
DiffSeg: Towards Detecting Diffusion-Based Inpainting Attacks Using
Multi-Feature Segmentation

Raphael Antonius Frick, Martin Steinebach
Fraunhofer SIT — ATHENE Center
Rheinstraße 75, Darmstadt, Germany

{raphael.frick, martin.steinebach}@sit.fraunhofer.de

Abstract

With the advancements made in deep learning over the
past years, creating convincing media manipulations has
become easy and accessible than ever before. In particu-
lar, diffusion models such as Stable-Diffusion allow users
to synthesize realistic images based on a given text input.
Apart from synthesizing entirely new images, diffusion mod-
els can also be used to make edits to images using inpaint-
ing. To combat the spread of disinformation and illegal
content created with diffusion-based inpainting, this paper
presents a new detection method based on multi-feature seg-
mentation. Apart from information derived from the raw
pixel values, noise, and frequency information are also ex-
ploited to detect and localize regions that have been sub-
ject to editing. Evaluation results strongly suggest that the
proposed method can achieve high mIoU and AUC scores,
outperforming state-of-the-art methods, even for syntheses
generated by unseen diffusion models, or highly compressed
images.

1. Introduction

Nowadays, social media platforms are frequently used to
share images and videos. In addition to the traditional so-
cial media platforms and messaging applications that sup-
port multimedia, such as X (formerly known as Twitter)
and Facebook, there are some social media platforms that
are particularly focused on multimedia, including Instagram
and Tiktok. However, the authenticity of the shared content
is not always ensured, as images and videos can be subject
to filters provided by the platforms or dedicated editing soft-
ware. In the past, editing images was time-consuming and
required certain expertise. With the advancements that have
been made in artificial intelligence (AI) over the years, var-
ious AI models have been developed that allow new image
content to be synthesized or existing ones to be edited. In
addition to deepfakes [17] and generative adversarial net-

works [7], diffusion models [20] have gained a lot of popu-
larity as of late. Diffusion models such as GPT-4 [15] and
Stable-Diffusion [20] allow synthesizing new images con-
ditioned by a text prompt as well as editing existing ones
using image-to-image synthesis or inpainting convincingly.
The latter can be used to replace parts of an image with
new content guided by text input. It can be used to remove
unwanted objects, but also enables adding new objects, by
which the context of an image is likely to be altered. In-
painting thus has the potential to be used to create and dis-
seminate disinformation on social media. Therefore, it is of
great concern to be able to identify images that have been
subject to diffusion-based inpainting and that have been
shared on social media, especially since sometimes journal-
ists rely on user-created content as it is often the only source
available.

In this paper, a novel method for detecting and locating
regions in images that have been subject to diffusion-based
inpainting is presented. It takes advantage of multi-feature
segmentation, namely features based on noise, frequency
and raw pixel data analysis. By using a variety of fea-
tures, the aim is not only to improve detection performance,
but also explainability, which is often lacking in fully data-
driven recognition models. The main contributions made in
this paper are as follows:

• The paper presents a novel method for detecting
diffusion-based inpainting based on multi-feature seg-
mentation.

• The model takes advantage of deep-learning-based and
hand-crafted features that provide interpretability usually
not available in fully deep-learning-based solutions.

• It is able to provide high robustness to low and high JPEG
compression and high generalizability to unseen diffusion
models.

• In experiments, it was able to outperform state-of-the-art
methods by a large margin.

The remainder of this paper is structured as follows: in
Section 2 an introduction to diffusion-based inpainting is
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given. Section 3 presents related work used to identify gen-
erated and altered image content. The proposed approach to
detect images subject to diffusion-based inpainting is pre-
sented in Section 4. The results achieved by the method on
the test set and its robustness and generalizability is show-
cased in Section 5. The paper then concludes in Section 6
with an outlook at future work.

2. Diffusion-based Image Editing

Over the years different methods for synthesizing and edit-
ing images have been proposed. While generative adver-
sarial networks [3], are able to synthesize images of high
quality, they often lack detailed control over the synthesized
content. Further, edited pre-existing images often have de-
graded image quality due to the optimization process in-
volved in the GAN-inversion process [23].

