes are interpreted as the probability of each sample be-
longing to the deepfake class. In the remainder of the paper,
these values are referred to as scores and indicated with the
terms sor and shf , respectively.

3.5. Fusion of the Scores

It is well known that techniques like ensembling and multi-
modal or uni-modal fusion approaches are able to enhance
the generalization capabilities of the systems and deal with
both intra-class variations and inter-class similarities [27].
It is possible to apply fusion at different levels within a
classification system: sensor, feature, score, and decision
level. Also, in the field of deepfake detection, the use of
such techniques is becoming increasingly popular, with the
goal of attenuating the lack of generalization capabilities
common to those systems [5, 31]. As in [8], we try to ex-
ploit the complementarity of the two systems by applying
several score-level rules. In our case, the hypothesis is that
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Figure 5. CNN architecture adopted for the experiments. Two 2D convolutional layers, followed by as many max-pooling layers, precede
the dense layer and the two final neurons used for classification.

the quality measures extracted from the original image and
the high-pass filtered one are influenced by different factors:
it is likely that in the case of the filtered image, the measures
are more influenced by details rather than its global appear-
ance. To confirm the presence of such complementarity,
we investigated some of the most promising rules described
in [8]. In particular, we selected one non-parametric rule,
namely the simple average. Let sor and shf be the out-
comes of the individual classifiers, namely, the one trained
over the quality measures extracted from the original image
and the filtered image, respectively.

The fusion of the such scores is obtained as follows:

savg =
sor + shf

2
(4)

We also considered a parametric rule, namely weighted
average:

sAavg =
Aor · sor +Ahf · shf

Aor +Ahf
(5)

Values Aor and Ahf are the accuracy of the single model
on a validation set. To calculate such accuracies, a thresh-
old equal to 0.5 was used (if the sample obtained a score
greater or equal to this value, it was classified as fake, real
otherwise).

Finally, we used a logit-based perceptron as a stacked fu-
sion rule, whose inputs are the outcomes of the individual
deepfake detectors. Perceptron was trained by minimizing
a cross-entropy cost function over a validation set. Its out-
come is the final score.

4. Experimental Protocol
4.1. Dataset

In order to verify the validity of the proposed method, the
chosen dataset was FaceForensics++ [28]. The peculiar-
ity of this dataset is that it contains 1000 videos down-
loaded from YouTube and manipulated with 5 different
methods. Therefore, it allows us to test our system on
the basis of different manipulations, starting from the same
original video. Although the applied techniques are dif-
ferent, the dataset contains two main types of manipu-
lation: reenactment (two methods) and face-swap (three
methods). In particular, among face-swap techniques, we

find Faceswap2, a graphics-based approach, Deepfakes3, a
learning-based approach built on an autoencoder architec-
ture, and FaceShifter [21], based on two different networks
for the face replacement and handling of the face occlu-
sions. The last two reenactment methods are a learning-
based and a graphics-based approach named NeuralTex-
tures [29] and Face2Face [30], respectively.

Regarding the subdivision into training, validation, and
test set, we used the official one proposed by the dataset
authors in [28]: 720 videos for training, 140 for validation,
and 140 for testing.

4.2. Training and Testing Protocol

To evaluate the proposed approach, we extracted Nf =
300 subsequent frames from each video of the considered
dataset, corresponding to about ten seconds. Thus, we have
one sample per video. An experimental investigation for
Nf < 300, which we do not report in this paper for the sake
of space, suggested a positive correlation between the sys-
tem’s performance and Nf ; consequently, we opted for the
maximum possible value, being Nf = 300 the size of the
smallest available video.

After computing the feature matrices related to both
the original video frames and the high-pass filtered ones,
we trained the two CNNs4 described in Section 3.4. For
the convolution layers, a set of 32 filters with a kernel
size equal to 5 has been set, using the ”same” padding
technique. After each max-pooling layer (with a size of 3),
a dropout with a fraction of 0.5 was applied. The training
was conducted with a batch size of 64 and setting an early
stopping based on a patient of 10 on the validation loss.
For both networks, we chose Adam as an optimizer with a
default learning rate of 0.001, binary focal cross-entropy as
the loss function because of the disparity in the number of
real and deepfake samples.

