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Abstract

Deepfake techniques generate highly realistic data, mak-
ing it challenging for humans to discern between actual and
artificially generated images. Recent advancements in deep
learning-based deepfake detection methods, particularly
with diffusion models, have shown remarkable progress.
However, there is a growing demand for real-world appli-
cations to detect unseen individuals, deepfake techniques,
and scenarios. To address this limitation, we propose a
Prototype-based Unified Framework for Deepfake Detec-
tion (PUDD). PUDD offers a detection system based on
similarity, comparing input data against known prototypes
for video classification and identifying potential deepfakes
or previously unseen classes by analyzing drops in similar-
ity. Our extensive experiments reveal three key findings: (1)
PUDD achieves an accuracy of 95.1% on Celeb-DF, out-
performing state-of-the-art deepfake detection methods; (2)
PUDD leverages image classification as the upstream task
during training, demonstrating promising performance in
both image classification and deepfake detection tasks dur-
ing inference; (3) PUDD requires only 2.7 seconds for re-
training on new data and emits 105 times less carbon com-
pared to the state-of-the-art model, making it significantly
more environmentally friendly.

1. Introduction
Deepfakes, created through digitally manipulated tech-

niques, convincingly replace one person’s likeness with an-
other’s [1, 16]. A recent study highlights the challenge in
distinguishing real from AI-generated images, with only
61% of participants accurately identifying them—falling
short of the expected 85% [18]. This difficulty stems from
advancements in deep learning models, notably autoen-
coders [26, 37], Generative Adversarial Networks (GANs)
[11], diffusion models [32] and neural style transfer (NST)
[13]. Manipulating audio, video, and image data poses seri-
ous consequences, including security vulnerabilities, safety
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concerns, ethical dilemmas, and erosion of public trust [28].
One famous example of a deepfake involved a video pur-
portedly showing the Ukrainian president urging soldiers to
surrender to Russia. The video circulated on social media
and appeared on a Ukrainian news website before being de-
bunked and removed [7]. Consequently, deepfake detection
has become a critical area of research, drawing increasing
attention from researchers.

In recent years, significant advancements in deep learn-
ing techniques have greatly improved their effectiveness in
detecting deepfakes, resulting in notable performance gains
[30]. Deepfake detection methods can be broadly catego-
rized into two aspects: artifact-specific [19] and undirected
approaches [21], depending on the data and deepfake tech-
niques involved. For instance, artifact-specific approaches
focus on detecting unnatural areas in deepfake human faces
by leveraging edges and optical flow. Chintha et al. em-
ployed a combination dataset comprising visual frames,
edge maps, and dense optical flow maps as inputs to a recur-
rent XceptionNet [8]. By learning a fused representation of
these features, the model achieves accurate predictions. On
the other hand, undirected approaches eschew specific arti-
facts or predefined feature sets, instead training a general-
purpose classifier to autonomously analyze the entire input
data and learn relevant features. However, these undirected
deepfake detection methods suffer from three main draw-
backs.

The majority of recent deepfake detection techniques
[30, 36, 39] struggle with robustness, which refers to the
ability of the detector to maintain high accuracy when
processing unseen deepfakes—those generated using tech-
niques and models different from those used in training. Ro-
bustness is essential for the practical application of these
systems in real-world scenarios. Secondly, training these
deepfake detection models is time-consuming due to the
large scale of the network models. For example, Zhao et
al. utilize two parallel Vision Transformer-Large (ViT-L)
networks with several Xception blocks [9, 10] to extract
spatial and temporal features from deepfake videos [39],
resulting in over 600 million parameters. Retraining such
models for new individuals is therefore exceedingly time-
consuming. Thirdly, many of these detection techniques
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lack interpretability due to their complex network architec-
ture and black box nature. They often make detection de-
cisions based on high-dimensional feature maps, limiting
their explainability.

