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Figure 1. LGAfford-Net combines local geometry and semantic cues for affordance detection. Regions 1, 2, and 4 highlight instances
where LGAfford-Net outperforms 3DAffordanceNet [6] in affordance detection. However, Region 3 stands out as exceptional region where
LGAfford-Net predicts a Grasp affordance, the label unavailable in the groundtruth. This shows the generalizability of the LGAfford-
network, showcasing its ability to identify affordances beyond explicitly annotated labels.

Abstract

In this paper, we introduce LGAfford-Net, a novel archi-
tecture tailored for affordance detection in 3D point clouds.
Affordance, crucial for human-robot interaction, denotes
regions on objects where interaction is possible. Under-
standing affordance demands perceiving 3D space akin to
humans. Leveraging the ubiquity of point clouds in cap-
turing 3D environments, our method addresses challenges
posed by their sparse, unordered, and unstructured nature.
Unlike prior approaches that overlook local context and se-
mantic cues, we propose a Semantic Geometric Correla-
tor (SGC) block, integrating Local Geometric Descriptor
(LGD) for local understanding, and Edge Convolution for
semantic awareness. The integration of SGC, LGD, and
edge convolution within our network enhances its capability
to perceive and understand affordances by leveraging both
geometric and semantic information effectively. Addition-

ally, we employ Class Specific Classifiers (CSC) to accom-
modate multiple affordance types per point. CSC effectively
establish one to many relationship between point to affor-
dance labels. We demonstrate the results of proposed archi-
tecture on 3DAffordanceNet a benchmark dataset and com-
pare them with state-of-the-art methods. We demonstrate
the effectiveness of the features learnt by our proposed ar-
chitecture for the point cloud classification task using the
ModelNet40 dataset.

1. Introduction
In this paper, we propose a novel architecture for detec-
tion of Affordance in 3D point cloud by leveraging local
geometric information and name it as LGAfford-Net. Af-
fordance, as introduced by Gibson [8], refers to the under-
standing of how humans interact with the environment. This
understanding is pivotal for the development of intelligent
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systems capable of navigating [11, 28, 40], assisting [14],
and interacting with individual objects [17, 18] across di-
verse scenes [5, 10]. In recent years, the advent of visual
sensors, particularly RGB [31, 34, 45] and depth cameras
(RGBD) [23, 25, 33], aids the collection of data for affor-
dance estimation. However, the existing 2D/2.5D datasets
fail to capture the true geometry of objects and scenes, af-
fecting the accuracy of affordance prediction.

In response to these challenges, researchers have turned
their attention to 3D point clouds, as they provide a more
comprehensive representations of the geometry inherent in
objects and scenes. Despite its potential representations,
processing point cloud data for affordance detection re-
mains challenging due to its unstructured and unordered
nature. Recent techniques for processing point cloud data
include sharedMLP [4, 26, 42], hierarchical feature extrac-
tion [9, 27], and geometric feature analysis [1, 3, 15, 16,
29, 38] have made significant progress in the tasks such
as classification [26, 42], segmentation [4, 22], upsam-
pling [20, 21, 24] and refinement [12, 32, 35, 37, 39]. These
techniques fail to determine the probabilistic outcome as-
sociated with the object due to unavailability of distinct
probabilities for each point/regions. To address this chal-
lenge, recent research introduces novel dataset, called as
3D-AffordanceNet [6]. This dataset provides probability
values for each point in the point cloud, allowing for the
estimation of multiple affordances with varying confidence
levels.

Despite these advancements, accurately estimating affor-
dance in 3D point clouds remains an open problem. Tra-
ditional approaches, including segmentation-based meth-
ods [30], classify points into specific affordances with usage
of conventional activation functions. However, these points
may have multiple probabilistic affordance labels in over-
lapping region and demands establishment of one to many
relational mapping between the point and considered affor-
dance labels. In this context, we propose a supervised ap-
proach for affordance detection by considering semantic lo-
cal geometry, and one to many relational mapping.

