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Abstract

Image-to-video generation with conditional identity
swap popularly known as deepfake, aims to synthesize a
new video for the target identity guided by an image of the
target and a video of the source identity. The biggest chal-
lenge of these tasks lies in the simultaneous generation of
realistic spatial appearance and temporal dynamics corre-
sponding to the given target image and source video. In this
paper, we propose a deepfake generation technique using
novel latent flow diffusion (LFD) that includes an optical
flow sequence in the latent space based on a given source
video to warp the given target image. Compared to previ-
ous works on video diffusion, our proposed LFD can swap
the spatial details maintaining temporal information by uti-
lizing the spatial content of the given target image and em-
ploying the latent flow of the source video. Our model con-
sists of three stages: a Flow predictor model captures the
optical flow of the source video, two-fold Transformer en-
coding layers predict the driving frame and a conditioned
image-to-video generator guided by the driving frame gen-
erates the final deep fake video. We conducted multiple ex-
periments and our proposed model has consistently outper-
formed prior video diffusion models for deepfake genera-
tion.

1. Introduction
Given an input reference image and a video, a deepfake
model tries to generate a fake video by morphing the face in
the reference image onto the input video [35]. Several gen-
erative techniques have been employed in the literature [45].
The main challenge is to preserve both the intricacies of the
facial structure of the input image and the facial actions of
each frame in the input video. Among the generative tech-
niques, diffusion models have proven their superiority in
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recent years.
Diffusion models have proven to be potent tools in var-

ious content creation tasks, spanning from image-to-image
generation to text-to-image and 3D object generation [8].
However, while these models have seen success in static im-
age generation, generating high-quality videos is challeng-
ing due to the complex spatio-temporal information they
encompass. Recent advancements have emphasized the im-
portance of reimagining the backbones of diffusion mod-
els, highlighting the significance of innovative architectures
in enhancing performance. Building onto pre-trained video
diffusion models[18], image-to-video generation is a promi-
nent topic in the avenue of video diffusion [29].

In image-to-video diffusion a single image and a con-
dition or a video aim to generate a realistic video, repli-
cating the given image and satisfying the condition. Alike
to conditional image synthesis[19], the existing condi-
tional image-to-video generation techniques[29, 37] gener-
ate frames in the video based on the given image and condi-
tion. The major challenge faced by such models is seamless
spatial and temporal details in the generated videos.

Recently, latent flow diffusion models (LFDM) have
been proposed [29], which tackles this by employing a la-
tent optical flow sequence and condition, to warp the image
along with the latent space for synthesising the new videos.
Deviating from existing latent diffusion-based video gener-
ation which either uses direct-synthesis or warp-free meth-
ods, LFDM uses the spatial content of the given image.
Hence, the spatial content can be used consistently to gen-
erate temporally coherent flow maintaining subject appear-
ance and motion dynamics. Even then, generating image-
to-video with conditional identity swap,i.e., deep fake gen-
eration has not been well explored using diffusion.

A deep fake video generation model aims to synthesize a
new video for the target identity guided by an image of the
target identity and a video of the source identity. The chal-
lenge is the simultaneous generation of realistic spatial ap-
pearance and temporal dynamics corresponding to the given
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target image and source video. Such identity swapping has a
more intense challenge than the image-to-video generation
scenario. To disentangle the generation of spatial content of
the target image maintaining the temporal properties of the
source video needs extra attention. We need to preserve the
flow at the same time the spatial details.

Hence, to solve this challenge we proposed LFD deep-
fake generation (LFD2G) which works in three stages (see
Fig 1). For capturing the flow of the source video we em-
ployed a latent Flow predictor. This finds the optical flow
between every two frames of the source video. This is
needed as an input to our conditional image-to-video gen-
erator. This has been trained in an unsupervised fashion on
the MUG dataset [26]. Next, we have two transformer en-
coding layers, one being a self-attention block on the target
image and the other being a cross-attention block between
the target image and the first frame of the source video (see
Fig 1). This dual Transformer block predicts the driving
frame which is the first frame of our generated deepfake
video. This stage can be replaced by any deepfake-image
generation technique, but we used a vision Transformer [13]
as our backbone. In the final stage, a diffusion model (DM)
is trained using a driving frame and latent flow sequence
extracted from source video produced from the trained flow
predictor. From the driving frame and the generated frame,
the DM aims to learn temporally coherent latent flow se-
quences by 3D convolutions and thereby produces a final
deepfake video. The latent feature space treats the spatial
and temporal information, in a simple and low-dimensional
latent flow space which is only responsible for the motion
dynamics. Hence, the diffusion generation process remains
computationally efficient which is very important, as most
of the Video-diffusion models are very computationally ex-
pensive. Our contributions are summarized as follows:
• We propose a novel latent flow diffusion for deepfake

