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A. More Implementation Details

More implementation details are provided in this section.

A.1. Network Architecture

The detailed architecture of the proposed RDPN is
shown in Fig. 1. In this figure, conv(n ∗ n, c) denotes a
2D convolution with kernel size n and output channel c.
bn denotes batch normalization, relu denotes ReLU activa-
tion, Upsample(s) denotes 2D upsampling with scale factor
s. and maxpool(k, s, p) denotes 2D max pooling with ker-
nel size k, stride s, and padding p, respectively. The output
of adaptive avgpool(h,w) or adaptive maxpool(h,w) is of
size h ∗ w for any input size. convTranspose(n ∗ n, c) de-
notes a 2D transposed convolution with kernel size n and
output channel c. gn denotes group normalization [21],
Leakyrelu denotes LeakyReLU activation, and Linear(c)
denotes a fully connected layer with output channel c.

To represent rotations, we adopt the solution proposed
in [28] to address the issue of rotation discontinuity, which
results in a 6-dimensional output.

A.2. Training Parameters

For RDPN, all networks were trained using the Ranger
optimizer [13,26] with a batch size of 24 and an initial learn-
ing rate of 1e-4. This learning rate was gradually reduced
using a cosine schedule [14] at 72% of the training process.

A.3. Training Enhancements

We employ two strategies to enhance the model’s ability
to handle objects of varying sizes. First, we dynamically
adjust the receptive field of the Fresidual based on the size
of the corresponding tight 3D bounding box of the CAD
model. This allows the model to focus more effectively on
objects of different scales.

Second, we adopt the Dynamic Zoom-In technique pro-
posed in [10, 20] to alleviate the impact of varying object
sizes further. During training, we randomly shift the center
and scale of the ground-truth bounding boxes by a ratio of

25%. Subsequently, we zoom in the input Regions of In-
terest (RoIs) with a ratio of r = 1.5 while maintaining their
original aspect ratio. This ensures that the area containing
the object occupies approximately half of the RoIs. This dy-
namic zooming approach effectively normalizes the object
size distribution and improves the model’s generalization
ability across different object sizes.

DenseFusion [19] FFB6D [4] ES6D [15] RDPN (Ours)
ADD-S 93.2 95.0 93.6 95.4
ADD(-S) 86.1 91.3 89.0 91.5

Table 1. The YCB-V results with PoseCNN input.

B. More Results

This section presents detailed evaluations of RDPN on
the MP6D, YCB-Video datasets, and the BOP challenge
[6].

B.1. Quantitative Results under the same detections
on the YCB-V Dataset

To comprehensively assess the effectiveness of RDPN,
we compare it with several baseline methods while ensur-
ing a fair comparison. However, it is essential to note that
while other methods utilize segmentation masks or built-in
detection techniques, RDPN incorporates detection prepro-
cessing specifically designed for RGBD images. Therefore,
we adopt PoseCNN’s [24] RoI results for RDPN and seg-
mentations for other methods to maintain consistency and
impartiality. Despite this disparity in detection pipelines,
RDPN exhibits robust accuracy, as evidenced in Tab. 1. This
finding underscores its efficacy even when operating under
different detection paradigms.

B.2. Quantitative Results on the BOP challenge

Tab. 2 presents the average recall for the BOP challenge,
a comprehensive benchmark for rigid body pose estimation
encompassing seven diverse datasets. This benchmark has
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Method Refinement LM-O T-LESS TUD-L YCB-V ITODD HB IC-BIN Avg(7)
RCVPose 3D SingleModel VIVO PBR [22] (3DV’ 22) ICP 0.729 0.708 0.966 0.843 0.536 0.863 0.733 0.768
SurfEmb-PBR-RGBD [3] (CVPR’ 22) custom 0.760 0.828 0.854 0.799 0.538 0.866 0.659 0.758
ZebraPoseSAT-EffnetB4 refined [17] (CVPR’ 22) CIR [12] (CVPR’ 22) 0.780 0.862 0.956 0.899 0.618 0.921 0.654 0.813
RADet+PFA-MixPBR-RGBD [2] (CVPR’ 23) PFA [8] (ECCV’ 22) 0.797 0.850 0.960 0.888 0.469 0.869 0.676 0.787
RDPN (Ours) CIR [12] (CVPR’ 22) 0.776 0.768 0.957 0.883 0.575 0.907 0.720 0.798

Table 2. Average Recall on the BOP Core datasets.