Diffusion models try to solve this issue by providing
control over the synthesized content using e.g., a text-
prompt [20]. During training, noise is gradually added to
the training data first and then the model learns to reverse
the noise addition process to recover the original data. For
this, a noise prediction model is used to determine the noise
pattern to be removed, by receiving additional information
in the form of a given text prompt. This enables the model
to steer the denoising process in a direction so that the final
image content matches the description in the text prompt.
Since performing the diffusion process in the pixel space of
the image would be computationally expensive, latent dif-
fusion models are performing it in a latent space instead. In
this case, a variational autoencoder is often used to trans-
form an image into the latent space and to transform a dif-
fused latent embedding back into an image. Recent diffu-
sion models are not limited to image data, and can also be
used e.g. for the synthesis of audio [9] and 3D mesh ob-
jects [18].

Besides being able to synthesize entire images using a
text-prompt, existing images can be edited using inpainting.
Inpainting allows re-filling a self-defined region inside an
image with new content. This requires a 2D mask as input in
addition to the image to be edited, in order to specify which
areas should be retained and which should be modified. The
selected area is then synthesized with the help of a given text
prompt and the chosen diffusion model.

3. Related Work

In the past, several methods for detecting diffusion models
have been proposed. Most of them try to detect and anno-
tate different models using a frequency analysis [2, 16, 19].
They found that certain models introduce specific patterns
in the spectrum of the synthesized images. In other words
because different diffusion models have learned to synthe-
size images with different weights, it results in certain fre-

quencies being less represented or overrepresented depend-
ing on the model used. For the analysis, the spectrum is cal-
culated for the whole image. This is however not directly
applicable to images that have been subject to inpainting
attacks and which therefore consist of authentic and syn-
thetically created parts. Since the related works base their
decision frequency analysis, compression, e.g. JPEG com-
pression, may have an impact on the detection capabilities.

Detection techniques, that consider inpainting attacks
based on traditional image processing, are either based
on the analysis of handcrafted features, e.g., on a CPA-
analysis [6] or double JPEG-compression analysis [12], or
of features gained by a deep learning model [5, 21].

ManTraNet [21] is an image forgery detection model that
has been trained on several post-processing operations, in-
cluding scaling, noise and compression.

TruFor [5] combines the analysis of raw RGB pixel data
with the analysis of noise residuals obtained by a denois-
ing deep learning based model. During training, it was also
trained on diffusion-based inpainted images synthesized us-
ing GLIDE [14].

However, deep-learning-based methods often do not of-
fer explanatory capabilities, since the automatically ex-
tracted features are too abstract to interpret. Providing ex-
planations is a prerequisite for the use of detection systems
for some use cases, e.g., authenticity reports in court pro-
ceedings or in journalism.

Thus, in this paper, a combination of handcrafted and
deep-learning-based features is used to detect diffusion-
based inpainting attacks as they can provide high perfor-
mance while in addition providing interpretability of the ob-
tained results.

4. Proposed Approach

In this section, the proposed approach for detecting
diffusion-based inpainting using multi-feature segmenta-
tion is presented. The overall architecture is shown in Fig-
ure 1 and consists of three types of modules that are inter-
connected and form the classification system: feature ex-
traction modules, segmentation modules and a fusion mod-
ule.

4.1. Feature Extraction Module

For the detection, a total set of three features are explored:
RGB-based, frequency-based, and noise-based features. As
aforementioned, the aim is to provide high detection accura-
cies while maintaining interpretability and generalizability
using handcrafted features. The feature extraction module
is hereby used to extract the necessary features.

RGB-based features are derived directly from the deep-
learning-based classification model and do not require ex-
plicit feature extraction. The raw RGB data is therefore
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Figure 1. Outline of the architecture used in the proposed detection method

passed straight to the segmentation module after perform-
ing normalization (Figure 2b).

Previous work has found that certain frequencies in the
synthesized images are either overrepresented or underrep-
resented. However, since related work perform the anal-
ysis on the entire image, they are unsuitable for detecting
inpainting attacks, where parts of the image might be au-
thentic. Therefore, in this work, the frequency analysis is
performed using non-overlapping windows instead (Figure
2c). Using a window-based approach, deviations in the fre-
quency representation of authentic and non-authentic image
regions are attempted to be found.

Images shot with a camera often exhibit a certain noise
pattern introduced by the camera sensor. Analysis of this
noise has been successfully used in image forensics for
camera identification [13]. Since the regions affected by
the inpainting attack are denoised as part of the reverse dif-
fusion process, it is unlikely that the sensor noise will be
preserved and that the exhibited noise will differ in forged
areas of the image. For feature extraction, a denoiser is used
to predict the noise. By subtracting the noise from the input
image, the noise residual is obtained (Figure 2d), which is
used as a feature for the subsequent segmentation module.