generation (LFD2G) by employing a temporally coher-
ent flow sequence in the latent space, which is based on
the given source video. To the best of our knowledge, this
is the first work to apply latent flow diffusion models to
generate deepfake generation.

• A novel three-stage learning strategy to disentangle the
generation of the spatial context of the target image and
temporal dynamics of the source video, by training a flow
predictor, dual-transformer encoding block and a target
image-guided 3D diffusion model.

• We conduct extensive experiments on multiple scenar-
ios and ground truth references, where proposed LFD2G
consistently outperforms previous state-of-the-art meth-
ods both in terms of qualitative and quantitative analysis.

2. Related Work
We proceed to list the recent works in the literature on dif-
fusion and deep fake generation.

2.1. Diffusion Models for Image Generation

Diffusion Models(DMs)[17] have recently taken centre
stage in Generative AI. These models have had immense
success in generating images[11][33][49]. Diffusion mod-
els (DM) have a 2D UNet backbone[34], and have been
experimentally proven to be better, in most cases, than
GANs[15]. Ideas like latent diffusion[33] where DMs are
applied within the latent space of pre-trained autoencoders
have been proposed, which further demonstrates the versa-
tility of DM in generating high-quality images.

2.2. Diffusion models for Video Generation

Diffusion models have also found a strong footing in the
video generation[3][4], by using 3D UNet[6] backbone.
Specifically, the model LFDM[29] is different from most
other models, instead applies diffusion to generate latent
flow sequences for conditional image-to-video generation.

Conditional video generation[29] represents a signifi-
cant advancement in the field of computer vision, aim-
ing to synthesize videos guided by user-provided signals.
This approach encompasses various methodologies tai-
lored to different input modalities, including text-to-video
(T2V)[21], video-to-video (V2V)[47], and image-to-video
(I2V) generation[48][4]. Within the realm of I2V genera-
tion, which closely aligns with video prediction from single
images, there exists a distinction between stochastic meth-
ods utilizing only a given image as input and conditional
generation techniques, which incorporate additional condi-
tions alongside the base image.

Traditionally, conditional image-to-video (cI2V)
generation[29] has relied on diverse strategies to achieve
realistic and diverse video synthesis. Noteworthy among
these approaches are methods such as pose-guided syn-
thesis, interactive models enabling user-guided motion
specification, and techniques leveraging optical flow
estimation for motion synthesis. However, despite their
efficacy, these methods often face challenges in generating
videos with complex motions or fine-grained details.

2.3. Vision Transformers

Transformers[46] have recently made significant strides in
revolutionizing the field of computer vision, and dominated
traditional convolutional neural networks(CNNs)[30].
While CNNs have been remarkably successful in image
classification, object detection[14], and segmentation[40]
tasks, they struggle with capturing long-range dependen-
cies and contextual information across images effectively.
Transformers address this limitation by employing self-
attention mechanisms, enabling them to capture global
context information efficiently. Vision transformers
(ViTs)[13], introduced by Dosovitskiy et al. in the land-
mark paper ”An Image is Worth 16x16 Words,” break down
images into fixed-size patches, which are then flattened
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and fed into a transformer encoder for processing. This
approach allows ViTs[13] to achieve competitive perfor-
mance on various vision tasks, such as image classification,
object detection, and semantic segmentation, often sur-
passing the performance of traditional CNN architectures
on challenging datasets. There are other state-of-the-art
models like StableVITON[22], which incorporate the use
of transformers for computer vision tasks. The success
of transformers in computer vision underscores their
versatility and potential for advancing the state-of-the-art
in visual recognition tasks.

