
FlowIBR: Leveraging Pre-Training for
Efficient Neural Image-Based Rendering of Dynamic Scenes

Marcel Büsching1 Josef Bengtson2 David Nilsson2 Mårten Björkman1

1KTH Royal Insitute of Technology 2Chalmers University of Technology

Abstract

We introduce FlowIBR, a novel approach for efficient
monocular novel view synthesis of dynamic scenes. Existing
techniques already show impressive rendering quality but
tend to focus on optimization within a single scene without
leveraging prior knowledge, resulting in long optimization
times per scene. FlowIBR circumvents this limitation by
integrating a neural image-based rendering method, pre-
trained on a large corpus of widely available static scenes,
with a per-scene optimized scene flow field. Utilizing this
flow field, we bend the camera rays to counteract the scene
dynamics, thereby presenting the dynamic scene as if it were
static to the rendering network. The proposed method re-
duces per-scene optimization time by an order of magni-
tude, achieving comparable rendering quality to existing
methods — all on a single consumer-grade GPU.

1. Introduction

Novel view synthesis for dynamic scenes allows for ren-
dering views of an observed scene from new viewpoints,
possibly also at new points in time. Recent methods
[22, 23, 32, 34] already show impressive rendering quali-
ties. Nevertheless, they suffer from long training times and
show limitations for fast-changing scenes with sparse obser-
vations [13]. We assume that these limitations are partially
due to the fact that these methods are only optimized per
scene without exploiting any prior knowledge. Therefore,
we present FlowIBR which combines a per-scene learned
scene flow field with a pre-trained generalizable novel view
synthesis method [44] as a rendering backbone.

For static scenes there is already a multitude of gener-
alizable novel view synthesis methods [25, 39, 42, 44, 53]
which are trained on many different scenes to learn how
to aggregate information from observations to synthesize
novel views. Importantly, generalizable methods can there-
fore render novel views of previously unseen scenes with-
out any scene-specific training. These methods often out-
perform per-scene optimized methods in terms of render-

a) Ray casting b) Scene flow estimation

c) Ray bending d) Novel view synthesis

Static renderer
(pre-trained)

Figure 1. Method overview a) An image at an arbitrary posi-
tion (orange camera) is synthesised based on existing observations
(black camera), collected at different times. Problem: Due to the
movement of the skater, the skater is not on the epipolar line of the
camera ray. b) We model scene motion using per-scene learned
scene flow. c) Scene flow is used to compensate the motion by
bending the camera ray. d) A pre-trained neural IBR method for
static scenes [44] is used for image synthesis.

ing quality, training times and demand for dense observa-
tion of the scene [25, 53, 57]. However, due to the limited
availability of datasets of dynamic scenes for training, such
generalized methods cannot readily be extended to dynamic
scenes.

To overcome this limitation, we utilize a pre-trained ren-
dering backbone based on Generalizable NeRF Transformer
(GNT) [44], a generalizable view synthesis method which
has been pre-trained on a large corpus of more easily obtain-
able static scenes. GNT performs neural image-based ren-
dering (IBR) [53], synthesizing a novel view by pixel-wise
projecting camera rays as epipolar lines into neighbouring

This CVPR Workshop paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.

8016

source views and then aggregating image information along
them. However, in dynamic scenes, projections of indepen-
dently moving scene content are likely displaced with re-
spect to the epipolar lines. Therefore, we use a per-scene
learned scene flow field to bend camera rays, so they fol-
low the motion of the scene content over time as shown in
Fig. 1. The core optimization is thus simplified by shifting
focus from jointly learning the complex interplay of scene
geometry, color, and temporal changes to a separate step of
learning the scene dynamics.

With this approach, we are able to reduce the necessary
per-scene setup time to about 1.5 hours, an improvement
by an order of magnitude compared to previous methods,
while getting comparable rendering quality. Additionally,
this dynamics-focused optimization process allows us to
create a training regime which enables optimizing the scene
flow network on a single Nvidia 3080 RTX GPU. In sum-
mary, our contributions are:
• Introducing FlowIBR, a novel view synthesis method for

dynamic scenes which combines a per-scene optimized
scene flow field with a pre-trained neural image-based
rendering method to decrease training time.

• Presenting a dynamics-centred training regime which al-
lows for fast training of the proposed method on a single
consumer-grade GPU.

• Demonstrating the performance of FlowIBR on the
Nvidia Dynamic Scenes Dataset [56] showing competi-
tive rendering quality despite significantly lower training
times with respect to the state-of-the-art.

Code for the proposed method will be made available1.