4.2. Segmentation Module

For each of the features (RGB, frequency, and noise), a spe-
cific segmentation module is created. They consist of seg-
mentation networks that take the extracted feature map as
input and provide a probability map as output (Figure 2e),
indicating areas that have likely been modified.

4.3. Fusion Module

The fusion module then takes the predicted probability
maps obtained from each of the three artifact-specific seg-
mentation modules and fuses them into one single predic-
tion map (Figure 2f). For this purpose, each of the probabil-

ity maps are first weighted by the validation loss the respec-
tive segmentation model used in the segmentation module.
As a result, models with good performance on the valida-
tion set have a greater impact on the classification result
than models with less good performance. The results are
then merged into a single one by forming their linear com-
bination. Here, we specifically did not take advantage of
ensemble learning, such as stacked classification, for multi-
ple reasons. First, by this method, we are able to improve
efficiency with regard to the processing time, and second,
we can mitigate possible effects of overfitting the meta-
classifier to a distribution found within the images of the
train set. To obtain a binary prediction map, the output is
binarized with a threshold. The prediction map is to recon-
struct the mask (Figure 2g) used to perform the inpainting
attack.

5. Evaluation
In this section, the implementation of the classification ar-
chitecture is described in detail and evaluation results are
presented for images created with different diffusion mod-
els and additionally for inpainted images subjected to JPEG
compression.

5.1. Datasets

Images from the Common Objects in Context (COCO)
dataset [11] were used for training and evaluation. The
dataset consists of a train, validation, and test split and fea-
tures annotations such as image descriptions and segmenta-
tion masks.

Here, solely the 5,000 images of the validation set were
used. The images are diverse in terms of their resolution,
quality and the content they depict. From each image, its as-
sociated annotation for the segmentations is used to build an
inpainting mask. For this purpose, the segmentation mask
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for randomly selected objects within the list of annotations
is used. Then, the area is increased using a dilation op-
eration of size 15x15 applied for five iterations. Subse-
quently, a text description of the source image is derived
using BLIP2 [10], specifically using the pre-trained blip2-
opt-2.7b model.

Once the inpainting masks and the textual description
have been obtained, images are synthesized using Auto-
matic1111 [1] a front-end for diffusion models. In total,
a set of four models were used during synthesis: Stable-
Diffusion 1.51, Stable-Diffusion 1.5 Inpainting2, Stable-
Diffusion 2 Inpainting3 and Anything v4.5 Inpainting4. All
these models were sourced from HuggingFace. For better
reproducibility, a seed of 104 was used in conjunction with
a cfg-scale of 5.0 and a denoising strength of 0.7. The fill
mode within Automatic1111 was set to original, as it pro-
vides the best results in terms of realism.

The resulting N*5000 images (N referring to the N mod-
els considered) were then split into three partitions, a train
set consisting of 3000 images, a validation set consisting
of 500 images and a test set consisting of the remaining
images. For training and validation, solely the images syn-
thesized by the Stable-Diffusion 1.5 and Stable-Diffusion
1.5 Inpainting models were used. The images derived from
the other models were solely used for generalizability tests
during evaluation.

5.2. Implementation

The core of the detection method is based on SegFormer-
based segmentation networks [22]. In particular, the mit-
b1 model was fine-tuned to receive feature maps of size
512x512 pixels as input and to return a probability map of
112x112 pixels in size. For this, the images were first re-
sized and then the features were extracted, except for noise
features where resizing took place after feature extraction.

For the frequency analysis, a DCT-transform was applied
on non-overlapping windows of size 16x16 pixels. Their
coefficients were then used as features. Regarding the noise
analysis, the application of various denoising techniques is
conceivable. Here, denoising was done using a median filter
of kernel size 3x3. A small kernel size was used, as any
larger kernel size would also affect altering the structure of
images, e.g., edges, thus, leading to worse results.

For better robustness against compression, which not
only affect the distribution of DCT coefficients, but also the
amount of noise present in the image, the input images were
augmented using JPEG-compression. Hereby, a quality fac-
tor between 75 and 100 was chosen at random.