2.4. Deepfakes Detection

Deepfakes refer to multimedia content in which faces have
been digitally altered or synthetically created using deep
neural networks. Despite significant progress based on
traditional and advanced computer vision, artificial intel-
ligence, and physics, there is still a huge arms race surg-
ing up between attackers/offenders/adversaries ( i.e., Deep-
Fake generation[1, 32] methods) and defenders (i.e., Deep-
Fake detection[1, 16, 44] methods)[28]. Some of the popu-
lar deepfake detection models which we have seen are Se-
lim (DFDC Winner [12]), SSAT[10], Cross Efficient ViT
(CFNet)[7] which can detect deepfakes with upto 60% ac-
curacy. Therefore, there is a lot of opening in this field for
vision scientists to participate.

2.5. Deepfake Generation

Some of the most widely used Deepfake datasets are
Celeb-DF[27] and the FaceForensics++[35] dataset. FF++
is a forensics dataset consisting of 1000 original video
sequences that have been manipulated with three au-
tomated face manipulation methods[2]: Deepfakes[5],
Face2Face[43] and NeuralTextures[42]. The authors of
this paper also provide 1000 Deepfakes models to gen-
erate and augment new data. With deepfake generation
being a very pursued problem recently, we find a lot
of active research in this field, one of which is Deep-
fake generation using GANS[36][39][41]. While GANs
have been state-of-the-art (SoTA) for generating deepfakes
for a long, there are other methods that have provided
good, if not better results. The FaceShifter model[25][9]
trains attention layers to adaptively integrate attributes of
the face. The FaceSwap[24][9] model using Generative
Autoencoders[31][50]. Since GANs often struggle to pre-
serve subtle yet crucial identity details of source faces, there
has been a shift towards exploring alternative architectures
for deepfake generation. What has become the more inter-
esting domain to explore is generating Deepfakes through
Diffusion[5]. With diffusion having higher image fidelity
than GANs and other AutoEncoder Models, it is natural that
the preference towards Diffusion has increased for generat-
ing face images, and therefore deepfakes using them.

3. Proposed method
In this section, we aim to describe the preliminaries of our
proposed model, an overview of the method and details of
the proposed LFD2G.

3.1. Preliminaries

Let n ∼ N (0, I) be a Gaussian noise volume with the
shape of K × H × W × C, where K H , W , and C are
length, height, width, and channel number, respectively.
Given one starting image x0 (tatget image) and condition y
(source video in our scenario), let xK

0 = {x0, x1, . . . , xK}
be the real video of condition y, the goal of conditional
image-to-video generation (cI2V) [29] is to learn a mapping
that converts the noise volume n to a synthesized video,
x̂K
1 = {x̂1, . . . , x̂K}, so that the conditional distribution of

x̂K
1 given x0 and y is identical to the conditional distribu-

tion of xK
1 given x0 and y, i.e., p(x̂K

1 |x0, y) = p(xK
1 |x0, y).

This would also imply that conditional distribution of x̂K
0

given y is identical to the conditional distribution of xK
0

given y ,i.e., p(x̂K
0 |y) = p(xK

0 |y).

3.2. Method Overview

Given a source video of a person xK
0 = {x0, x1, . . . , xK},

and a target image y0 of another person we aim to gener-
ate a target person video imitating the source video, ŷK

0 =
{ŷ0, ŷ1, . . . , ŷK}. This is the basic formulation of deepfake
video generation.

Here xK
0 ∈ RK×H×W×C and x0 ∈ RH×W×C , where

K, H , W , C are the number of frames, height, width and
number of channels respectively. Given ŷ0 we would be
able to produce ŷ0 using cI2V formulation [29] . Note that
y0 ̸= ŷ0, we will first need to find ŷ0. For this, we can use
any deep fake image generation model (vision transformer
[13] for our scenario)

The LFD2G model is based on denoising diffusion prob-
abilistic models (DDPM)[17]. In DDPM given a sample
from the data distribution S0 ∼ Q(S0), in the forward pro-
cess a Markov chain S1, ..., ST is produced by adding Gaus-
sian noise to S0 maintaining a variance schedule β1, ..., βT ,
where variances of βt are constant. If βt value is small, the
posterior Q(St+1|St) can be estimated by diagonal Gaus-
sian. Further, if T of the chain is large, ST will well estimate
the standard Gaussian N (0, I). Hence the true posterior of
Q(St+1|St) can be estimated.