Method Hodan PointFusion DCF DF (per-pixel) MaskedFusion G2L-Net PVN3D FFB6D DFTr RDPN
[7] [25] [11] [19] [16] [1] [5] [4] [27] (Ours)

Obj 01 83.42 84.33 86.06 89.35 88.95 89.51 90.28 93.28 95.44 99.58
Obj 02 80.23 81.01 85.36 87.78 89.19 89.03 91.88 92.83 96.51 99.19
Obj 03 65.78 64.74 65.33 72.45 70.03 74.93 76.67 79.51 84.93 93.87
Obj 04 70.56 72.50 73.95 77.98 74.68 85.39 88.13 84.98 92.02 96.36
Obj 05 69.78 68.96 67.19 71.23 75.69 72.13 73.46 76.33 86.24 95.30
Obj 06 72.36 70.66 71.65 75.34 78.31 85.08 87.16 83.98 96.10 96.30
Obj 07 80.79 81.12 82.07 88.63 85.25 89.09 94.81 94.94 97.51 99.33
Obj 08 80.71 81.37 82.39 84.78 85.38 90.10 93.76 89.76 96.75 99.23
Obj 09 69.80 65.98 68.27 73.67 75.46 79.91 82.71 81.25 91.23 95.00
Obj 10 75.32 77.19 79.10 80.54 77.62 86.03 86.16 88.92 94.98 98.34
Obj 11 72.56 71.98 70.96 79.65 75.91 82.01 81.21 84.87 92.36 92.55
Obj 12 74.13 76.32 77.03 78.88 76.98 77.93 79.00 84.82 89.99 95.89
Obj 13 78.63 77.05 75.15 80.12 80.58 85.38 86.69 85.42 95.04 95.80
Obj 14 76.89 77.90 76.98 80.89 81.15 84.54 87.06 87.99 94.13 94.87
Obj 15 64.53 67.36 66.23 68.45 66.30 72.92 74.17 75.01 86.97 88.90
Obj 16 69.88 72.28 73.08 75.81 73.86 79.38 81.35 83.95 92.14 94.93
Obj 17 77.42 85.93 84.68 89.16 88.11 92.08 93.47 93.19 94.25 98.83
Obj 18 75.63 81.46 80.91 83.23 85.94 88.13 87.57 91.73 94.69 98.13
Obj 19 72.89 76.82 78.07 81.98 79.37 85.31 88.82 87.28 95.03 96.13
Obj 20 72.65 75.91 74.20 76.59 78.93 81.41 88.10 85.75 93.92 89.56
Avg (20) 74.20 75.54 75.93 79.84 79.38 83.51 85.42 86.29 93.01 95.90

Table 3. Quantitative evaluation of 6D Pose ADD-S AUC on the MP6D Dataset for each object. Note that all objects are symmetric.

Method Pre-process Network Post-process Network + Post-process
DenseFusion [19] IS 50 11 61

FFB6D [4] - 42 65 107
ES6D [15] IS 6 - 6
Uni6D* [9] - 39 - 39

Uni6Dv2* [18] - 47 - 47
RCVPose [23] - 50 - 50
RDPN (Ours) OD 20 - 20

Table 4. Time Costs (in milliseconds per frame) on the YCB-
Video Dataset. IS represents Instance Segmentation, and OD rep-
resents Object Detection. (*) stands for methods whose source
codes have not been released, and we report their speeds directly
from their respective papers.

yet to reach saturation, indicating its suitability for evaluat-
ing the generalizability of pose estimation models. We eval-
uate RDPN on this challenge and compare its performance
with published works.

B.3. Quantitative Results on the MP6D Dataset

The results of ADD-S AUC of each object on the MP6D
dataset are shown in Tab. 3.

B.4. Time Costs Comparison on YCB-Video
Dataset

The time costs comparison on YCB-Video dataset are
shown in Tab. 4.

B.5. Visualization on Predicted Pose on the YCB-
Video and MP6D Datasets

We provide several qualitative comparison results be-
tween our method and the previous state-of-the-art method
FFB6D [4] in Fig. 2 for the YCB-Video dataset. Addition-
ally, we provide several qualitative results on the MP6D
dataset in Fig. 3.

The results demonstrate the effectiveness of our method
on both datasets, including texture-less and high-reflectivity
objects.
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Figure 1. The detailed architecture of our proposed RDPN framework.



FFB6D RDPN (Ours)Ground Truth

Figure 2. Qualitative results on YCB-Video dataset. The first column shows the ground truth pose. The second column shows the pose
estimated using the keypoint-based method FFB6D [4]. The third column shows the pose estimated using our RDPN approach. Inside
the bounding box, we see that our dense correspondence method outperforms the keypoint-based method FFB6D [4] in handling pose
estimation under occlusion conditions.



RDPN (Ours)Ground TruthOriginal

Figure 3. The qualitative results on MP6D dataset. All images are rendered by projecting the 3D object model onto the image plane
using the estimated pose. The results demonstrate the effectiveness of our method on texture-less and high-reflectivity objects under various
lighting conditions.
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