The segmentation models based on SegFomer have been

1runwayml/stable-diffusion-v1-5
2runwayml/stable-diffusion-inpainting
3stabilityai/stable-diffusion-2-inpainting
4Koolchh/anything-v4.5-inpainting

Stable-Diffusion 1.5
Stable-Diffusion 1.5

Inpainting
Quality Factor Quality Factor

50 100 50 100
RGB 0.946 0.943 0.943 0.991
Noise 0.871 0.894 0.882 0.895
DCT 0.893 0.990 0.926 0.991
Final 0.979 0.995 0.964 0.995

Table 1. Results of the ablation study. Combining multiple feature
types can increase the AUC-scores achieved on the test datasets.

trained on an NVIDIA A100 for 100 epochs with a batch
size of 32. Moreover, Adam [8] was used as optimizer with
an initial learning rate of 6 ∗ 10−5 in conjunction with a bi-
nary cross-entropy loss. By using model checkpoints, only
the best performing models are retained in the validation
set, preventing overfitting.

During inference, the probability maps gained from each
of the segmentation modules get fused in the fusion module.
Hereby, the three probability maps are weighted by the val-
idation loss obtained during training. Here, the RGB-model
performed best (validation loss = 0.03771), followed by the
Noise-based model (validation loss = 0.10183) and then the
DCT-based model (validation loss = 0.12554). It should,
however, be noted that the DCT-based model is bound to
provide oversized masks than, e.g., the RGB and NOISE-
based model, due to utilizing non-overlapping windows of
16x16 pixels in size. However, in experiments investigat-
ing the benefits of each feature type, it was revealed that the
DCT-based approach worked well for compressed images
(Table 1). Once the unified probability map is obtained, it is
upsampled to the dimensions of the input image first. Then,
it is binarized using a threshold. By estimating the cutoff
point on the validation split, a threshold value of 148 was
identified and was used in the subsequent tests of the evalu-
ation.

5.3. General Performance Test

For the initial performance test, the model was evaluated
solely on images created by the Stable-Diffusion 1.5 and
Stable-Diffusion 1.5 Inpainting model. The overall perfor-
mances with regard to the achieved mIoU score is displayed
in Table 2. AUC scores are showcased in Table 3. Hereby,
mIoU was used as metric as it is a common metric for eval-
uating segmentation tasks. However, the main disadvantage
is that the results are bound to a specific threshold value.
Since the segmentation task presented in this paper only in-
volve two labels, the AUC score can be used in addition to
provide a metric independent of a selected threshold value.

As it can be seen, the overall performance with regard to
the mIoU and AUC scores obtained for images compressed
using a quality factor of 100 (near lossless), range between
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(a) Resized unmodified image (b) Resized input image (c) DCT feature map (d) Noise feature map (inverted)

(e) Probability map (f) Prediction map (g) Ground truth map

Figure 2. Example classification of a stock-image inpainted using an unseen diffusion model (Adobe Photoshop v25.1 Beta).

(a) Ground truth map (b) Ours (c) MantraNet [21] (d) TruFor [4]

Figure 3. Comparison of heatmaps obtained by various methods.

0.921 and 0.932 with respect to the mIoU and 0.995 for the
AUC score. This indicates that the model is able to provide
high discriminative capabilities that can be used to identify
edited regions.

5.4. Robustness Test

Since images are nowadays often uploaded onto social me-
dia, it is of great importance to analyze whether these mod-
els are capable of synthesizing images, that have undergone
compression. Often JPEG compression is used; common
quality factors include 80 (for images uploaded to Insta-
gram) and 84 (for images uploaded to X / Twitter) and are
thus analyzed in the following robustness test. Adversaries
could leverage from JPEG compression to reduce the arti-
facts to hide a forgery. Thus, compression factors as low as

50 are examined as well. The resulting scores are displayed
in Table 3 and 2.

Although compression factors between 50 and 70 were
not used for augmenting the data during training, the AUC-
scores and mIoU scores achieved on images compressed
with those quality factors are still high. This demonstrates
the robustness of the system to unseen high compression
rates ranging from strong to low compressions.

5.5. Generalizability Test

In many cases, it is not possible to create a distinct detec-
tion model for each diffusion model available. As such,
the detection methods are required to generalize to images
edited by models that have not been seen during training. As
part of the evaluation, the test splits featuring images from

3806



Quality Factor
50 55 60 65 70 75 80 85 90 95 100

Stable-Diffusion 1.5 0.843 0.849 0.865 0.872 0.878 0.879 0.910 0.927 0.911 0.937 0.932
Stable-Diffusion 1.5 Inpainting 0.800 0.804 0.833 0.837 0.848 0.848 0.891 0.914 0.893 0.929 0.921
Stable-Diffusion 2 Inpainting 0.767 0.775 0.804 0.813 0.818 0.815 0.866 0.895 0.865 0.906 0.899
Anything v4.5 Inpainting 0.829 0.832 0.852 0.863 0.867 0.871 0.903 0.924 0.910 0.934 0.922

Table 2. MIoU values obtained by the proposed approach on the test split. Shaded values refer to settings not seen during training either in
terms of the used diffusion model or the quality factor.

