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Abstract

We present a novel approach for neural implicit surface
reconstruction from relatively sparse point cloud to ensure
the reconstruction of a single connected component. We in-
troduce a topological loss term based on persistent homol-
ogy to reconstruct a manifold object of genus 1. Building on
the Neural Pull [25] framework, our method demonstrates
superior performance in preserving the integrity of complex
3D geometries, evident through both visual and empirical
comparisons. Our contributions include the integration of
persistent diagrams to refine shape topology and a topolog-
ical loss term to constrain existing reconstruction pipelines
to a single connected component. This advancement allows
for the seamless integration of topological data analysis
with implicit surface reconstruction.

1. Introduction
Implicit Neural Representations (INRs) have emerged as
a powerful alternative to traditional geometric representa-
tion methods such as voxel grids, meshes, and point clouds.
Traditional methods often suffer from inefficiencies, as the
resolution of their outputs is directly tied to the complex-
ity of the inputs. In contrast, INRs operate independently
of spatial resolution constraints, making them particularly
suited for representing complex geometries. These repre-
sentations have been successfully applied in a wide range of
applications, including scene synthesis [29], semantic seg-
mentation [21], and 3D shape synthesis [19]. Recent ad-
vancements in INRs leverage neural networks to parameter-
ize geometries using methods such as signed and unsigned
distance functions [4, 34], occupancy networks [32], and
multi-view surface reconstruction [39]. However, most of
these methods are often plagued with some implicit bias of-
fered by the representation method. To avoid these biases,

we present a novel method to control the topological con-
straints of the represented geometry in this paper.

Persistent Homology (PH) is a cornerstone of compu-
tational topology that offers a rigorous framework for an-
alyzing and classifying topological features across multi-
ple scales. This branch of topology focuses on identifying
and quantifying invariants—properties of shapes or spaces
that remain unchanged under continuous transformations,
such as stretching or bending, but not tearing or gluing.
Among these invariants, the concept of 0-dimensional PH,
which essentially counts the number of connected compo-
nents within a geometric structure, stands out for its foun-
dational role in understanding the connectivity and disjoint-
edness of data.

The process of filtration, central to PH, involves con-
structing a sequence of simplicial complexes that grow pro-
gressively, capturing the evolution of topological features as
a function of a parameter, typically related to scale or den-
sity. This sequential construction allows for the meticulous
tracking of the birth and death of topological features—such
as connected components, loops, and voids—as the param-
eter changes. The persistence of these features, or how long
they exist over the scale parameter, provides critical insights
into the underlying topological structure of the data. For in-
stance, features that persist across a wide range of scales of-
ten indicate significant structural properties, whereas short-
lived features may be attributed to noise or irregularities in
the data [1, 38].

In the realm of INRs and geometric computing, PH,
specifically 0-dimensional PH, becomes a powerful tool for
discerning the intricate details of the topology of recon-
structed surfaces. The ability of PH to extract robust, scale-
invariant topological information from high-dimensional
and noisy datasets makes it particularly valuable. For ex-
ample, understanding the connectivity of the reconstructed
surface is crucial in surface reconstruction tasks. The appli-
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cation of 0-dimensional PH enables the identification and
quantification of connected components within the geome-
try. This metric will help us address common challenges in
surface reconstruction, such as the elimination of unwanted
holes or the enforcement of manifold properties, thereby
enhancing the fidelity and aesthetic appeal of the recon-
structed models [2, 9, 31].

Given its capacity to offer profound insights into the
topological nuances of geometric data, PH serves not only
as a method for topological analysis but also as a bridge
connecting advanced mathematical theory with practical
computational applications. Our work builds upon this
foundation by introducing novel loss terms specifically de-
signed to guarantee manifold outputs and prevent the forma-
tion of extraneous, disconnected clusters through the strate-
gic integration of PH into the workflow of INRs.

The main contributions of this paper are:
1. We propose a novel topological loss term that enforces

the reconstruction of a single connected component, ad-
dressing a common limitation in existing surface recon-
struction methods.

2. Our topological loss term is integrated into the con-
ventional neural implicit surface reconstruction pipeline,
demonstrating its effectiveness in enhancing reconstruc-
tion accuracy.

3. By employing persistent diagrams, we modify the topol-
ogy of the reconstructed shape to ensure a genus-0,
single-component, structure.
The rest of the paper is arranged as follows. In Sec-

tion 2, we outline some recent work on implicit surface re-
constructions. We detail our proposed approach in Section 3
and provide some experimental results for the integration of
topological constraints with implicit surface reconstruction
in Section 4. We finally conclude in Section 6.