To overcome these drawbacks, our contributions are
summarized as follows:

• As the core idea of our contribution, we propose a
Prototype-based Unified Framework for Deepfake Detec-
tion (PUDD) framework. Prototypes are clustered to learn
representations for the upstream task, i.e., video classifi-
cation. This robust representation allows deepfakes gener-
ated by unseen deepfake techniques to be returned unedited,
maintaining their visual integrity and preserving their latent
space representation.

• We propose integrating state-of-the-art techniques
from sim-DNN [34] and xClass [3] for deepfake detection.
Our approach includes a prototype learning layer that is
easily trained and significantly enhances detection accuracy
without necessitating the retraining of the entire framework.
Additionally, it significantly reduces CO2 emissions, com-
putational and power requirements compared to other large
detection and classification models making our approach
significantly more environmentally friendly.

• We provide interpretability to understand the
prototype-based classification as the degree to which a hu-
man can consistently predict the model’s output.

• We demonstrate the efficiency and effectiveness of
our proposed methods by comparing them to state-of-the-
art deepfake detection models across multi-modal data, i.e.,
deepfake images and videos.

2. Related Works

2.1. Deepfake Generation

Deepfake generation involves the use of deep learning
techniques to create convincing image, audio and video
hoaxes. There are several methods for creating deepfakes,
but the most widely used methods are Variational Autoen-
coders (VAEs) [12, 35], Generative Adversarial Networks
(GANs) [20,23,33], and diffusion models [15]. To generate
a deepfake with VAEs, FaceSwap encodes both the source
and target faces into the latent space using the trained en-
coder [12]. Then, it swaps the latent representations of the
faces, effectively transferring the facial features of the tar-
get face onto the source face. Moreover, as a common used
deepfake technique, style-based GAN (StyleGAN) [20] fa-
cilitates an automatically learned, unsupervised separation
of high-level attributes, e.g., pose and identity when trained
on human faces, and stochastic variation in the generated
images, e.g., freckles and hair. It also allows for intuitive,
scale-specific control of the synthesis.

Figure 1. Prototype learning-based image classification with orig-
inal images.

2.2. Deepfake Detection

The recent literature [4, 17, 24, 25] confirms the critical
need for detecting deepfakes to protect the reputations and
credibility of public figures, particularly politicians, who
are vulnerable to manipulation and misinformation cam-
paigns. Deepfakes have the potential to propagate false nar-
ratives and undermine trust in democratic processes. Robust
detection methods are therefore essential to prevent the dis-
semination of deceptive content. By investing in deepfake
detection technologies, we can mitigate the risks posed by
malicious actors intent on exploiting digital media for polit-
ical gain, thus safeguarding the integrity of public discourse

Reiss et al. introduce a state-of-the-art deepfake de-
tection technique based on the concept of ’fact checking’,
adapted from fake news detection [31]. This approach ver-
ifies that claimed facts (e.g., identity as Biden) align with
observed media (e.g., is the face truly Biden’s?), allowing
differentiation between real and fake media. Similar with
our upstream video classification task, Haliassos et al. pro-
pose self-supervised representation learning across visual
and auditory modalities to capture factors such as facial
movements, expression, and identity [14]. These learned
representations serve as targets predicted by the detector
alongside the traditional binary forgery classification task.

2.3. Prototype Learning

As depicted in Figure 1, prototype-based deepfake detec-
tion methods [2, 34] calculate the local peaks of the density
for each individual, essentially identifying the most repre-
sentative data samples in each class from the training set as
prototypes.

These methods then evaluate the similarity between new
data samples and autonomously selected prototypes to clas-
sify images as either deepfake or original data samples.
Bouter et al. simplify the complexity of working with
spatio-temporal prototypes and enable their replacement to
achieve greater interpretability [6]. Aghasanli et al. calcu-
late similarity scores (Euclidean distance in feature space)
between an input image and all identified prototypes to de-
rive rules for each specific sample [2]. However, a common
limitation of prototype-based deepfake detection methods is
the time-consuming nature of retraining detectors for new
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classes or individuals.