Considering local geometric features for affordance de-
tection includes capturing the intricacies of the local neigh-
bourhood which stems from inherent statistical properties.
We capture statistical features through proposed Local Ge-
ometric Descriptor (LGD) to provide valuable insights into
the distribution and properties of data points, and also aids
in capturing the geometric characteristics necessary for de-
tecting affordances accurately. The spatial arrangement of
points and geometric properties of objects together facili-
tate affordance perception, making local geometric infor-
mation necessary for robust detection. Towards this, we
propose Semantic Geometric Correlator (SGC) in conjunc-
tion with LGD to extract semantic features by considering
local geometry. Introducing SGC into our approach, facili-

tates capture of fine-grained geometric details essential for
affordance detection.

Additionally, we introduce a Class Specific Classifier
(CSC) to establish a direct relationship between seman-
tic local features and their corresponding affordance labels.
This classifier acts as an intermediary mechanism, bridging
the gap between semantic local features and corresponding
affordance labels. The CSC learns to discern subtle patterns
and correlations within the semantic features, allowing for
local geometry aware detection of affordances.

As discussed, local geometric features offer a more com-
prehensive representation of the underlying structure asso-
ciated with 3D point clouds, allowing our model to learn
subtle variations and patterns indicative of different affor-
dance labels. Moreover, by retaining the annotated proba-
bilities of affordance during training, our approach lever-
ages both geometric and probabilistic information to en-
hance affordance detection. This fusion of semantic lo-
cal geometry with probabilistic affordance annotations en-
hances the interpretability and robustness of our model, en-
abling it to make more informed decisions towards affor-
dance detection. More specifically, the contribution of our
work include,

• LGAfford-Net, a novel architecture specifically designed
for the detection of affordances within point clouds, lever-
aging local geometric information which includes,
– Semantic Geometric Correlator (SGC) block to fa-

cilitate the correlation of local geometric features with
semantically similar regions within point clouds using
(Section 2.1),
- Local Geometric Descriptor (LGD) tailored
for comprehending local surfacial information (Sec-
tion 2.1.1), and
- Edge Convolution [42] for considering both semantic
and local information for more robust affordance de-
tection.

– A Class Specific Classifier (CSC) for affordance de-
tection, considering the multiple affordance types as-
sociated with each point within a point cloud (Sec-
tion 2.2).

• Demonstration of the proposed architecture through
extensive experimentation on the 3D-AffordanceNet
dataset [6], along with comparative analysis against state-
of-the-art methods.

• Demonstration through classification of 3D objects using
ModelNet40 dataset [43] to determine the robustness of
the extracted features through LGAfford-Net.

In Section 2, we discuss the proposed LGAfford-Net,
Local geometry aware affordance detection network. We
discuss the results and comparison of the proposed method-
ology with state-of-the-art methods in Section 3, and con-
clude on the findings and shortcomings in Section 4.
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LGAfford-Net: A Local Geometry Aware Affordace Detection
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Figure 2. The proposed architecture of LGAfford-Net: A Local Geometry aware Affordance Detection network. Here, SGC represents Se-
mantic Geometric Correlator, P represents input point cloud, Si represents Semantic local geometric features, G represents the combined
hierarchical geometric features considered for affordance detection.
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Figure 3. SGC: Semantic Geometric Correlator to capture the semantic local geometric features of the local neighbourhood. Here, ϕ
represents Local Geometric Features, PL represent learnt Local Geometry Features, S represents the Semantic Local Geometric Features.

2. LGAfford-Net: Local Geometry Aware Af-
fordance Detection Network

In this section, we introduce LGAfford-Net, a Local Ge-
ometry Aware network tailored for affordance detection in
point clouds, as illustrated in Figure 2. Affordance detec-
tion in point clouds necessitates an understanding of both
local geometry and semantic context. To address this chal-
lenge, we propose Semantic Geometric Correlator (SGC)
block to extracts features by combining semantic and geo-
metric information. We also include a Class Specific Clas-
sifier (CSC) to assign affordance labels to individual points,
leveraging the features G extracted by series of SGC blocks.
This classifier enhances the level of details and accuracy of
affordance detection by understanding the one to many re-
lational mapping between the point and considered affor-
dance labels. Thus, LGAfford-Net combines semantic and
local geometric information, enabling accurate and context-
aware affordance detection in point clouds.