In DDPM reverse process, samples S0 ∼ Pθ(S0)
are produced by starting with Gaussian noise ST ∼
N (0, I) and gradually reducing noise in a Markov chain
of ST−1, ST−2, ..., S0 with learnt Pθ(ST−1|ST ). To get
Pθ(ST−1|ST ), Gaussian noise ϵ is added to S0 to gener-
ate samples ST ∼ Q(ST |S0), then a model ϵθ is trained to
predict ϵ using mean-squared error loss. A time step T is
uniformly sampled from the time stamp 1, ..., T . For de-
noising the model ϵθ is done by time-conditioned U-Net
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Figure 1. Architecture of the proposed LFD2G.

with residual blocks and self-attention layers. The time step
T is specified to ϵθ via the sinusoidal position embedding.
To conditionally generate, it can be learned simply via a y-
conditioned model.

For our scenario, the condition is the source video and
the input data is the target deepfake image to generate the
target deepfake video.

3.3. The proposed LFD2G details

An overview of LFD2G is presented in Fig. 1. Our pipeline
consists of three stages. In the first stage, a flow predic-
tor F predicts the latent flow f for the final conditioned
video (ŷK

0 ) by taking the source video as input (xK
0 ). The

flow considers both the horizontal and vertical movement
between frames. The model also used backward flow by a
differentiable bilinear sampling operation [20]. Similar to
[29, 38, 47], flow predictor F also estimates a latent oc-
clusion map m. This is needed as input to the conditional
image-to-video generator.

The second stage uses a dual Vision transformer [13]
encoding block to find ŷ0 , i.e., the target deepfake im-
age. We chose this architecture because of the transformer’s
ability to capture long-range dependencies with the input
data. This is particularly crucial in facial manipulation tasks
where subtle spatial relationships between facial features
play a significant role. The query, key, and value to the

first Multi-head attention block are the target image (y0).
The query to the second Multi-head Attention block is the
output of the first Multi-head Attention block (y′0) and the
key and value are the first frame of the source video (x0).
The output of the second Multi-head Attention block is ŷ0
which is the Transformed image in Fig. 1. It is the starting
frame of the deepfake target video which is the last stage of
the pipeline.

The last/ third stage of the pipeline is the conditional
image-to-video generation[29]. Here the condition is the
source video (xK

0 ) (the latent flow captured) and the driv-
ing image is the output of our Attention layers (ŷ0). The
3D-UNet-based DM is trained to achieve a temporally co-
herent latent flow sequence conditioned on the driving im-
age. A 3D Gaussian noise by the DDPM forward process
is employed. The encoder represents the starting frame as a
latent map and the target frame encodes the condition as im-
age embedding. The Denoising model is trained to predict
the added noise based on a conditional 3D U-Net[6] with
the diffusion loss.

As we can see from Fig. 1, both the optical flow and the
occlusion map are passed as input to the DDPM forward
process, along with the Driving frame as the transformed
image. During the DDPM reverse process, an encoding
of the transformed image is passed to the denoising model.
Conditioned on the transformed image, the denoising model
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(a) FaceSwap

(b) Face2Face

(c) NeuralTextures

Figure 2. The 1st row of each group represents the baseline results for LFDM in zero-shot and the 2nd row represents our trained model’s
results. The columns from left to right represent the Target Image (to be morphed on the video), Sample source video, Warped Output
Video, Model Output Video, and corresponding Deepfake example from FF++.

is trained to predict the deepfake video.
Each iteration of training involves the model processing

both the real video and the target image, with the attention
mechanism being trained every iteration undergoing opti-
misation using the Adam optimizer[23], with the goal of re-
ducing the reconstruction loss between the generated deep-

fake video and the original deepfake video from the dataset.

4. Experimental results

In this section we will describe the experimental protocol
and analysis we employed to validate our proposed model.
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(a) FaceSwap

(b) Face2Face

(c) NeuralTextures

Figure 3. These figures from left to right show subsequent frames of our generated videos with the 3 techniques: FaceSwap, Face2Face
and NeuralTextures.