According to this paper’s claims and the general ap-
proach in the literature, we subdivided our experimental set-
ting into two protocols:
• Intra-manipulation: manipulation methods in the test set

have also been employed in the training and validation
sets, given that there is no sample overlap among such
sets. In particular, two experiments have been conducted:

2https://github.com/MarekKowalski/FaceSwap
3https://github.com/deepfakes/faceswap
4https://github.com/fchollet/keras
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Table 1. Intra-manipulation results in terms of False Negative Rate (FNR), False Positive Rate (FPR), Accuracy (Acc.), and Area Under
the ROC Curve (AUC) on the FF++ dataset: the system has been trained on all the available methods and then tested on all the methods
together (All), and on each method individually. The methods are Deepfakes (DF), Face2Face (F2F), FaceSwap (FS), NeuralTextures
(NT), and FaceShifter (FSh). The best accuracy results are highlighted in bold.

Test Method Original Image HF Image Fusion
Simple Average Accuracy-based Perceptron

FNR FPR Acc. AUC FNR FPR Acc. AUC FNR FPR Acc. AUC FNR FPR Acc. AUC FNR FPR Acc. AUC
All 0.54 3.53 98.94 99.95 0.37 5.49 98.74 99.94 0.33 2.94 99.22 99.98 0.33 2.94 99.22 99.98 0.33 1.37 99.49 99.97
DF 0.40 6.08 96.72 99.90 1.21 4.31 97.21 99.89 0.40 1.57 99.00 99.97 0.40 1.57 99.00 99.97 0.40 2.16 98.71 99.98
F2F 0.78 2.55 98.33 99.95 0.98 7.25 95.88 99.81 0.98 1.57 98.73 99.94 0.98 1.57 98.73 99.94 0.98 1.57 98.73 99.94
FS 0.00 3.53 98.11 99.96 0.00 4.90 97.37 99.98 0.00 1.37 99.26 99.99 0.00 1.37 99.26 99.99 0.00 1.57 99.16 99.99
NT 0.22 6.86 96.29 99.94 0.00 5.29 97.22 99.98 0.00 2.55 98.66 100.00 0.00 2.55 98.66 100.00 0.00 1.96 98.97 100.0
FSh 0.00 3.53 98.25 99.99 0.00 5.10 97.48 99.96 0.00 1.57 99.22 100.00 0.00 1.57 99.22 100.00 0.00 1.37 99.32 99.99

Table 2. Results in terms of False Negative Rate (FNR), False Positive Rate (FPR), Accuracy (Acc.), and Area Under the ROC Curve
(AUC) on the FF++ dataset considering one deepfake category at a time: the system has been trained on one specific category between
face-swap or reenactment and tested on the same one.

Test Manipulation Original Image HF Image Fusion

Simple Average Accuracy-based Perceptron
FNR FPR Acc. AUC FNR FPR Acc. AUC FNR FPR Acc. AUC FNR FPR Acc. AUC FNR FPR Acc. AUC

Face Swap 0.89 3.73 98.37 99.90 0.69 7.45 97.56 99.91 1.03 1.18 98.93 99.97 1.03 1.18 98.93 99.97 1.31 0.98 98.78 99.96
Expression Swap 1.75 0.78 98.58 99.89 1.24 2.94 98.18 99.84 1.03 0.59 99.12 99.93 0.72 0.59 99.32 99.93 1.24 0.59 98.99 99.92

(1) using the sets as described above, and (2) grouping the
samples per deepfake generation category, namely, face
swap and expression swap, and investigating the perfor-
mance when we hypothesize being attacked by only one
known category.