3. Proposed Method
Our proposed solution is built on a series of novel contri-

butions that collectively form the deepfake detection frame-
work. As illustrated in Figure 2, these innovations include
the introduction of the Prototype Learning layer (3.3) to
cluster prototypes from input data and calculate their simi-
larity to established prototypes. Additionally, the Classifi-
cation layer (3.4) is developed to classify images based on
the estimated similarity scores obtained from the Prototype
Learning layer.

3.1. Pre-processing

In our experiments, we evaluate our framework on two
public datasets [5, 27]. Firstly, for the Celeb-DF dataset,
we sample one frame every two seconds from the videos.
These frames are then cropped to extract smaller patches
containing only the face regions. In the training stage, we
utilize all 59 celebrities available in the Celeb-DF dataset
[27]. However, different from conventional methods that
rely on paired data, we only consider frames from original
videos for training and frames from deepfake videos for in-
ference. Secondly, for the CIFAKE dataset, no preprocess-
ing of clean images is required prior to training.

3.2. Feature Extraction

The proposed PUDD extracts features from a pre-trained
model for prototype learning and the upstream task, i.e.,
video classification, eliminating the need for fine-tuning. To
achieve this, we choose DINOV2 [29] as the feature extrac-
tor due to its ability to effectively correct non-uniformities
in images and its promising performance in image classi-
fication tasks. After feature extraction, the prototypes are
calculated and learned from these features.

3.3. Prototype Learning Layer

Given a training set X = {x1, x2, ..., xn} of n image
samples with C classes, we aim to learn the prototypes
P = {p11 , p12 , ..., pcm} of original videos for video clas-
sification. For example, pcm refers to the m-th prototype
in the in the c-th class. Particularly, the most representative
data samples in each class of the dataset are selected as pro-
totypes. We show the prototype clustering result in Figure
3.

In Figure 3, it is depicted that the prototypes from orig-
inal videos (ID13, Id23, and Id24) are clustered, while two
outliers, i.e., deepfake videos are kept away from these clus-
ters. Specifically, even though the hair style, presence of a
mustache, and apparent age vary across data samples within
ID13, the prototypes are clustered effectively to enable suc-
cessful classification of the celebrity. This indicates that the

proposed PUDD framework can capture and leverage sub-
tle yet discriminative features to distinguish between differ-
ent individuals, even amidst significant variations in appear-
ance. These prototypes facilitate a reasoning process based
on the similarity (proximity in feature space) between a data
sample and a prototype. In this case, prototypes are identi-
fied as the local density peaks [34], essentially the most rep-
resentative samples from the training set. Therefore, only
a limited number of samples from the training dataset are
chosen as prototypes, ensuring the system’s efficiency and
compatibility with a broad range of devices. We define Nc

and Mc are the numbers of samples and prototypes in the
c-th class, respectively.

As the core idea of our contribution, the Prototype Learn-
ing layer serves to cluster prototypes and calculate the sim-
ilarity and for each image associated prototype. Inspired
from a specific Cauchy equation in [34], we define a sim-
ilarity score between n-th data xn and prototypes in c-th
class by using Euclidean distance to identify how closely
new data aligns with known data patterns drawn from the
extracted features:

Sxn
(pc) =

∑Mc

m=1 ∥xn − pcm∥2

1 + ∥x−µ∥2

∥σ∥2

(1)

where µ and σ are the mean and variance of data samples,
respectively. This step evaluates the proximity of data sam-
ples within the feature space, utilizing Euclidean distance
as metrics. After calculating all the similarity scores to pro-
totypes in all classes, we compare the minimum similarity
score against the mean and variance of data by using m-σ
rule.

3.4. Classification Layer

The proposed classification layer makes the decision on
whether an input belongs to an existing class or a deepfake.
The m-σ rule is applied to detect potential attacks, which
can be depicted through an inequality condition:

IF min(Sxn) > (µ̄−mσ)

THEN xn ∈ Potential deepfake video or image
ELSE xn ∈ Classification label

(2)

where µ̄ refers to the recursive mean of data samples. If
this condition is met, it suggests that the system has recog-
nized a divergence or a new data concept, distinct from the
established data patterns used to generate the prototypes. If
not, it indicates no significant change in the data concept,
allowing the algorithm to continue with its standard classi-
fication process. This mechanism enables PUDD to adap-
tively respond to new data and effectively identify potential
deepfake detection.
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Figure 2. The proposed prototype learning-based framework. We extract frames from raw videos and crop them into small patches. The
red lines only refer to the inference stage.