The analysis includes both the quantitative analysis w.r.t
deepfake detection algorithms and also w.r.t FVD and FID.

4.1. Datasets and Metrics

• Pretraining Dataset: The diffusion model being used
has been first pre-trained on MUG dataset [26] which

consists of 52 videos of shape 40 ∗ 128 ∗ 128 ∗ 3.
• Dataset: Our model is tested for generation capabili-

ties on Deepfake datasets such as the FaceForensics++
(FF++) Dataset[35], containing manipulation techniques
such FaceSwap[25], the Neural Textures[42] and the
Face2Face[43]. Each of these consists of 1000. By us-



ing these three variety of manipulation techniques encom-
passing a wide range of facial manipulation scenarios,
they provide a robust evaluation platform for our model.
The fake videos from FF++ were used as ground truth for
the generation of our target video, original videos from
FF++ were used as the source video, and a frame from
each corresponding fake video was treated as the target
image.

• Data Preprocessing. All the videos from FF++ are re-
sized to 128128 resolution and clipped to 40 frames.

• Evaluation metrics: We compute the Frechet Video Dis-
tance (FVD) to measure the dissimilarity between the dis-
tributions of feature representations extracted from real
and synthesized videos. It assesses the visual quality,
temporal coherence, and sample diversity of generated
videos by comparing their feature distributions.. We also
used Frechet Inception Distance (FID) to evaluate the
quality of generated images by computing the distance
between feature distributions of real and generated im-
ages. It leverages the Inception network to extract feature
representations and provides a metric of image quality.,
FVD first employs a video classification network I3D pre-
trained on the Kinetics-400 dataset to obtain feature rep-
resentation of real and synthesized videos. Next, it calcu-
lates the Frechet distance between the distributions of real
and synthesized video features. To gauge how well a gen-
erated video corresponds to the condition i.e. the subject
relevance, similar to the conditional FID, subject condi-
tional FVD (sFVD) is employed. The sFVD compares
the distance between real and synthesized video feature
distributions under the same condition or the same sub-
ject.
As our model aims to generate deepfakes, we con-
sider several deep-fake detection techniques to check
the generation quality. We did not fine-tune the model.
Rather we just used it for testing. The deep fake detec-
tion models considered are Selim (DFDC Winner [12]),
SSAT[10], Cross Efficient ViT[7]. All models are trained
on DFDC[12] and FF++[35].

4.2. Implementation details

We build our model based on a comprehensive implemen-
tation of the Latent Flow Diffusion Model[29]. We used a
latent diffusion[33] model because of its ability to manipu-
late the frames in a more controlled way by only modifying
the latent code. We employed the pre-trained weight of the
Latent Flow Diffusion Model to train our model.

Our model includes three trainable modules: a Flow
Predictor, a Denoising model from DDPM and two Trans-
former Encoding layers. The flow predictor F is imple-
mented with [38], which can estimate latent flow and occlu-
sion map based on detected objects. The DDPM model is
implemented using reference code from [17, 29] which has

a backbone of 3D-Unet [6]. The Transformer Encoding lay-
ers have been implemented using a vision transformer [13].
Any deepfake-image generation technique can be used here,
but we chose a transformer to show that the pipeline works.

Training a 3D diffusion model from scratch would re-
quire a lot of computing power, so we used a pre-trained
diffusion model (weights from LFDM [29]) and just trained
the transformer encoding layers. We used a learning rate of
10−4 with α = 0.9, β1 = 0.9 and β2 = 0.99. We had to
use a multi-GPU approach since the transformers use a lot
of VRAM. This involved loading the first transformer into
one GPU and the second transformer into another GPU. We
trained our model for 5 epochs and noticed that we had al-
most reached convergence. This is because transformers are
very good at remembering things. Trying to give attention
to a full video would take too much VRAM and much more
time for training.

Finally, the inference pipeline is the same as the train-
ing pipeline. The only difference is that all the weights are
frozen. The final outputs have been saved as videos, on
which our analysis has been done.