Formally, we define the point cloud P as a set of points
{p1, p2, ..., pN}, where each point pi ∈ R3 represents
the Cartesian coordinates (x, y, z) of a point in 3D space,
and N denotes the total number of points in the point cloud.

In what follows, we discuss Semantic Geometric Correlator
and Class Specific Classifier.

2.1. Semantic Geometric Correlator (SGC)

Semantic Geometric Correlator (SGC) block, exploits the
intrinsic relationship between semantic and local geomet-
ric features, by correlating local geometric properties with
semantic information as depicted in Algorithm 1.

Initially, we estimate the local neighbourhood of a point
pi using K-Nearest Neighbours [2, 19] to obtain indexLi.
Local Geometric features ϕi are estimated using the lo-
cal neighbours via Local Geometric Descriptor (LGD). To-
wards extracting learnt features (PLi) of the local neigh-
bourhood, we convolve weights of shared mlp on ϕi. To
estimate semantic local geometric features, we group the
learnt features (PLi) via K-Nearest Neighbours and per-
form Edge Convolution (EdgeConv) [42] as shown in Equa-
tion 1.

Si = max
j∈KS

[hθ(xj − xi, xi)] (1)

where, xj represent the local neighbours and xi represents
the query point.

EdgeConv [42] helps to capture features of regions with
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Algorithm 1: Semantic Geometric Correlator
Input: Point Cloud → P ; // B,N,C

Output: Semantic Geometric Correlator’s weights
(fθ, hθ), Semantic Local Geometric
Features S;

1 Initialize KL,KS, N,CL, CS, Cout

2 indexL = KNN (P,KL)
/* B,N,KL */

3 ϕ = LGD (P, indexL)
/* B,N,CL */

4 PL = SharedMLP (CL, CS)(ϕ)
/* B,N,CS */

5 indexS = KNN (PL,KS)
/* B,N,KS */

6 Pneigh = gatherOp (indexS, PL)
/* B,N,KS, CS */

7 S = max ( EdgeConv (Pneigh, PL) )
/* B,N,Cout */

similar geometry but different spatial locations, facilitating
easier affordance prediction. This integration of semantic
and local geometric information enhances the model’s abil-
ity to infer meaningful patterns necessary for accurate af-
fordance detection.

2.1.1 Local Geometric Descriptor (LGD)

Local Geometric Descriptors enables understanding of the
spatial arrangement of points within the point cloud. To
represent the concept of triangular faces in mesh processing,
we construct triangles using the two nearest neighbors of
each point pi in the point cloud P , denoted as (pj1, pj2).

ϕi =



pi = x, y, z; pi ∈ Rn,
−→e1 = pj1 − pi;

−→e1 ∈ Rn,
−→e2 = pj2 − pi;

−→e2 ∈ Rn,

|−→e1 | = ℓ2(
−→e1); |−→e1 | ∈ R1,

|−→e2 | = ℓ2(
−→e2); |−→e2 | ∈ R1,

n̂ = −→e1 × −→e2 ; n̂ ∈ R3,

µi = mean(pj); pj ∈ Rn,

σi = std(pj); pj ∈ Rn.

(2)

These triangles serve as local patches, allowing us to cap-
ture geometric characteristics effectively. We then estimate
the Local Geometric Descriptor (LGD) using the generated
triangles, as defined in Equation 2.