2. Related work
Surface Reconstruction. The problem of reconstructing
surfaces from scanned point clouds has been investigated
for many years. Traditional methods such as Voronoi dia-
grams [3] and Delaunay triangulations [6, 22] have allowed
for triangular mesh generation from points. However, these
methods are not agnostic to noise in the input data. Global
implicit methods like [11] use radial basis functions by con-
sidering the center of the coordinates, Poisson reconstruc-
tion [20] amounts to finding a global indicator function,
using tangent plant estimation [18]. The level-set method
has also been use to fit an implicit surface to a point cloud
[42] without normals. Leveraging the generalized function
approximation nature of neural networks has recently al-
lowed various aspects of surface reconstruction to be ad-
dressed. In particular, recent approaches falling under the
class of Implicit Neural Representations have gained much
traction. They formulate the surface reconstruction task by

parameterizing the input (usually a point cloud) as a contin-
uous function that maps the domain of the input to a quan-
tity of interest (usually a distance function) [13, 14, 36].
Some approaches have are solving a boundary value prob-
lem for surface reconstruction [4, 16, 34], often employing
the eikonal equation constraint to guide the distance func-
tion to have a value of zero on the underlying surface rep-
resented by the point cloud. Occupancy functions have also
been used for surface reconstruction [27]. In addition, im-
plicit representations have also been used for representing
3D scenes [29, 30, 39, 41].

Often, mesh extraction from these approaches is done via
the well-known marching-cubes algorithm [24], and meshes
for point clouds with thin and sharp features are not guar-
anteed to be manifold meshes. None of the conventional
neural implicit approaches tackle maintaining topological
accuracy while capturing thin and sharp features commonly
found in plants, chairs, and the human body. In this pa-
per, we propose a neural implicit surface reconstruction ap-
proach that incorporates topological information during the
training process.

Topological Surface Reconstruction. Topological ma-
chine learning [7, 17] has recently emerged as a powerful
fusion of two fields—topological data analysis and ma-
chine learning. Topological data analysis (TDA) provides
insights relating to algebraic topology—invariant properties
of spaces under continuous transformations. We refer the
reader to Hensel et al. [17] for a more in-depth survey of
TDA. Persistent Homology (PH) is the primary tool used
in TDA for generating multi-scale insights about topologi-
cal criteria such as connected components, loops, or voids.
These features are often referred to as 0-dimensional, 1-
dimensional, or 2-dimensional features, respectively. Con-
trolling topology during the surface reconstruction process
has gained attention in recent years. Approaches leverag-
ing PH have been used for shape description and classifi-
cation [10], mesh segmentation [35], and more related to
our work, surface reconstruction [8, 12]. Brüel-Gabrielsson
et al. [8] incorporated topological priors to obtain a likeli-
hood function over the reconstruction domain. PH has also
been leveraged for 3D reconstruction from 2D images by
introducing a loss term that penalizes the topological fea-
tures of a predicted 3D shape using 3D ground truth-based
topological features. Mezghanni et al. [28] also propose a
similar approach in the context of using generative networks
for shape generation, reconstruction, and correction. Dong
et al. [15] proposed designing a topological target function
using persistent pairs in persistent diagrams to control the
coefficients of a B-spline function.

Conventional neural implicit surface reconstruction ap-
proaches often suffer from the well-known problem of gen-
erating ghost geometries away from the underlying sur-
face. This is primarily due to off-surface points being close
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Figure 1. SDFConnect (highlighted by light-blue dotted box) builds upon the Neural-Pull framework (highlighted by red dotted box). We
augment their loss function with our proposed topological losses that encourage significant features to persist and limit the persistence of
noisy features. We use the predicted SDF to compute a cubical complex, which is subsequently used for our TDA loss computation.

enough to each other, causing the neural network to gen-
erate a signed distance field value of zero for such points.
As a result, this generates more than one single connected
component. Although loss terms penalizing such a sce-
nario have been proposed [23, 34], they don’t explicitly en-
force a penalty on multiple components. In this work, we
propose leveraging persistent homology for gathering and
utilizing topological information relating to the number of
connected components. We build our approach on a neu-
ral implicit representation framework similar to Ma et al.
[25] with added topological losses that enforce a single con-
nected component [15] in the reconstructed mesh. We start
with a relatively sparse point cloud and predict a signed dis-
tance function without requiring ground truth normal infor-
mation.