4.3. Result Analysis

The output of our model, the ground truth from FF++
dataset (Fake video generated using deepfake technique)
and the base LFDM model with zero-shot are in Fig. 2.
The output of our model, for two different scenarios with
different groudtruth conditions, are in Fig. 3. It can be con-
cluded from the visual analysis that our model has a very
close output to the ground truth video and the best output
was generated for Face2face. Additionally, the quality of
the proposed model is much better than the output of the
base model (LFDM [29]) with zero-shot.

Table 1. The quantitative analysis w.r.t deep fake detection, all
results are in accuracy %

Selim CFNet SSAT

Face to face
Ground truth 61.10 61.91 64.22
LFDM 65.50 63.45 69.12
Proposed 61.23 61.74 64.90

Neural texture
Ground truth 63.11 63.41 69.73
LFDM 75.00 74.50 77.64
Proposed 63.30 63.71 69.90

Face swap
Ground truth 65.01 66.45 72.81
LFDM 75.00 74.50 77.64
Proposed 65.30 66.71 72.90

Now we proceed for quantitative analysis w.r.t to deep
fake detection techniques considering Selim (DFDC Win-
ner [12]), SSAT[10], Cross Efficient ViT (CFNet)[7] (See
Table 1). It can be concluded that our model has performed
much better (lower score of the deep fake detection model



implies better performance of our generation model) than
the baseline and is quite near to the ground truth.

Table 2. The quantitative analysis w.r.t FVD, sFVD and FID

FVD FID sFVD

Face to face LFDM 128.10 73.45 307.80
Proposed 75.23 25.11 101.00

Neural texture LFDM 131.20 74.20 319.10
Proposed 81.11 33.41 108.12

Face swap LFDM 172.00 75.50 311.00
Proposed 85.60 36.11 110.01

Table 2 provides a detailed quantitative analysis of our
proposed deepfake generation model in terms of Frechet
Video Distance (FVD), subject conditional FVD (sFVD),
and Frechet Inception Distance (FID). The FID, sFVD and
FVD of the proposed model are quite low compared to the
baseline (the lower the value of sFVD, FID and FVD, the
better the performance of the generation model). For calcu-
lating sFVD, FID and FVD the corresponding fake image
from FF++ was considered as reference video or ground
truth. FVD proves proper visual quality was attended by
our generative model. On the other side, low FID concludes
with the overall image quality of the model. Moreover, low
sFVD proves the subject condition of the generated image.
Hence this analysis proves the superior performance and
effectiveness of our model for deepfake generation. From
all the qualitative and quantitative analysis it can also be
concluded that while Faceforencics++ dataset our proposed
model produces very good videos with on par performance
as the Ground Truth.

4.4. Model Inference Analysis

Some analyses on model inference such as FLOPs, MACs
and Params are in Table 3.

Table 3. Computational Complexity Comparison

Model FLOPs MACs Params
Flow Diffusion 1.1992 T 598.548 G 42.7312 M
Attention 9.6652 G 4.8321 G 1.6107 B

Table 3 provides a comprehensive comparison of the
computational complexity between the Flow Diffusion
and Attention components of our proposed model. The
Flow Diffusion component exhibits a significantly lower
computational load compared to the Attention compo-
nent. Specifically, the Flow Diffusion component requires
1.1992 TFLOPS (Floating Point Operations per Second)
and 598.548 GMACs (Giga Multiply-Accumulates), with
a parameter count of 42.7312 million. In contrast, the At-
tention component demands substantially higher computa-
tional resources, with 9.6652 GFLOPS and 4.8321 GMACs,

along with a parameter count of 1.6107 billion. These find-
ings highlight the disparity in computational requirements
between the two components, providing insights into the re-
source allocation and optimization strategies for our model
implementation.

5. Conclusion

In this paper, we propose a novel deepfake generation tech-
nique employing latent flow diffusion. The proposed model
LFD2G, generates fake or target videos by warping given
target images with flow sequences generated in the latent
space based on source video. We conducted comprehen-
sive experiments from which we can infer that the proposed
model achieves state-of-the-art performance under diverse
conditions for fake video generation. The model can gener-
ate fake videos of faces concentrating on the facial region.

There are still challenges with artifacts such as motions
and temporal detailing that we will address in our future
work. Further, the future scope will be to extend the gener-
ation for whole body structure.
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