Here, pj is the nearest neighbours gathered using
indexLi to capture local geometric information. We com-
pute −→e1 and −→e2 representing edge vector for (pj1, pj2) rel-
ative to pi respectively. ℓ2 represents the L2 Norm of the
vector, informing about the displacement of the first two

neighbours with respect to the point pi. Unlike [3, 29], we
also consider standard deviation σi [1] and mean µi [37] of
the local neighbours pj . The mean (µi) denotes the place-
ment of the query point pi in the point cloud (boundary or
planar point) and standard deviation (σi) denotes the den-
sity of the local neighbours along with the directional vector
pointing towards mean. LGD encapsulates essential local
geometric information, enabling us to extract meaningful
features for affordance detection.

Affordance class labels, represent distinct actions or in-
teractions within a given environment. Therefore, it is rea-
sonable to assume that these classes are independent of each
other. Multiple affordance classes may coexist, each with its
own probability of occurrence. However, traditional classi-
fiers, such as those employing softmax activation, tend to
merge the probabilities of different affordance classes, po-
tentially leading to ambiguity and inaccuracies, especially
in case of overlapping affordances. To address this issue, we
encorporate the methodology similar to [36] and develop a
Class Specific Classifier (CSC) for the preservation of the
independent nature of each affordance class, thereby retain-
ing the one to many relationship between the point and each
affordance class. In what follows, we discuss the Class Spe-
cific Classifier.

2.2. Class Specific Classifier (CSC)

To develop a class specific classifiers for affordance de-
tection, we assign a dedicated classifier to each affordance
class as shown in Figure 4.

𝑁
	×
	𝑄

𝑁	×	1

×	𝐴

Class Specific Classifier

𝒢

𝑁
	×
	𝐴𝑁	×	1

𝑁	×	1

	𝑔𝜃

Linear Classifier

Figure 4. Illustration of the Class Specific Classifier architecture
for affordance detection. Each affordance class is associated with
its own dedicated classifier as depicted in the figure above, allow-
ing for independent predictions of the probability associated with
each affordance based on input features. Here A represents the
number of affordance classes.

Each classifier is trained independently to predict the
probability of its corresponding affordance given the input
features G. By decoupling the classifiers for different af-
fordance classes, we ensure the probability predictions are
not influenced by the presence of other affordances, thus
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preserving the independence of each class. The motivation
behind developing class specific classifiers for affordance
detection stems from the need of maintaining the decoupled
relationship between the point and the corresponding affor-
dance classes.

By treating each affordance class as distinct and indepen-
dent, we can better capture the relationships between affor-
dances and their corresponding environmental cues. This
approach allows for robust handling of overlapping affor-
dances, as each class specific classifier focuses solely on
predicting the probability of its designated affordance class
without being influenced by other classes.

2.3. Loss Function

Towards fine-tuning of semantic local geometric features
and the affordance prediction, we optimise the learning pa-
rameter (fθ, hθ, gθ) as shown in Figure 3 and Figure 4
respectively. We use a combination [6] of Binary Cross En-
tropy loss (LBCE) and Dice loss (LDICE) as shown in
Equation 3.

Ltotal = LBCE + LDICE (3)

We include Binary Cross Entropy loss as shown in Equa-
tion 4, to handle the prediction of the affordance along with
fine-tuning of feature extraction module.

LBCE = −
1

N

A∑
j=1

N∑
i=1

yij log ŷij

+(1 − yij) log (1 − ŷij)

(4)

where, yij is the groundtruth of jth affordance probability
for ith point, similarly ŷij is the corresponding prediction
value. Here, A represents the total number of considered
affordance classes.

A point cloud consists of affordable and inhibited re-
gions. Affordable regions denote areas where human in-
teraction is feasible, while inhibited regions refer to areas
where interaction is hindered. Affordable regions typically
constitute a smaller portion of the point cloud compared to
inhibited regions. To handle this imbalance between the in-
hibited region and the affordable regions, we employ Dice
Loss as shown in Equation 5.

