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Abstract

Face image synthesis has shown remarkable progress in re-
cent years. However, the effect that the demographics of the
data used to train synthesizers has on the generation of new
face images remains an open question. This paper investi-
gates the effects of the training set demographics in the face
image synthesis task. To this end, we propose a strategy that
allows synthesizing face images for specific groups of peo-
ple with a high visual quality. The strategy uses an unsuper-
vised learning approach to discover groups of people in the
training set based on Bayesian inference via a probabilistic
mixture model. If labels are available to define the groups,
our strategy can also exploit such information in lieu of un-
supervised learning. Once the groups are defined, our strat-
egy trains a Generative Adversarial Network on each group
to generate new face images with specific characteristics.
Our results show remarkable performance in terms of im-
age quality compared to several state-of-the-art baselines.
More importantly, our strategy allows synthesizing face im-
ages with reduced demographic biases.

1. Introduction
Current state-of-the-art (SOTA) synthesis methods can gen-
erate high-quality face images with fine details [16, 23]. Al-
though some of these SOTA methods may allow for some
control over the synthesis process [15], e.g., the generation
of images depicting specific gestures [3, 8] or specific traits
[14, 19], the influence of the training set demographics on
the synthesized face images is not widely studied. This as-
pect is important when there is a need to synthesize face im-
ages to train models that rely on them, e.g., those that aim at
distinguishing real images from fake ones. Specifically, the
set of synthesized face images should be balanced in terms
of its demographics to avoid introducing biases while train-
ing these models. This calls for novel methods that can syn-

thesize face images in an unbiased manner while preserving
the unique facial features of different groups of people.

In this paper, we improve our face synthesis strategy
to reduce biases by accounting for the features of differ-
ent groups of people . Our improved strategy relies on ba-
sic human traits to generate face images; i.e., age, gender,
and race. These traits are used to define groups of people
and subsequently create training subsets that can be used to
train a synthesizer to generate new face images. Hence, our
strategy does not focus on face trait editing via pose, geom-
etry, or proportion, e.g., via conditional models [9, 14]. In
our strategy, the groups of people can be discovered in an
unsupervised manner or defined manually via ground truth
labels. Our contributions are summarized as follows:

• We highlight how a synthesizer can be easily biased to-
wards generating face images depicting a certain group
of people if the training set is unbalanced.

• We synthesize high-quality face images depicting a wide
range of demographics and age groups based on two
widely used datasets: Flick Faces High Quality (FFHQ)
and Celebrities A High Quality (CELEBA-HQ).

• We show that by appropriately defining groups of people
in the training set, strong synthesis performance can be
achieved even if the training samples are limited.

Our improved strategy provides the basis for fairer face
image synthesis aiming at preserving the unique facial fea-
tures of different groups of people. This ultimately in-
creases trust in the face synthesis task and provides unbi-
ased data to train other models that rely on the use of syn-
thetic face images.

2. Related Work

Owing to the wide body of methods that are proposed to
synthesize face images, we focus on those based on Genera-
tive Adversarial Network (GAN), Variational Auto Encoder
(VAE), and Transformers.
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Figure 1. Proposed strategy when unsupervised learning is used to discover the groups of people. First, the training dataset comprising N
images is encoded using IR-SE-50 into 512 dimensional embeddings. The dimensions of this feature space are then reduced via T-SNE. A
total of K groups are discovered by using a probabilistic mixture model. A synthesizer is then trained on each discovered group.