Figure 3. Prototype clustering visualizations.

4. Experiments
4.1. Data and Deepfakes

4.1.1 Celeb-DF

In the Celeb-DF dataset [27], there are 590 real videos fea-
turing 59 celebrities of diverse genders, ages, and ethnic
groups, collected from publicly available sources such as
YouTube. Additionally, the dataset includes 5,639 deep-
fake videos generated using improved synthesis methods,
including color mismatch, inaccurate face masks, and tem-
poral flickering. Consequently, the overall visual quality
of the synthesized deepfake videos in Celeb-DF is signifi-
cantly enhanced compared to existing datasets, with notably
fewer visual artifacts.

In this work, we use all 590 real videos and 5,639 deep-
fake videos for the training and inference stages, respec-
tively. We extract one frame per every two seconds of the

videos and then crop these frames into smaller patches con-
taining only the face regions. Specifically, the training stage
comprises 11,723 cropped frames from the original videos,
while the inference set consists of 60,847 cropped frames
from the deepfake videos.

4.1.2 CIFAR-10

Different from Celeb-DF, CIFAKE [5] is designed to en-
compass non-human classes such as birds, cars, and ships.
The dataset comprises 60,000 synthetically-generated im-
ages and an equal number of real images collected from
CIFAR-10 [22]. The synthetic images are generated using
a fine-tuned Stable Diffusion Model [32].

In our study, we train the model using prototypes learned
from 50,000 original images in the training set. Subse-
quently, we evaluate the proposed method using 50,000
deepfake images from the inference set.

4.2. Competitors and Implementation

The proposed method is evaluated and compared to
state-of-the-art competitor models. We reproduce three
state-of-the-art deepfake detection techniques [30, 36, 40],
utilizing the best-reported implementations available in the
literature. For example, Aghasanli et al. achieve superior
results by fine-tuning only the multilayer perceptron (MLP)
head in the original Vision Transformer (ViT) [2]. There-
fore, we fine-tune this model with our dataset to serve as a
competitor in our comparison experiments. Secondly, we
reproduce four prototype learning methods, including both
for deepfake detection [2, 6] and adversarial attack detec-
tion [34, 38], i.e., similar to deepfakes.

In this paper, the proposed prototype learning is imple-
mented on the detector and further studies on feature extrac-
tor are out of scope of this paper. In the comparison exper-
iments (5.1 & 5.2), we exploit DINOV2 [29] as the feature
extractor. All the experiments are run on Tesla V100 GPUs.
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Table 1. Deepfake video detection comparison on the Celeb-DF dataset. Para. and Acc are trainable parameters and detection accuracy,
respectively.

Algorithm & Network Computational Cost Acc (%)
Method Pre-training Prototype Backbone Para. Training Time (s)

MPC-CA [38] ✓ ✓ BERT + MLP 6.4 M 399.5 79.5
Sim-DNN [34] ✓ ✓ VGG16 + DNN 2.8 M 109.8 88.4

IPD [2] ✓ ✓ ViT-L-32 + MLP Head 3.7 M 254.7 89.2
ProtoExplorer [6] ✗ ✓ DPNet 3.8 M 258.0 92.5

NoiseDF [36] ✓ ✗ RIDNet + Attention 9.9 M 278.6 70.1
FTCN [40] ✗ ✗ FTCN 26.6 M 7482.6 86.9

MMtrace [30] ✗ ✗ MLP 4.7 M 209.5 92.9
PUDD ✓ ✓ DINOV2 + xDNN 7.6 M 2.7 95.1

5. Results
5.1. Celeb-DF

The proposed PUDD is evaluated on deepfake detec-
tion task over the Celeb-DF dataset [27]. Table 1 shows
the results, each of them is the average of 60,847 deepfake
frames.