LDICE =

A∑
j=1

1 −
∑N

i=1 yij ŷij + ϵ∑N
i=1 yij + ŷij + ϵ

−
∑N

i=1(1 − yij)(1 − ŷij) + ϵ∑N
i=1 2 − yij − ŷij + ϵ

(5)

Here, ϵ prevents the loss from diverging towards infinity.
The incorporation of Dice Loss helps to mitigate the class
imbalance, ensuring effective training and improving the
model’s ability to accurately detect affordances.

3. Results and Discussions
In this section, we discuss the results (Section 3.3) of pro-
posed methodology and compare them with state-of-the-art
methods. We conduct experiments on benchmark datasets
(Section 3.1) and show improved performance in compari-
son with state-of-the-art methods.

3.1. Datasets Description

To train and evaluate the performace of the proposed
LGAfford-Net, we use 3D AffordanceNet dataset [6] and
compare the results with the state-of-the-art benchmarking
proposed in 3D AffordanceNet dataset [6]. To demonstrate
the generalizability of the proposed methodology, we en-
corporate ModelNet40 dataset [43] and compare the object
classification with state-of-the-art methods.
• 3DAffordanceNet [6]: dataset consists of 23K shapes

with 23 semantic object categories and consist of 18 af-
fordance labels. Each point cloud in the dataset is metic-
ulously annotated with affordance labels, indicating the
likelihood of specific human interactions with objects.
The annotations provide probabilistic information, offer-
ing insights into the probability of various affordance cat-
egories associated with individual points within the point
cloud.

• ModelNet40 [43]: ModelNet40 dataset consists of CAD
models with 40 categories. Each object category in the
dataset comprises a varying number of CAD models, with
a total of over 12,000 models across all categories. These
CAD models are sampled to 1024 points to form a point-
cloud.

3.2. Experimental Setup

In this section, we discuss the architectural design and op-
timization methodology considering loss functions as dis-
cussed in Section 2.3.
• Architectural Details: The architectural specifications

of LGAfford-Net with A = 18 are presented in de-
tail as shown in Table 1. This network comprises of 18
Class Specific Classifiers (CSC), each configured accord-
ing to the parameters outlined in Table 1. Specifically,
the Semantic Geometric Correlator (SGC) incorporates
Instance Normalization and Leaky ReLU activation with
a parameter p = 0.2. Class Specific Classifiers utilize
Batch Normalization for improved stability during train-
ing. Additionally, sigmoid activation functions are em-
ployed at the final layer of each Class Specific Classifier
to compute the affordance probabilities.

• Training Setup towards Affordance detection: The
training parameters fθ, hθ, and gθ are initialized using
a uniform distribution. LGAfford-Net is trained for 200
epochs using the Adam optimizer with Cosine Anneal-
ing. We consider 2048 points as input for each training
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Grasp Lift Contain Open InhibitedCut Pour Wear Wrap-grasp

Groundtruth 3DAffordanceNet LGAfford-Net (Ours) Groundtruth 3DAffordanceNet LGAfford-Net (Ours)

Listen

Headphone: The affordance of Grasp using LGAfford-Net is
detected with higher probability than Groundtruth, and affordance of
Listen has higher probability than 3DAffordanceNet.

Bag: The affordance of Lift, Contain and Open using LGAfford-Net
are detected with higher probability than 3DAffordanceNet.

Scissors: The affordance of Grasp using LGAfford-Net is detected
with higher probability than Groundtruth, and are not detected by
3DAffordanceNet.

Hat: The affordance of Grasp using LGAfford-Net is detected with higher
probability than Groundtruth, and affordance Wear has higher probability
than Ground truth and 3DAffordanceNet.

Bottle: The affordance of Pour, Contain, and Wrap-grasp using
LGAfford-Net are detected with higher probability than 3DAffordanceNet.

Faucet: The affordance Grasp and Open using LGAfford-Net are detected
with higher probability than Groundtruth, and in comparation with
3DAffordanceNet.

Figure 5. Qualitative analysis of proposed LGAfford-Net for Affordance detection in comparison with 3DAffordanceNet [6].

Table 1. Architectural Details and specification of LGAfford-Net
which includes SGC and CSC as shown in Figure 2.