3. Method

Overview. We present a novel approach for neural implicit
surface reconstruction from relatively sparse point clouds
using topological constraints. Our approach leverages topo-
logical data analysis, particularly persistent homology, to
capture the evolution of the total number of connected com-
ponents as a function of a radius parameter. We build on the
formulation of Neural-pull [25] and propose an augmented
loss function that encourages a single connected compo-
nent, thus aiding in surface reconstruction. An overview
of our framework is showcased in Figure 1.

𝐻0 𝐻1 𝐻2

Vertex in Cubical Complex Cell in Cubical ComplexEdge in Cubical Complex

Figure 2. An example of a 2D cubical complex gathering multiple
topological features at increasing thresholds. From left to right,
as threshold increases, higher dimensional features like edges and
cells appear. H0, H1, and H2 correspond to 0, 1, and 2 dimen-
sional features.

3.1. Generating SDF

Consider a 3D point cloud P = {pi, i ∈ [1, N ]}, where N
is the total number of points. The goal of an implicit frame-
work is to approximate the signed distance function (SDF),
denoted as f : R3 → R. We aim to learn the SDFgi by
pulling a 3D query location gi, which is randomly sampled
around pi to its nearest neighbor ci on the surface. Pulling
the query points denoted by the set G = {gi, i ∈ [1,M ]},
involves leveraging the predicted SDF value and the gradi-
ent of the network (positive or negative). The gradient gives
the fastest direction of change in SDF at any given point in
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Vertex in Cubical Complex
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Figure 3. An example of an initial cubical complex generation
from an unsigned distance function of a 2D circle. We begin by
taking an unsigned version of the initial signed distance field. Fol-
lowing this, a grid is initialized with vertex values correspond-
ing to distance field values and a threshold is selected (typically a
minimum of all distance field values). At this threshold, all ver-
tices having values <= threshold are included in the initial cubical
complex. If more than one vertex meets the criteria, higher dimen-
sional components like edges and cells are formed. In this manner,
an initial cubical complex is generated.

3D space and is computed during the back-propagation pro-
cess during training. We use this property to pull the query
location gi in the following manner:

c′i = gi − SDF gi ×
∇SDF gi

∥∇SDF gi∥2
(1)

The resulting pulled location of gi is c′i. The direction of
pulling is given by ∇SDF gi

∥∇SDF gi
∥2 . As the Neural-pull archi-

tecture is aimed at learning to pull query locations to their
nearest neighbors on the point cloud, the loss computation
involves minimizing the distance between the pulled loca-
tion c′i and the nearest neighbor ci on the surface. This is
given by:

d({c′i}, {ci}) =
1

M

M∑
i=1

∥c′i − ci∥22, (2)

3.2. Persistent Homology Preliminaries

Generating insights about multi-scale topological features
like connected components, loops, and voids involves com-
puting homology groups across various scales. Figure 2 de-
picts features obtained for a cubical complex across various
thresholds. In this work, we concern ourselves with the con-
nected components computation.

0.0 0.0025 0.005 0.0075

H0

Birth

Death

A B C D

A

B

C

D

A = 0.0
B = 0.0025
C = 0.005
D = 0.075

∞

(i) (ii)

Figure 4. An example of the filtration process, capturing various
features at increasing thresholds. We only showcase the appear-
ance of 0-dimensional features (H0). In (i) we show an example
of a persistence barcode. These barcodes are a consequence of
increasing the threshold, making various 0-dimensional features
appear/disappear. Each colored horizontal bar represents a feature
and has a birth and death value i.e. interval in which it appears
and disappears. Visually this is captured by the cubical complex
(shown in dark blue boxes above the threshold values; green cells
are features). There is a direct relation between these barcodes
and the persistence diagram. Each barcode corresponds to a point
on the persistence diagram. In (ii) we show the corresponding
persistence diagram. We use same colors for barcodes and their
corresponding (birth, death) pair for visual clarity.

The general process is as follows:
1. Represent space by constructing simplicial complexes,

often called filtrations.
2. For a given a filtration, we compute homology (invariant

properties) properties across various dimensions, often
using Vietoris-Rips Complex.

3. Subsequently, we analyze these properties to derive in-
sights about our data’s intrinsic topological characteris-
tics.
In this context, a simplicial complex is a collection of

simplices (vertices, edges, triangles) that fit together in a
specific manner. We utilize our predicted signed distance
field and a cubical complex to compute topological proper-
ties for point clouds. GUDHI’s Python implementation [26]
is used to generate topological properties.