From Table 1, it can be observed that: (1) In all the
evaluated models, the proposed PUDD achieves 95.1% for
deepfake video detection, which offers the best effective-
ness. (2) PUDD demonstrates state-of-the-art efficiency in
the training stage compared to state-of-the-art models due
to its rapid calculation of simple prototypes. This feature
enables swift retraining for unseen celebrities, making it
highly practical for real-world applications.

5.2. CIFAKE

We compare the deepfake image detection performance
over the CIFAKE dataset [5]. The results are presented in
Table 2, each result is average of 50,000 deepfake images.

Table 2. Deepfake image detection comparison on the CIFAKE
dataset.

Method Training Time (s) Acc (%)
MPC-CA [38] 483.2 79.5
Sim-DNN [34] 142.3 88.4

IPD [2] 249.9 89.2
ProtoExplorer [6] 261.7 92.5

NoiseDF [36] 300.6 70.1
FTCN [40] 8358.3 86.9

MMtrace [30] 252.7 92.9
PUDD 2.8 94.6

From Table 2, the proposed PUDD outperforms the
state-of-the-art models [2, 6, 30, 34, 36, 38, 40] on both ac-
curacy and training time. there are three main differ-
ences between the Celeb-DF and CIFAKE datasets. Firstly,
Celeb-DF comprises video data, whereas CIFAKE consists

of image data. Secondly, the deepfake generation tech-
niques used in these datasets differ, with Celeb-DF em-
ploying improved generation techniques and CIFAKE uti-
lizing the Stable Diffusion Model. Thirdly, while Celeb-
DF only includes human classes, CIFAKE encompasses
10 non-human classes such as cars, birds, ships, and cats.
Therefore, the robust deepfake detection performance ob-
served across these two datasets validates the effectiveness
of PUDD across diverse scenarios.

5.3. Visualization

In this section, we make some visualizations to confirm
the effectiveness of the proposed PUDD framework. Firstly,
Figure 4 illustrates different similarity scores when different
deepfakes generated from original videos are considered.

Figure 4. Similarity/Density score drop in deepfake videos.

From Figure 4, it is apparent that for each incoming sam-
ple, we can calculate and plot their density score relative to
the existing prototypes, the mean density of our prototypes,
and the minimum of similarity score. By considering these
values, we can visually discern that a clean image will ex-
hibit a density score higher than the minimum of similarity
score, whereas DeepFaked images will be flagged as abnor-
mal and will have a value below the minimum of similarity
score.
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Secondly, we present some qualitative result in Figure 5
to show the effectiveness of PUDD. The detection results of
PUDD and MMtrace are denoted by green/red and black,
respectively.

Figure 5. Challenging deepfakes in Celeb-DF. Black and green/red
marks refer to the detection prediction from the MMtrace and
PUDD, respectively.

As qualitative analysis, Figure 5 presents the deepfake
detection results by using MMtrace and PUDD. We can
observe that: (1) Both PUDD and MMtrace successfully
detect the third celebrity as it is relatively easy to distin-
guish; (2) PUDD outperforms MMtrace in detecting the first
celebrity by classifying them as an unseen class, leading to
a more accurate decision; (3) PUDD fails to detect the sec-
ond video of the second celebrity. This failure may be due
to the celebrity frequently closing their eyes throughout the
majority of the video, making prototype recognition more
challenging.

5.4. Image Classification

As aforementioned, we estimate the prototypes for
image classification as the upstream task, demonstrating
promising performance of PUDD in both image classifi-
cation and deepfake detection tasks during inference. In
this experiment, we compare the image classification accu-
racy over original videos and images in the Celeb-DF [27]
and CIFAKE datasets [5], respectively. The results are pre-
sented in Table 3.

It can be observed from Table 3 that PUDD achieves best
image classification accuracy on both datasets, i.e., 92.7%
and 96.4%, respectively. These results affirm the promising
performance of PUDD across both tasks.