1. Generative Adversarial Networks: much of the recent
progress on face image synthesis is attributed to GANs. In
[8], Gauthier et al. propose to condition the GAN’s gener-
ation ability by creating an intermediate space that accepts
noise data along with an embedding to produce an image. A
two-stream GAN is proposed by Liu et al. [17], in which the
weights of the first (last) layers of the discriminator (gener-
ator) decode (encode) high-level semantics (respectively).
Such a weight-sharing constraint allows synthesizing pairs
of images sharing the same level of abstraction yet having
a different level of realization. Radford et al. [20] pro-
pose a deep CNN within a GAN framework that requires a
specific formulation because CNNs are supervised models
while GANs are unsupervised ones. The authors found that
neither fully connected or pooling layers, commonly used
in CNNs, are needed. Yin et al. [25] propose to traverse
the latent space using a semantic definition. Their model
can generate face images with specific characteristics, e.g.,
smiling or wearing glasses, using supervised learning. Se-
mantics are also exploited in [5] for face image synthesis.
In [12], Karras et al. use a coarse-to-fine GAN trained by
adding layers to the generator and discriminator as the train-
ing progresses in order to generate fine details. Similarly,
Struski et al. [26] constrain the spatial resolution to abstract
local regions more accurately during the synthesis. Kar-
ras et al. [13] further propose to add noise and information
from the latent space into the layers’ blocks to improve syn-
thesis performance.

2. Variational Autoencoders: Razavi et al. [21] pro-
pose an updated version of the VQ-based VAE, which relies
on two deep feed-forward CNNs and requires two stages:
First, a hierarchical VQ-based VAE is trained to encode im-
ages into a discrete latent space. Then, a pixel-level CNN is
trained to condition the categorical distributions. Rewon et
al. [4] show that the VAE should be as deep as the data di-

mensions to increase statistical dependence. Although their
approach seems very computationally expensive, using one
small CNN structure requires fewer parameters than other
VAE methods. Vahdat et al. [23] propose a bidirectional
encoder named Nouveau VAE, which comprises residual
networks and increases expressiveness in the generated face
images by partitioning the latent space.

3. Transformers: Esser et al. [6] propose a transformer
GAN that uses the transformer’s representation to quantify
the vectors in the latent space generated by the VQ-based
GAN [21] to learn to generate context-rich visual parts.
Along the same line, Jiang et al. [11] propose a trans-
former GAN free of convolutions. Their method addresses
two fundamental issues of the CNNs: their local receptive
field and incapability to process long dependencies unless
having several layers.

Despite advances in the face image synthesis task, only
a very limited number of methods allow for some level of
semantic control in the demographic generation process [5,
12, 25]. Although some methods, e.g. [14], can transfer
trait attributes from the most representative groups to the
synthesized face images, the synthesized face images are
still biased toward these most representative groups.

3. Proposed Strategy

Figure 1 depicts the block diagram of our strategy when un-
supervised learning is used to discover the groups of peo-
ple present in the training dataset. After discovering several
groups of people, a synthesizer is then trained on each group
to generate new face images representing the corresponding
group. We first explain how to define the groups by using
unsupervised learning or manually based on ground truth
labels, if available. Finally, we explain how new face im-
ages are generated for each defined group by using a face
synthesizer.
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3.1. Generation of Groups of People

The groups of people can be defined based on unsupervised
learning or, if available, based on ground truth labels.
Unsupervised learning: We first generate a
d−dimensional feature space for the training dataset
by using IR-SE-50 [7, 24], which is a pre-trained model
for face recognition purposes. Specifically, we use the last
fully connected layer of IR-SE-50 as the feature encoder.
We then project the d− dimensional feature space into a
e−dimensional space, i.e., Rd → Re, where e ≪ d. After
this projexction, we create a matrix X = {x1, x2, . . . xN}
containing N low-dimensional samples. Finally, we train a
mixture model using Bayesian inference, i.e., a Bayesian
Mixture Model (BMM), with the low-dimensional data.
The matrix X = {x1, x2, . . . xN} can be considered as a
collection of i.i.d samples from an observable distribution.
Let us define a mixture model as follows:

p(X|π, µ,Σ) =
K∑

k=1

πkN (X|µ,Σ), (1)