Cubical complex. Cubical complexes are built from
cubes and their lower-dimensional analogs - vertices (0-
cubes), line segments (1-cube), squares (2-cubes), and spa-
tial cubes (3-cubes). These elementary building blocks can
be degenerate [a, a], representing a point, or non-degenerate
[a, b] where a < b, indicating a range. An elementary cube
is a product of these intervals with its dimension represent-
ing the number of non-degenerate intervals. A cubical com-
plex K, is the union of all such elementary cubes. Once
constructed, we define homology groups Hk(K) to encode
the k-dimensional topological features. The kth Betti num-
ber, i.e., the rank of Hk(K), quantifies the number of k-
dimensional homological features. Cubical complexes are
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Figure 5. A visual representation of our loss terms and their effect on the persistence diagram. In each case, the orange arrow shows the
direction of movement for features, enforced by the respective loss terms. Note, this is for illustration purposes only.

easy to generate algorithmically and are suitable for han-
dling grid-like data like images and voxels [15, 19, 37]. We
showcase an example of an initial cubical complex compu-
tation from a distance function in Figure 3. Note that this
is for illustration purposes only and in reality, the cubical
complex can look different.

Filtration. To capture persistent features across mul-
tiple scales, a filtration is constructed, i.e., a sequence of
nested complexes, each representing the underlying space
at a specific scale or a threshold level. In this case, con-
structing a filtration involves integrating cubes of increas-
ing dimensionality according to a chosen threshold/scale
value. Mathematically, a cubical complex K has a nested
sequence of subcomplexes F = {K0,K1, ...,Kn}, where
each Ki is a cubical complex that includes all cubes of K
which have some associated value under a filtering function
that is less than or equal to a pre-defined threshold, ri. For-
mally, Ki = {σ ∈ K|f(σ) ≤ ri}. A gradual increase of
ri adds more cubes to the complexes, leading to the birth
and death values of topological features. The birth of a
feature constitutes its first appearance in the filtration, and
its death is marked by its disappearance from a subsequent
complex. A pair of birth and death values is denoted as
(bl, dl), and a graphical representation of these birth-death
pairs is captured by constructing a persistence diagram. The
persistence of a given topological feature is given by their
absolute difference |dl − bl|. We showcase an exaggerated
example of the filtration process in Figure 4.

3.3. Loss Function

We adopt an approach similar to [15] for defining our topo-
logical losses. Points close to the diagonal of a persis-
tence diagram are regarded as noise in the predicted dis-
tance field, and therefore, their persistence should be mini-
mal. Furthermore, to ensure that significant topological fea-
tures appear on the zero-level set, features with a higher
birth value should be minimized. To incorporate topologi-
cal guidance into our neural network, in addition to Neural-
pulls distance-based loss function shown in Equation 2, we
add two separate penalization terms, Lnoise (Equation 3)
and Lsignificant (Equation 4).

Lnoise =

N∑
i=1

bi +

N∑
j=1

(dj − bj) (3)

Lsignificant = −
S∑

i=1

(di − bi) +

N∑
j=1

(dj − bj) (4)

In Equation 3, the first term encourages smaller birth values
for all features, and the second term minimizes the total per-
sistence of features to encourage a single connected compo-
nent. In Equation 4, the first term increases the persistence
of significant features (the difference between the death and
birth times is above a pre-defined parameter) and discour-
ages noisy features (the difference between the death and
birth times is below a pre-defined parameter). These noisy
features are often seen along the diagonal of a persistence
diagram. We illustrate how our losses penalize features on
the persistent diagram in Figure 5.
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Neural-Pull Neural-PullPoint Cloud SDFConnect SDFConnect

Figure 6. Comparison on the Lord Quas model. Our method (SDFConnect) is able to reconstruct a single connected component when
compared to Neural-Pull. Here, we showcase two different views of the output mesh. A ground-truth point cloud (sparse for visual clarity)
is shown for reference.

Neural-Pull Neural-Pull SDFConnectPoint Cloud SDFConnect

Figure 7. Comparison on the Snake model. Our method (SDFConnect) is able to reconstruct a single connected component when compared
to Neural-Pull. Here, we showcase two different views of the output mesh. A ground-truth point cloud (sparse for visual clarity) is shown
for reference.