• Cross-manipulation: there is no overlap between the ma-
nipulation methods employed to generate training and test
videos. Validation set is from methods characterizing the
training set. The system is trained on four of five manipu-
lations and tested on the remaining one. For example, we
trained the system on Deepfakes, Face2Face, FaceSwap,
and FaceShifter and tested it on NeuralTextures. As done
in the previous scenario, we also investigated the perfor-
mance by grouping the methods per deepfake category:
face and expression swap, training on the former and test-
ing on the latter, and vice versa.

5. Experimental Results
In this section, we present the results obtained from the
experimental setup outlined earlier. Specifically, we show
the performance of the intra-manipulation protocol in Sub-
section 5.1, followed by the results obtained in the cross-
manipulation protocol in Subsection 5.2.

In all cases, reported values are related to a decision
threshold over the final scores aimed at maximizing the ac-
curacy estimated on the related validation set. We com-
puted the percentage of misclassified deepfakes (false neg-
ative rate, FNR) and real samples (false positive rate, FPR)
and the percentage of correctly classified samples (accu-
racy, Acc).

The parameter aimed at giving the overall view of the
system’s performance is the Area Under the ROC curve
(AUC).

5.1. Intra-Manipulation Analysis

Table 1 reports that the accuracy is high (99.50% for the
most-performing fusion method), and the Area Under the
ROC Curve (AUC) values suggest slight differences if the
decision threshold would vary around the chosen one. This
confirms that quality measures can effectively describe ar-
tifacts in the observed deepfake generation methods. The
difference in performance between the model based on the
original image (”Original Image”) and the model based on
the high-pass filtered image (”HF Image”) may suggest that
even detected artifacts are different. For example, in the
case of the DF method (Table 1, third row), the correct de-
tection rate is 96.70% on original images and 97.20% on
high-pass filtered ones. The fusion rules further improve the
result. Even the simple average leads to an overall accuracy
of 99%. This is the first confirmation of the complementar-
ity of the two models and the diversity we may suppose on
the artifacts detected.

In the second experiment, only one deepfake category
was used at a time for training and testing. Table 2 makes
it noticeable that, once again, the fusion of the two single
models brings remarkable benefits. It is worth noting that
individual classifiers exhibit a high accuracy, but there is a
difference between OR and HF modules. The complemen-
tarity is still exploited by fusion.

Worth remarking, the fusion greatly reduces the false
positive rate, while keeping the false negative rate around
0.3-1%. This means that, besides the property of keeping
very low the probability of misclassifying a manipulated
sample, detected artifacts, which can be misled in OR and
HF images, are so complementary that the individual scores
sor and shf are strongly uncorrelated.
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Table 3. Cross-manipulation results in terms of False Negative Rate (FNR), False Positive Rate (FPR), Accuracy (Acc.), and Area Under
the ROC Curve (AUC) on the FF++ dataset: the system has been trained on 4 of the 5 available methods, and tested on the remaining one.
The methods are Deepfakes (DF), Face2Face (F2F), FaceSwap (FS), NeuralTextures (NT), and FaceShifter (FSh). The best results are
highlighted in bold.

Test Method Original Image HF Image Fusion
Simple Average Accuracy-based Perceptron

FNR FPR Acc. AUC FNR FPR Acc. AUC FNR FPR Acc. AUC FNR FPR Acc. AUC FNR FPR Acc. AUC
DF 0.81 3.73 97.71 99.91 1.21 3.92 97.41 99.83 0.81 1.57 98.81 99.95 0.81 1.57 98.81 99.95 0.81 1.37 98.91 99.95
F2F 0.39 7.65 95.98 99.88 2.55 2.16 97.65 99.82 1.57 1.96 98.24 99.93 1.57 1.96 98.24 99.93 1.18 0.98 98.92 99.91
FS 0.68 5.10 96.95 99.95 0.00 5.88 96.84 99.98 0.23 1.18 99.26 100.00 0.23 1.18 99.26 100.00 0.00 1.37 99.26 100.00
NT 0.00 6.86 96.39 99.99 0.22 4.71 97.42 99.98 0.00 1.37 99.28 100.00 0.00 1.37 99.28 100.00 0.00 0.78 99.59 100.00
FSh 0.00 5.10 97.48 99.97 5.96 5.49 94.27 98.13 2.88 0.59 98.25 99.93 2.88 0.59 98.25 99.93 2.31 2.16 97.77 99.88