where θ = {π, µ,Σ} is the parameter set comprising the
model weights, means, and covariances, respectively, for K
components. To estimate the parameters, we employ vari-
ational inference. This technique requires approximating
the observed samples in X in terms of their latent variables
Z = {z1, z2, . . . zN}. By specifying the joint distribution
p(X,Z), one can estimate p(Z|X) and model the evidence
p(X). The conditional distribution can then be written as:

p(X|Z, µ,Λ) =
N∏

n=1

K∏
k=1

N (xn|µ,Λ−1)znk , (2)

where Σ = Λ−1 and znk is the nth latent variable for the
kth component. We then estimate the variational distribu-
tion q that factorizes the latent variables and the parameters:

q(Z, π, µ,Λ) = q(Z) q(π, µ,Λ). (3)

The terms on the right side of the equality in Eq. 3 can be
calculated as a simplified version of the Gaussian-Wishart
distribution, denoted by W , whose scale matrix is given by
W [1]. We then have:

q∗ (µk,Λk) = N (µk|mk, (βkΛ)
−1W(Λk|Wk, νk), (4)

whose normalized estimate is given by:

q∗(Z) =

N∏
n=1

K∏
k=1

rznk

nk (5)

where βk = β0 + Nk; mk = 1
βk

(β0m0 +Nkx̄k); νk =
ν0 +Nk; and

W−1
k = W−1

0 +NkSk+
β0Nk

β0 +Nk
(x̄k −m0) (x̄k −m0)

⊤
,

(6)
with values given by:

Nk =

N∑
n=1

rnk, x̄k =
1

Nk

N∑
n=1

rnkxn, (7)

Sk =
1

Nk

N∑
n=1

rnk(xn − x̄k)(xn − x̄k)
⊤. (8)

These update equations are analogous to the M-step equa-
tions used by the EM algorithm for the maximum likelihood
solution of the mixture of Gaussians. Because a key objec-
tive of variational inference is to maximize the probability
of the observed data, X , we use the component that pro-
vides the maximum posterior to define the K main groups
of people:

k : argmax
k

q(Z, π, µ,Λ). (9)

Ground truth labels: The groups of people can be manu-
ally defined based on ground truth labels, if available. To
this end, we rely on labels for age, race, and gender, to
manually define similar groups to those discovered by unsu-
pervised learning. As detailed in our experiments (Section
4), defining these labels manually may be challenging due
to the subjectivity of these human traits.

3.2. Face Synthesizer

After the groups of people are defined, either by using un-
supervised learning or by relying on ground truth labels, the
final step is to train the synthesizer on each group to gener-
ate new face images for the corresponding group. We use
as the backbone synthesizer the model proposed by Karras
et al. [13] after tailoring it by reducing the input size from
a 1024 × 1024 resolution to a 256 × 256 resolution. This
reduction in resolution is coupled with modifications at the
regularization coefficient. Because the original scale is four
times the desired scale, we scale the coefficients of the orig-
inal model by a factor of 4 × 4 = 16. Another important
hyperparameter that is tailored is the number of training it-
erations. This number is set to 1000 using batches of 32
samples. Experimentally, we observe that the model pro-
duces acceptable results from iteration 500 upwards. It is
important to mention that more recent/advanced synthesiz-
ers, e.g., diffusion models, can be used at this stage. Thus
these models can be used with the proposed framework.
However, we use this particular GAN-based synthesizer to
conduct several experiments – as shown in the next section –
in a reasonable amount of time, considering that some syn-
thesizers require significant computing capacities [10, 22].
Hence, our strategy is synthesizer-agnostic.
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Figure 2. 2D embeddings after projecting the features computed by IR-SE-50 for the FFHQ dataset via (left to right) T-SNE, IsoMap,
PCA, and LLE.

4. Experiments

We use the FFHQ 1 and CELEBA-HQ 2 datasets [12, 18] to
train all synthesizers evaluated, including the one used by
our strategy. In the following, we show experiments to dis-
cuss 1) the embeddings found by the feature encoder after
projection to a low-dimensional space, 2) the groups dis-
covered after training the BMM, 3) the images synthesized
for the groups discovered by the BMM, 4) the images syn-
thesized for the groups manually defined based on ground
truth labels, and 5) the complexity of our strategy.