Type Parameters # Keys
SGC (KL,KS, CL, CS, Cout) (40,40,20,16,16) SGC 1
SGC (KL,KS, CL, CS, Cout) (40,40,82,64,64) SGC 2
SGC (KL,KS, CL, CS, Cout) (40,40,322,512,512) SGC 3

Conv1d (Cin, Cout) (512,1024) SharedMLP
CSC Linear 1 (Cin, Cout) (1024,128) SharedMLP
CSC Linear 2 (Cin, Cout) (128, 1) SharedMLP

iteration and set the learning rate to 10−3. During train-
ing, LGAfford-Net optimizes its parameters using the loss
function as discussed in Section 2.3. These experiments
are conducted on Tesla V100 with 32 GB VRAM, and
Pytorch Framework. The above configuration is aligned
with the settings as described in [6].

• Training Setup for Classification: Freezed weights of
series of Semantic Geometric Correlators (SGC), previ-
ously trained for affordance detection is extended for an-
other downstream task, classification using ModelNet40
dataset [43]. We train a classifier with three layers us-
ing a learning rate of 10−3, Adam optimizer, and Cross
Entropy loss function for 200 epochs.

3.3. Results

In this section, we present the results of LGAfford-Net for
affordance detection on the 3DAffordanceNet dataset [6].
We discuss the qualitative and quantitative results of
LGAfford-Net in comparison with 3DAffordanceNet [6].
Subsequently, we provide a comprehensive analysis of re-
sults, focusing on the effectiveness of our approach.

The evaluation and comparison of our proposed method-
ology for Affordance Detection are conducted on the 3DAf-
fordanceNet Dataset as shown in Table 2. We employ
multiple performance metrics to assess the effectiveness
of our approach, including mean Intersection over Union
(mIoU), mean Average Precision (mAP), mean Area Un-
der the Curve (mAUC), and Mean Squared Error (MSE).
For mIoU, mAP, and mAUC, higher values indicate better
performance, reflecting a greater accuracy and precision in
affordance detection. Conversely, for MSE, lower values in-
dicate better performance, showing less deviation between
predicted and ground truth affordances.

In Figure 5, we show comparative result analysis of both
LGAfford-Net and 3DAffordanceNet. Analyzing the detec-
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Table 2. Evaluation and comparison of proposed methodology for Affordance Detection using mIoU, mAP, mAUC, and MSE on the
3DAffordanceNet Dataset as in [6] considering 18 Affordance. Here ‘↑’ represent higher is better, and ‘↓’ represent lower is better. Blue
represents increase in mIoU and Red represents decrease in mIoU of LGAfford-Net over 3DAffordanceNet [6].

3DAffordanceNet [6] LGAfford-Net (Ours) Change
in mIoUAffordances mIoU ↑ mAP ↑ mAUC ↑ MSE ↓ mIoU ↑ mAP ↑ mAUC ↑ MSE ↓

Grasp 13.9 43.9 82.5 0.0030 18.3 38.8 79.9 0.0030 4.3
Contain 21.6 57.6 89.9 0.0070 22.2 51.4 86.6 0.0060 0.6

Lift 40.2 85.2 98.7 0.0001 38.9 77.8 94.7 0.0001 1.3
Open 25.4 51.8 91.6 0.0030 25.7 49.5 90.2 0.0028 0.2

Lay 1.0 12.3 50.1 0.0006 23.6 50.9 89.5 0.0005 22.6
Sit 34.9 80.9 96.1 0.0060 41.9 83.6 96.6 0.0053 7.0

Support 18.8 54.0 90.2 0.0130 19.9 54.9 90.8 0.0121 1.1
Wrap-grasp 5.6 20.7 74.6 0.0070 4.2 16.2 68.3 0.0028 1.4

Pour 17.7 47.7 89.2 0.0050 17.7 40.2 86.1 0.0025 0.0
Move 9.9 35.5 78.9 0.0250 10.3 35.3 80.4 0.0208 0.4