4. Experiments

For any given point cloud, our neural network overfits the
underlying shape represented by the point cloud and learns
the corresponding SDF by incorporating topological con-
straints to obtain a single connected component. The re-
sulting SDF is used to extract the underlying mesh using
the marching cubes algorithm [24]. We test our framework
on Neural-Pull’s PyTorch implementation made available
by the same authors. For training, we consider relatively
sparse versions of point clouds. We utilize the same training
parameters as Neural-Pull’s PyTorch implementation. For
generating significant features for PH computations, we use

a threshold value of 1
128 and use a weight of 0.5 for both of

our losses during training. Final meshes are generated using
marching cubes with a grid resolution of 2563.

Model Neural-Pull Ours
Lord Quas 0.014 0.009
Snake 0.046 0.022
Trefoil 0.069 0.066

Table 1. Reconstruction comparison in terms of one-sided Cham-
fer distance.

5276



Neural-Pull Neural-Pull SDFConnectPoint Cloud SDFConnect

Figure 8. Comparison on the Trefoil model. Our method (SDFConnect) is able to reconstruct a single connected component when compared
to Neural-Pull. Here, we showcase two different views of the output mesh. A ground-truth point cloud (sparse for visual clarity) is shown
for reference.

Model Neural-Pull Ours
Lord Quas 0.100 0.017
Snake 0.085 0.044
Trefoil 0.162 0.137

Table 2. Reconstruction comparison in terms of two-sided Cham-
fer distance.

Model Neural-Pull Ours
Lord Quas 0.098 0.110
Snake 0.464 0.080
Trefoil 0.195 0.176

Table 3. Reconstruction comparison in terms of Hausdorff dis-
tance.

Dataset and Evaluation Metrics. We test our method
on the Lord Quas model from Scene Reconstruction Bench-
mark (SRB) [5], specifically the one made freely available
by [40]. We also test on a snake model obtained from the
McGill 3D Shape Benchmark [33], and a Trefoil knot. A
visual comparison of meshes obtained from our approach
against Neural-Pull is available in Figure 6, Figure 7, and
Figure 8.

To comprehensively evaluate our methods performance,
we leverage one-sided Chamfer distance (Table 1), two-
sided Chamfer distance (Table 2), and Hausdorff distance
(Table 3). For metrics, we sample 2 × 104 points for Lord
Quas, 5×103 points for the snake model, and 5×102 points
for the Trefoil knot from the ground truth and the recon-
structed mesh, respectively. Our preliminary results indi-

cate that our method outperforms Neural-Pull for surface
reconstruction under a relatively sparse point cloud setting.
This performance gap could be attributed to Neural-Pull’s
purely geometric approach, i.e., learning to pull points onto
the underlying surface for relatively dense point clouds.
SDFConnect can incorporate topological invariance that is
inherently present in each geometric shape and augment
the surface reconstruction process, leading to a single con-
nected component.

5. Limitations
Despite the promising results shown here, we acknowl-
edge there are limitations to our approach. First, our input
point clouds are relatively sparse, owing to the computa-
tional complexity of the PH computation. Second, owing
to the presence of various geometric features across multi-
ple shapes, there might be cases where certain subtle topo-
logical features may be considered noise and be incorrectly
penalized due to short persistence. Third, we see that for
point clouds with geometric features in close proximity, our
losses tend to connect such sections, given the connected
component condition we enforce. This effect can be desir-
able in some geometries (e.g., Lord Quas) and undesirable
in others (e.g., trefoil). Despite these limitations, our pro-
posed method provides insights into integrating topologi-
cal features for neural surface reconstruction. We hope our
findings provide fresh motivation to address the limitations
we listed and make neural implicit surface reconstruction
algorithms more robust.
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6. Conclusions

In this paper, we introduce SDFConnect, a novel approach
for incorporating topological constraints for neural implicit
surface reconstruction from unoriented point clouds. We
build on a previous approach (Neural-Pull) by augmenting
their loss function with our topological loss term. Our loss
term is inspired by persistent homology, and we leverage
the 0-dimensional features (i.e., connected components) to
enforce a single connected component constraint for the re-
constructed mesh. We utilize the predicted SDF for cubical
complex computation and subsequently gather insights on
significant and noisy features. Our approach demonstrates
the seamless integration of topological features with neu-
ral implicit surface reconstruction. Our preliminary results
showcase superior performance over existing approaches
that do not enforce topological constraints. We believe this
work will be a starting point for incorporating more com-
plex topological constraints for neural implicit surface re-
construction.
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