Figure 3. 2D feature space generated by IR-SE-50+T-SNE for the
FFHQ dataset.

1github.com/NVlabs/ffhq-dataset
2github.com/tkarras/progressive_growing_of_gans

Figure 4. Dominant groups identified for the FFHQ dataset after
training the BMM.

4.1. Embeddings

Figure 2 shows the resulting 2D embeddings after using
different dimensionality reduction methods on the features
computed by IR-SE-50. We can visually confirm that
T-SNE is capable of generating the best-defined groups.
Specifically, samples associated with the most dissimilar
face images, e.g., the elderly and young, tend to be far
from those associated with very similar faces. Conversely,
IsoMaps fails to cluster samples with very similar features,
creating effectively sparse groups. PCA generates only one
well-defined group comprising samples with very similar
features. Finally, all of the LLE embeddings produce very
sparse groups and thus no visual similarity can be estab-
lished.

Figure 3 shows the IR-SE-50+T-SNE embeddings in
more detail. We can see that images depicting males and
females are mostly situated on opposite sides of the 2D fea-
ture space. We can also observe important group forma-
tions. For instance, in the upper left region, we observe
people of Asian background. While on the lower left re-
gion, we observe mostly Caucasian males. Hence, IR-SE-
50+T-SNE can generate a feature space that captures the key
facial characteristics of the demographic groups present in
a training dataset.
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(a) Caucasian females [4 left samples] and Non-Caucasian females [4 right samples].

(b) Young Males [4 left samples] Old Males [4 right samples]

Figure 5. smallSample face images synthesized by the proposed strategy using the CELEBA-HQ dataset as the training set. Each row
displays samples of each of the groups discovered by the BMM.

(a) Asian males (all ages) [4 left samples], Young Latin and Caucasian females [4 right samples].

(b) Young Latin and Caucasian females [4 left samples]. Young Caucasian Males [4 right samples]

(c) Young Caucasian/Latin children [4 left samples], and Young Asian females [4 right samples].

(d) Adult Latin males [4 left samples], and Old Caucasian males [4 right samples].

Figure 6. Sample face images synthesized by the proposed strategy using the FFHQ dataset as the training set. Each row displays samples
of the groups discovered by the BMM.

4.2. Groups discovered by the BMM

We quantify the number of samples assigned to each group
discovered by the BMM. To this end, we visually inspect
the main facial characteristics of each discovered group to
assign them a label. The assigned labels and size of each
discovered group are depicted in Fig. 4. Note that the Chil-
dren group is the largest group discovered. However, we

observe that children are also part of the Asian males group.
This ambiguity is caused because IR-SE-50 produces very
similar features for these two groups and hence the proba-
bilistic model cannot discover two distinct groups for Chil-
dren and Asian males. We also observe this effect in cluster
boundaries, where it is difficult to correctly separate distinct
groups.
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Table 1. FID values of face images synthesized by the baseline and the proposed strategy using the FFHQ dataset for training.

Proposed strategy
Baseline[13] Asian Males Children Asian Females Latin and Caucasian Females Old Caucasian Males Young Caucasian Males Latin Males Old Caucasian Females

8.04 10.3697 6.3327 6.7907 6.6353 6.8685 6.3834 6.8685 8.2416
Results for the baseline are over all generated images as it is not trained on a per-group basis.

Table 2. FID values of face images synthesized by the baseline and the proposed strategy using the CELEBA-HQ dataset for training.

Proposed strategy
Baseline [13] Non-Caucasian Females Caucasian Females Males Old Males

7.79 7.8494 7.1865 8.07269 8.15650
Results for the baseline are over all generated images as it is not trained on a per-group basis.

Table 3. FID values for all face images generated by SOTA
methods and the proposed strategy when using the FFHQ and
CELEBA-HQ datasets for training.