Display 32.1 65.5 92.1 0.0020 37.9 64.4 92.3 0.0020 5.8
Push 5.5 20.5 85.0 0.0020 8.4 24.0 84.0 0.0005 2.9
Pull 11.8 40.5 89.7 0.0006 36.5 62.9 90.0 0.0002 24.7

Listen 11.9 36.0 86.1 0.0020 15.8 34.4 80.7 0.0007 3.9
Wear 5.9 18.3 61.0 0.0020 6.9 19.1 67.0 0.0009 1.0
Press 14.8 34.2 91.8 0.0007 20.4 43.9 94.5 0.0007 6.6

Cut 14.5 40.2 91.7 0.0002 9.8 29.4 91.0 0.0003 4.7
Stab 35.4 91.4 98.7 0.0001 32.5 84.3 99.3 0.0001 2.9

Average 17.8 46.4 85.5 0.0800 21.7 47.8 86.8 0.0630 3.9

tion results in conjunction with the groundtruth from Fig-
ure 5, Figure 1, Figure 6, and Table 2, several observations
were made:
• LGAfford-Net demonstrated superior capture of semantic

local features on objects such as Bottle, Scissors, Hat, and
Bag as shown in Figure 5, compared to 3DAffordanceNet.

• Examination of Table 2 revealed that affordance cate-
gories such as Lay and Pull exhibited superior perfor-
mance in terms of mIoU compared to 3DAffordanceNet.

• Figure 1 shows instance where LGAfford-Net success-
fully detected Grasp affordances that were absent in the
ground truth, suggesting its ability to generalize affor-
dance detection.

• Conversely, 3DAffordanceNet exhibited erroneous re-
sults compared to the ground truth, as evident in Figure 1
and further visualized in Figure 5 for objects like Scissors,
Faucets, and Bottle.

• Comparing the results for Headphones, both methods
yielded similar outcomes with differences in confidences.

• On the Hat object, 3DAffordanceNet demonstrated a
greater degree of generalization compared to LGAfford-
Net in distinguishing between the flat regions.

• Affordances such as Wrap, Cut, Stab, and Lift exhib-
ited superior performance in terms of mIoU for 3DAf-
fordanceNet, indicating its proficiency in understanding
physics-related affordances.

• We demonstrate the generalizability of LGAfford-Net in
Figure 6 on the Door object, where the Pull affordance is

detected despite being unavailable in the Ground Truth.
• In Figure 6, we demonstrate the superiority of LGAfford-

Net on the Laptop and Table objects, showcasing im-
proved detection of affordance regions such as Press,
Move, and Support. Notably, LGAfford-Net success-
fully detects the Press affordance in the keyboard region,
which is unavailable in the Ground Truth, unlike 3DAf-
fordanceNet.
Overall, our comprehensive analysis suggests that

LGAfford-Net exhibits greater robustness compared to
3DAffordanceNet in detecting affordances within 3D point
clouds even when groundtruth labels are unavailable. LG
Afford-Net outperforms ground truth data in affordance de-
tection due to its ability to generalize patterns beyond ex-
plicit labels and leverage semantic understanding and local
context, which may not be fully captured in the ground truth
annotations. Additionally, the model’s complexity and ca-
pacity to capture intricate affordance patterns contribute to
its superior performance in certain instances.

Our proposed methodology demonstrate promising re-
sults across all metrics as shown in Table 2. Specifically, we
achieved high values for mIoU, mAP, and mAUC, signify-
ing accurate localization and classification of affordances
within the point cloud data. Additionally, the MSE was
minimized, indicating minimal error between predicted and
ground truth affordances, further validating the robustness
of our approach.

Discrepancies may arise between the labels present in

5267



Support

Door: The affordance of Push, and Pull using LGAfford-Net are detected with higher
probability than Groundtruth, and in comparison with 3DAffordanceNet.