Table 4. Results in terms of False Negative Rate (FNR), False Positive Rate (FPR), Accuracy (Acc.) and Area Under the ROC Curve
(AUC) on the FF++ dataset, training on one deepfake category (face-swap or expression-swap) and testing on the other.

Test Manipulation Original Image HF Image Fusion

Simple Average Accuracy-based Perceptron
FNR FPR Acc. AUC FNR FPR Acc. AUC FNR FPR Acc. AUC FNR FPR Acc. AUC FNR FPR Acc. AUC

Face Swap 1.58 1.37 98.47 99.90 5.77 4.31 94.61 98.23 2.34 1.18 97.96 99.94 2.34 1.18 97.96 99.94 1.44 0.59 98.78 99.96
Expression Swap 1.13 2.94 98.24 99.91 1.24 3.73 97.91 99.80 0.93 0.98 99.05 99.94 0.93 0.98 99.05 99.94 0.93 1.57 98.85 99.94

5.2. Cross-Manipulation Analysis

This is the most realistic scenario, where a performance de-
crease is usually observed.

A first set of experiments was carried out by training
each system on 4 out of 5 techniques and testing the re-
maining one. Results are reported in Table 3.

First of all, looking at the performance of the individual
classifiers, it is very noticeable how the performance is still
high. The performance over never-seen-before manipula-
tions adds that individual classifiers are able to detect arti-
facts common to the investigated deepfake generation meth-
ods.

We also noticed that fixing the decision threshold means
staying around the so-called 0% − 1%FNR operational
working point. This means that the observed performance is
related to a case where detecting correctly deepfake samples
with a low probability of failure leaves the possibility that
some real samples are misclassified with higher frequency.
However, the fusion strongly reduces this occurrence with-
out a substantial variation to the reference operational point
above: we stay around the 0%− 1%FNR operational point,
with a significant decrease in the related FPR. Moreover,
the overall accuracy ensures the performance is way better
than that of individual classifiers.

Among other deepfake generation methods, FaceShifter
tests turn out to be the most particular. The last row of Ta-
ble 3 points out that the model trained on HF images per-
forms lower than others, reaching only 94.3%. We may
motivate this by hypothesizing that artifacts of FaceShifter
are less evident in HF images. Moreover, the FaceShifter
method has recently been included in the FF++ dataset,
constituting a more sophisticated deepfake creation tech-
nique. This apparent correlation between the novelty of
FaceShifter and the reduced performance in HF images

points out the rapidity with which deepfake generation
methods are refining their characteristics over time. How-
ever, the fusion of the models leads to an accuracy of even
98.2%, thus overcoming this issue.

In the second experiment, one deepfake category was
used at a time for training, while the other was used for test-
ing. Table 4 confirms the advantages of the fusion between
the two single models, still highlighting the lower perfor-
mance of the HF module than the OR one.

5.3. Comparison with the State of the Art

Table 5 reports the comparison in terms of the AUC of the
proposed approach (”Ours” rows) with the Xception net-
work, which is considered as a sort baseline [14]. We also
selected four reference methods that exhibited the best per-
formance over the literature and adopted the same experi-
mental protocol. For completeness, we added some charac-
teristics of each method: the input to the network, if a pre-
liminary feature extraction step is performed, the number of
network parameters (if available), the architecture typology,
and the use of auxiliary datasets.

The first thing to notice is that our architecture is much
lighter than the reported ones, including Xception net. Sec-
ond, a certain complexity in the architecture typology char-
acterizes the most competitive approaches. Third, they are
often coupled with an auxiliary dataset, probably due to the
huge number of parameters to be set. Fourth, no feature ex-
traction step is performed: the cropped face or part of it is
simply the input to the selected architecture, whose size is
motivated by the large number of features to process.