Method FFHQ CELEBA-HQ

StyleGAN (baseline)[13] 8.04 7.79
VQ-VAE [21] 10.01 10.2

Ours 7.39 7.81

4.3. Synthesized images for groups discovered by
the BMM

The face images synthesized by the proposed strategy based
on the groups discovered by the BMM are compared against
those synthesized by the baseline in terms of the Frechet In-
ception Distances (FID). This metric is useful to measure
face image quality in terms of visual properties. FID val-
ues steadily increase as face images lose visual quality due
to noise and distortion. Hence, low FID values are desir-
able [2]. Table 1 and Table 2 tabulate, respectively, the
results for the face images synthesized after training the
strategy on each group discovered in the FFHQ dataset and
the CELEBA-HQ dataset. Notice that the proposed strategy
achieves remarkable results. It is important to mention that
the strategy achieves the lowest FID values for those groups
with the most samples. This confirms the importance of us-
ing a balanced training set to generate new high-quality face
images. From Table 1 and Table 2, one can also see that
except for two groups in each case, the proposed strategy
achieves better results than the baseline. Since the baseline
is not trained on a per-group basis, the reported results for
this baseline are for all generated images.

We visually inspect the synthesis results to corroborate
the performance per group of people. Figures 6 and 5
show sample synthetic face images generated for each of
the discovered groups. The dominant groups identified in
the FFHQ dataset are Asian males (all ages), Young Latin
and Caucasian females, Old Caucasian females, Young
Caucasian males, Young Caucasian and Latin children,
Young Asian females, Adult Latin males, and Old Caucasian
males. The dominant groups identified in the CELEBA-HQ

Figure 7. Label distribution for the FFHQ dataset.

dataset are Caucasian females, Non-Caucasian females,
Old males, and Males. One can see that the proposed strat-
egy can accurately generate face images for each group pre-
serving the group’s main facial features.

Table 3 tabulates FID values for all face images gen-
erated by two SOTA methods and our strategy using the
FFHQ and CELEBA-HQ datasets for training. We can see
that our strategy outperforms these SOTA methods when
using the FFHQ dataset for training and attains very com-
petitive performance when using the CELEBA-HQ dataset
for training.
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Table 4. FID values for all face images generated by the baseline and those generated by the proposed strategy on a per-group basis using
the FFHQ dataset for training.

Proposed strategy
Baseline [13] Caucasian Males (Ages 25:99) Caucasian Females (Ages 25:99) Latin Males (Ages 16:60) Latin Females (Ages 16:60)

8.04 5.9367 5.4280 6.9149 6.2536
Results for the baseline are overall generated images as it is not trained on a per-group basis.

Figure 8. 2D feature space generated by IR-SE-50+T-SNE for the labeled FFHQ dataset (best viewed in color). (Left) Samples by gender.
(Centre) Samples by race. (Right) Samples by age group.

(a) Latin females (all ages) [4 left samples]. Asian females [4 right samples]

(b) Caucasian females (ages 15 – 50) [4 left samples], and Children (ages 0 – 10) [4 right samples].

Figure 9. Sample synthesized images by the proposed strategy using the FFHQ dataset as the training set. Each row displays samples of
groups manually defined based on ground truth labels.

4.4. Synthesized images for manually defined
groups

We label the 70,000 samples of the FFHQ dataset. The la-
bels correspond to the age, race, and gender of the depicted
faces. Figure 7 shows the label distribution, from which we
can see that the FFHQ dataset comprises mainly face im-
ages of females between the ages of 16 and 40. It is worth
noting that the race label is hard to manually define due to
the inherent difficulty of determining someone’s race purely
based on their face image. For instance, Latin, African, and
Middle Eastern people share very similar facial characteris-

tics, making it very difficult to distinguish them. The label-
ing process for the race label resembles the process of de-
termining one person’s nationality. We then opt for creating
groups as large as possible whose members share the most
distinctive traits, specifically, skin complexion, hair color,
eyes, and overall face shape. We then define four main race
labels: Caucasian, Latin, African, and Asian.