5.5. Interpretability

As aforementioned, the proposed PUDD learns proto-
types from the data samples to provide interpretability. We

Table 3. Image classification comparison on Celeb-DF and
CIFAKE.

Method Celeb-DF CIFAKE
MPC-CA [38] 79.2 84.1

IPD [2] 87.4 87.9
ProtoExplorer [6] 92.0 94.6

NoiseDF [36] 90.1 94.7
FTCN [40] 92.3 93.6

MMtrace [30] 92.5 93.9
PUDD 92.7 96.4

calculate the similarity score (as described in Eq. 1) be-
tween an input image and all identified prototypes, so, we
were able to extract a rule-based linguistic representation
for each specific sample to explain the model’s behavior as
described:

Figure 6. Linguistic rule-based representation of the prototypes
for PUDD Interpretability on ’Original’ class of Celeb-DF with
top 3 closest prototypes on the feature space.

5.6. Environmental Impact

As aforementioned, PUDD only requires a limited num-
ber of parameters for retraining due to efficient prototype
learning. We report the potential carbon emission of re-
training a PUDD in Table 4. All models are trained on a
single V100 GPU with a power consumption of 300 W.

Table 4. Carbon footprint of reproducing models. tCO2eq refers
to the tonnes of CO2 equivalent.

Method Total Power Consumption tCO2eq
NoiseDF [36] 23.2 kWh 1.2 ×10−2

FTCN [40] 624.4 kWh 0.3
MMtrace [30] 17.5 kWh 8.7×10−3

PUDD 0.2 Wh 10−7

For comparison, retraining a MMtrace or PUDD would
require 17.5 kWh and 0.2 Wh, respectively, if run in the
same data center. This is 105 more carbon emission.

6. Discussion and Conclusion
The advantages of our proposed method are listed bel-

low:
1. In the training stage, our approach only require the

access to original data. Therefore, different from conven-
tional deepfake detection methods, we do not rely on paired

3814



training data, which includes both original and deepfake
samples. This characteristic of our method streamlines the
training process and eliminates the need for paired samples,
simplifying the data collection and labeling process.

2. The proposed PUDD exploits prototype information
derived from original data, thereby rendering it agnostic
to the specific deepfake generation techniques and models
present in the inference data. Consequently, it exhibits the
capability to effectively detect unseen deepfakes generated
using different techniques and models than those encoun-
tered during the training stage. The experimental results
further confirm the effectiveness of PUDD.

3. PUDD can be easily implemented with various feature
extractors to detect deepfakes across diverse data modali-
ties, including video and image. Moreover, PUDD offers
flexibility for researchers to select a suitable feature ex-
tractor tailored to the specific characteristics of their target
class.

4. The rapid retraining capability of PUDD, taking
only 2.7 seconds, significantly accelerates its adoption in
new domains compared to conventional deepfake detec-
tion methods. This speed makes PUDD highly feasible for
potential real-world applications, enhancing its practicality
and versatility.

5. The PUDD framework exploits image classification as
the upstream task, enabling it to achieve promising perfor-
mance in image classification despite being primarily de-
signed for deepfake detection and trained on a deepfake
dataset. This demonstrates the adaptability and robustness
of PUDD across various tasks and datasets.

6. Prototype learning aids in understanding prototype-
based classification by quantifying the extent to which a
human can reliably predict the model’s output.

7. Due to efficient prototype clustering and simplified
calculations, PUDD requires 105 times less carbon emis-
sion than the state-of-the-art model, making it much more
environmentally friendly.

Overall, we have proposed a Prototype-based Unified
Framework for Deepfake Detection (PUDD) framework for
deepfake video and image detection, offering an effective
alternative to conventional competitors. Different from
these conventional methods, we learned most representa-
tive prototypes in classes to efficiently detect deepfake sam-
ples and provide interpretability. Our evaluation with multi-
modal datasets has demonstrated the robust performance of
the proposed method on both deepfake images and videos.
Additionally, PUDD required only 2.7 seconds on new data,
making it feasible for potential real-world applications.
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