Still, the proposed method is based on the modeling of
artifacts by a set of quality measurements for video-based
deepfake detection; it includes a light architecture and no
additional data for training (for which a careful selection is
often necessary); nevertheless, it showed to be in the same
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Table 5. Comparison of the proposed approach with other state-of-the-art methods. The columns DF-NT report the AUC value obtained
by training on 3 out of 4 categories between Deepfakes (DF), Face2Face (F2F), FaceSwap (FS), and NeuralTextures (NT) and tested on the
remaining one. FaceShifter (FSh) is kept out of training, as done in the papers used for comparison, in this case, the system is trained on
the other 4 manipulations. The last column reports the average AUC of all five methods. About backbone columns, MS-TCN corresponds
to Multi-scale Temporal Convolutional Network [22], RN18 corresponds to ResNet-18 [15], R(2+1)D-18 corresponds to ResNet-18 with
(2+1)D convolutions [33], and CSN corresponds to Channel-Separated Convolutional Network [32].

Model Input Feature Backbone Auxiliary Parameters Test Method - AUC (%)
Extraction Dataset DF F2F FS NT FSh AVG

Xception [28] Face Crop No XceptionNet No 22.8M 93.90 86.80 51.20 79.70 72.00 76.72
LipForensics [14] Mouth Crop No 3D Convolution + RN18 + MS-TCN Yes 24.8M 99.70 99.70 90.10 99.10 97.10 97.14

AV DFD [38] Face Crop + Audio No R(2+1)D-18 No - 99.99 99.79 90.48 98.32 - 97.15
Zhao et al. [37] Mouth Crop No 3D Convolution + RN18 + Transformer Yes 36M 98.50 98.30 91.90 96.40 97.80 96.58

RealForensics [13] Face Crop No CSN + RN18 Yes 21.4M 100.00 99.70 97.10 99.20 99.70 99.14
Ours - Original 85x300 45.5K 99.84 99.90 99.96 99.97 99.88 99.91

Ours - HF Feature Yes 5 Layers CNN No 45.5K 99.69 99.69 99.94 99.96 98.87 99.63
Ours - Simple Average Matrix 90K 99.94 99.91 99.99 99.99 99.87 99.94

performance rank as the best reported one.

6. Conclusions
In this paper, we described a novel approach to model arti-
facts in digitally manipulated videos where facial deepfakes
are taken into account.

We showed that using a battery of quality measurements
applied to the detected facial region in each frame or sub-
sequent frames allows to point out the presence of artifacts
generated by deepfakes methods. Although these artifacts
are different depending on the spatial frequency range un-
der exploration (as we showed on original and high-pass
filtered frames), they are common to different manipulation
methods. We confirmed this claim by computing a feature
matrix of quality measurements on the face detected in a
video sequence. Specifically, we focused on the facial re-
gions where the movements have shown to be difficult to
reproduce in detail; consequently, the manipulation process
leads to (un)perceptible incoherences.

We tested the proposed approach on a well-known
benchmark dataset, including different manipulation ap-
proaches that represented two main categories: face-swap
and expression-swap. The light architecture adopted and
the noticeable help of fusion rules confirmed our proposal’s
effectiveness, especially compared to other state-of-the-art
solutions.

In our opinion, the proposed approach is an informa-
tive way to model artifact detection in digitally manipulated
videos. Further works will rely on the extension of the ex-
periments and an in-depth study of the proposed feature ma-
trix, even including data with different video characteristics,
such as in terms of compression, also to make it possible to
evaluate the proposed approach in a cross-dataset scenario.
Similarly, an explainability analysis should be included to
highlight the actual relevance of the single pairs of patches
and quality measures. The goal is to use it as the input
to an intrinsically explainable-to-human architecture, able
to point out what artifacts are detected when verifying the
presence of facial deepfakes in a video sequence.
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