Figure 8 shows the 2D feature space computed by T-
SNE for the labeled FFHQ dataset based on the feature vec-
tors given by IR-SE-50+. One can see that males and fe-
males (Fig. 8-left) can be easily separated into two clusters
that overlap in the mid-section of the 2D space. Interest-
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ingly, this overlapping section corresponds to children, thus
it is understandable why people may confuse the gender in
such cases. One can also see that the Asian and Caucasian
groups (Fig. 8-center) are effectively located on opposite
sides of the 2D space. We observe that overlapping areas
correspond to face images whose race cannot be easily in-
ferred. Regarding the age label (Fig. 8-right), we observe
that the embeddings also provide useful information: the
young and elderly are clearly separated in the 2D space.

Figure 10. FID values for the face images synthesized by the pro-
posed strategy for each group defined based on the race label as a
function of the age range.

Based on the manually-defined groups, we train the syn-
thesizer on each group and evaluate the synthesized face
images generated for each group. Figure 9 shows sample
face images synthesized for the groups with the most sam-
ples. i.e., the Female and Children groups. We can observe
that the synthesized images accurately resemble the char-
acteristics of the corresponding group of people when the
demographics are taken into account for training. The qual-
ity of the synthesized images is particularly high in cases
where the number of training samples is large. This em-
phasizes the need to have enough samples from all groups
to generate new images in an unbiased manner. For exam-
ple, we observe that the African males and the Asian males
groups have significantly fewer training samples than the
Caucasian males group. Thus the baseline, which is trained
on all training images, rarely generates new faces for these
two groups.

Figure 10 shows FID values of the face images synthe-
sized by our strategy when trained on the four groups de-
fined based on the race label for several age ranges. As ex-
pected, as the age range is widened, the FID values decrease
and thus the synthesizer generates less distorted face images
because more training samples are available. We observe
that for some groups, the synthesizer requires fewer train-
ing samples to generate high-quality face images. Specifi-
cally, for the Caucasian females and Latin females groups,

nearly the same FID value is achieved for the 10:42 age
range even though the former group has nearly 50% more
training samples than the latter. Nevertheless, we observe
that, in general, more training samples improve the synthe-
sis process. For example, the face images generated for the
African females group, which is the group with the smallest
number of training samples, tend to have the lowest quality.

The last experiment trains the proposed strategy after
varying the number of training samples for specific groups.
Table 4 tabulates the results for two well-populated (Cau-
casian Males and Caucasian Females older than 25 years)
and two fairly-populated (Latin Males and Latin Females
older than 25 years) groups. We observe that the strategy
outperforms the baseline for these four groups, particularly
for the first two groups. We can then argue that 1) defin-
ing the groups of people appropriately helps to improve the
synthesis performance. And 2) strong performance can be
achieved even if there are not many training samples for a
group but the group is defined based on relevant and ade-
quate labels.

5. Conclusions
This paper presented a strategy to generate face images for
different groups of people by accounting for the similarities
of the training samples, in terms of basic human traits. The
paper also showed the effects of the under-representation
of groups of people in the training set on the face synthe-
sis task. Based on extensive experiments, we showed that
some groups of people may require more training samples
than others for a synthesizer to achieve the same quality in
the synthesized face images. These results reveal that re-
ducing biases in the face image synthesis process is more
elaborate than just balancing the training set. Finally, our
results showed that the proposed strategy can attain strong
performance in terms of image quality compared to SOTA
methods. As part of our future work, we will continue
improving our strategy to synthesize high-quality face im-
ages for highly under-represented groups in the most com-
mon training datasets, e.g., African males, by inspecting
closely the latent space of the available training samples.
We will also investigate more closely the relation between
number of training samples available for each group of peo-
ple and the quality of the corresponding synthesized face
images.
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