Quality Factor
50 55 60 65 70 75 80 85 90 95 100

Stable-Diffusion 1.5 0.979 0.980 0.985 0.986 0.988 0.988 0.993 0.996 0.994 0.997 0.995
Stable-Diffusion 1.5 Inpainting 0.964 0.967 0.975 0.976 0.979 0.980 0.990 0.994 0.991 0.996 0.995
Stable-Diffusion 2 Inpainting 0.949 0.951 0.963 0.966 0.968 0.968 0.981 0.989 0.985 0.992 0.991
Anything v4.5 Inpainting 0.968 0.972 0.979 0.981 0.984 0.984 0.991 0.994 0.994 0.997 0.994

Table 3. AUC scores obtained by the proposed approach on the test split. Shaded values refer to settings not seen during training either in
terms of the used diffusion model or the quality factor.

Stable-Diffusion 2 Inpainting and Anything v4.5 Inpainting
have been considered. While the performance slightly de-
creases, the AUC (Table 3) and mIoU scores (Table 2) are
still high, indicating the model’s generalization capabilities.

Further, tests have been made for detecting inpainted im-
ages, that have been created using diffusion models in com-
mercial applications, such as Adobe Photoshop v25.1 Beta.
However, since the EULA of Adobe Photoshop does not
permit batch processing for their generative models, no dis-
tinct dataset has been established for evaluation. An ex-
ample classification is, however, showcased in Figure 2.
When comparing the results with the heatmaps obtained
from other image-forgery detection methods (3), such as
MantraNet [21] and TruFor [4], it showcases, that the pro-
posed model can not only identify the used mask better,
the model also did not overfit during training to detect spe-
cific objects. This is especially true for TruFor (3d), a data-
driven detection method which was only able to identify sil-
houettes of the inserted tree and of the house, but did was
not able to identify the mask used for the forgery.

5.6. Comparison with State-of-the-Art Detection
Methods

To obtain a better understanding of the results achieved
by our model in contrast to current state-of-the-art detec-
tion methods, we also analyzed the performance of both
ManTraNet [21] and TruFor [4]. While the latter was al-
ready trained on the COCO-validation dataset, ManTraNet
was trained on various other datasets. In order to provide a
fair comparison between the models and our proposed ap-
proach, we evaluated the model’s performance on the im-
ages derived from the Stable-Diffusion 2.1 Inpainting dif-
fusion model, i.e. images that were not yet seen during

Quality Factor
50 100

Ours 0.949 0.991
ManTraNet 0.606 0.602
TruFor 0.622 0.728

Table 4. Comparison of the AUC-scores achieved on the Stable-
Diffusion 2 Inpainting images.

training of our model. In addition, we measure the per-
formance using the AUC-score to measure the performance
independent of a given threshold. As indicated by Table
4, ManTraNet is unable to correctly identify the inpaint-
ing masks. Interestingly, although TruFor was also trained
to identify images that were subject to diffusion-based in-
painting, the AUC scores are significantly lower than those
achieved by our model. This is especially the case when
trying to classify images that are compressed with a low-
quality factor of 50.

6. Conclusion & Future Work

In this paper, a novel method for detecting diffusion-based
inpainting attacks is presented. By making use of hand-
crafted and deep-learning-based features, the method is
able to provide good performance, generalization and in-
terpretability capabilities. The model was able to achieve
high AUC values between 0.96 and 0.99 and high mIoU
values between 0.76 and 0.94 in the dataset with images
of seen and unseen synthesis models. The evaluation ex-
periments and the shown example (Figure 2) also indicates
that the model can detect inpainted images created with un-
known diffusion models without additional training. In ad-
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dition, noise- and frequency-based features provided expla-
nations that are often missing in fully deep-learning-driven
approaches, and it did not overfit to identifying specific ob-
jects within the images.

In the future, the method could be extended to include
assessing videos that have been modified using diffusion-
based models such as SORA from OpenAI 5.
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