Laptop: The affordance of Display, and Press using LGAfford-Net are detected with
higher probability than Groundtruth, and in comparison with 3DAffordanceNet.

Table: The affordance of Support, and Move using LGAfford-Net are detected with
higher probability than Groundtruth, and in comparison with 3DAffordanceNet.

Groundtruth 3DAffordanceNet LGAfford-Net (Ours)

Display Move Press Pull Push Inhibited

Figure 6. Qualitative analysis of proposed LGAfford-Net for Af-
fordance detection in comparison 3DAffordanceNet [6]. We show
better affordance detection of LGAfford-Net than groundtruth in
certain region with high probability.

the ground truth dataset for affordance and the labels pre-
dicted by our approach as shown in Figure 6. Interest-
ingly, we often observe that our model assigns relevant la-
bels to certain instances where the ground truth dataset may
lack specificity as shown in Figure 1, Figure 5, and Fig-
ure 6. This phenomenon could potentially explain why cer-
tain metrics may not reflect promising results, despite our
approach providing meaningful and contextually relevant
outputs.

Table 3. The classification accuracy of proposed methodology
in comparison with state-of-the-art method on ModelNet40 with
1024 point density.

Methods Accuracy
PointNet [26](2017) 89.2

PointNet++ [27](2017) 90.7
MRTNet [7](2018) 91.2

Spec-GCN [41](2018) 91.5
PCNN [4](2018) 92.3

DGCNN [42](2019) 92.2
RSCNN [22](2019) 92.9

Point Transformer [44](2020) 93.7
KCNet [13](2021) 91.0

PCT [9](2021) 93.2
LGAfford-Net + Classifier(Ours) 91.1

Such discrepancies highlight the complexity inherent in
affordance detection tasks and underscore the challenges
associated with accurately annotating real-world data [6].
While the ground truth dataset serves as a valuable ref-
erence point, it may not always capture the full spectrum
of affordance scenarios present in diverse environments.
Rather than solely relying on quantitative assessments, it is
essential to complement the results with qualitative analyses
to gain a comprehensive understanding of our approach’s
performance. By considering both quantitative metrics and
qualitative observations, we can better evaluate the effec-
tiveness and robustness of our methodology for affordance
detection.

We assess the effectiveness of LGAfford-Net, previously
trained for affordance detection, in an extended application
for object classification. We compare the classification ac-
curacy achieved by our method with state-of-the-art end-to-
end trained point cloud classification methods, as outlined
in Table 3. It is important to note that the end-to-end trained
models referenced in the comparison are trained directly on
the ModelNet40 dataset [43], whereas LGAfford-Net does
not have information about the dataset. This comparison al-
lows us to measure the adaptability and efficacy of features
learned by LGAfford-Net for the task of point cloud classifi-
cation, demonstrating its potential utility in scenarios where
dataset-specific training data may be limited or unavailable.

Overall, the results highlight the efficacy of our proposed
methodology for affordance detection, showcasing its su-
periority over existing methods and its capability to accu-
rately perceive and understand affordances within 3D envi-
ronments.

4. Conclusions

In this paper, we have introduced LGAfford-Net, a novel
architecture specifically tailored for affordance detection
in 3D point clouds. Unlike prior approaches that over-
looked local context and semantic cues, the proposed
LGAfford-Net takes into consideration of semantic and
local geometries for affordance detection. Through exten-
sive experimentation on the 3D-AffordanceNet dataset,
along with comparative analyses against state-of-the-art
methods, we have demonstrated the improved performance
of our proposed architecture. Comprehensive analysis
on benchmark datasets shows that LGAfford-Net ex-
hibits greater robustness compared to 3DAffordanceNet
in detecting affordances within 3D point clouds even
when groundtruth labels are unavailable. We observe
3.9↑ increase in average mIoU across 18 affordance
classes, and maximum of 24.7↑ increase in mIoU (for
“Pull” affordance). We showcase the generalizability
of the extracted features by LGAfford-Net through clas-
sification of 3D objects using the ModelNet40 dataset.
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