2. Related Work

Novel view synthesis for static scenes: Neural Radiance
Fields (NeRFs) [28] and succeeding methods [1, 2, 29, 59]
are able to synthesize photo-realistic images of a scene by
modelling a continuous radiance and density function of an
observed scene with a multi-layer perceptron (MLP). Gaus-
sian Splatting [18] represents the scenes with a set of 3D
Gaussians, which are projected on the image plane and then
aggregated to a pixel color via GPU optimized alpha blend-
ing. NeRF and Gaussian Splatting based methods are op-
timized per scene without leveraging prior knowledge. In
contrast, techniques for generalizable novel view synthesis
are trained across multiple scenes, in order to allow for syn-
thesis of novel views from sparsely observed scenes, un-
seen during training. Earlier methods such as pixelNeRF
[57] and MVSNeRF [5] have achieved this by deploying a
generalizable NeRF conditioned on latent vectors extracted
from the source observations. Many of the current methods
[8, 17, 25, 36, 42–44, 53] combine transformers [6, 48] with
multi-view geometry. As proposed by IBRNet [53], this is

1https://github.com/buesma/flowibr

realized by projecting points sampled along the camera ray
for each pixel into the source observations. The informa-
tion at these projected points is then extracted and subse-
quently aggregated into pixel color using transformers —
often in combination with volumetric rendering. GNT [44]
and a recent method from Du et al. [8] are fully transformer-
based approaches, replacing the volumetric rendering, with
a learned rendering.

Novel view synthesis for dynamic scenes: While early
techniques required multi-view videos [21, 26, 52], cur-
rent NeRF-based methods have demonstrated remarkable
rendering capabilities from monocular videos. Methods
such as D-NeRF [34] or Nerfies [32] extend NeRFs to the
dynamic domain by learning a canonical NeRF represen-
tation at a fixed point in time [14, 32–34, 41], which is
then warped by a learned motion field to other instances
in time. This canonical scene representation serves as an
anchor in time, accumulating the geometric and color infor-
mation from source observations. A different line of work
[20, 31] instantiates moving objects as separate bounded
NeRFs inside a static environment NeRF, which are then
rigidly moved between time-steps by learned transforma-
tions. For non-rigid dynamics, several methods [12, 22, 55]
learn time-varying NeRF representations of the scene, of-
ten decomposing the scene in static and dynamic content
[12, 22, 58]. To overcome the ambiguity in observing non-
rigid dynamic scenes with a single camera, methods such
as NSFF [22], DVS [12], NeRFlow [7] and DFNet [56] also
estimate the scene flow and use it in combination with opti-
cal flow [45], depth estimates [35] and multi-view geometry
as additional supervision for the per-scene learned dynamic
NeRF. DVS also explores the concept of splitting the learn-
ing process — initially pre-training a static rendering frame-
work and subsequently employing it to simplify the train-
ing of a dynamic approach. However, DVS optimizes both
components only for a single scene. A recent method DynI-
BaR [23], which is based on NSFF, also utilizes neural IBR
for novel view synthesis with techniques to address scene
motion. The key distinction lies in DynIBaR being fully
optimized on a single scene without utilizing pre-training,
leading to long training times of up to 2 days on 8 GPUs.

Efficient view synthesis The aforementioned methods
are optimized for improved visual rendering quality, but
come with long per-scene training times. This problem is
the object of several recent methods which introduce effi-
cient data structures [4, 10, 11, 14, 40, 41, 50, 51] or uti-
lize Gaussian Splatting [9, 27, 54] to reduce the computa-
tional complexity and convergence time. NeRFPlayer [41],
MSTH [50] and MixVoxels [51] simplify the training pro-
cess further by decomposing the scene in static and dynamic
content. Although those methods show substantial improve-

8017

ments in rendering and training times, they rely on multi-
view images as in the Plenoptic Video dataset [21] or quasi
multi-view images [13] as in the D-NeRF dataset [34] or
HyperNeRF dataset [33]. We base our method on easier to
obtain monocular images, and evaluate on, according to the
survey from Gao et al. [13], more complex Nvidia Dynamic
Scenes Dataset [22, 56].

Similar to our approach, Fourier PlenOctree [52] and
MonoNeRF [46] utilize generalizable novel view synthe-
sis for dynamic scenes. However, PlenOctree also requires
multi-view images that are harder to obtain than monocular
videos. MonoNeRF pursues the goal of learning a fully gen-
eralizable dynamic radiance field by utilizing temporal fea-
tures extracted from videos to estimate the scene flow which
is then used to aggregate spatial features to pixel colors.
Nevertheless, for the generalizable setting where MonoN-
eRF is pre-trained on one scene and then fine-tuned on the
remaining scenes, only LPIPS values are reported. These
are several times higher than those of the per-scene setting,
for which the performance is more competitive, but at the
cost of 4h of training time per scene on an A100 GPU.

3. Method
Problem formulation: Given a set of images It ∈
RH×W×3 taken at discrete times t ∈ {1, . . . , T} with
known camera matrices Pt ∈ R3×4, we denote the triplet
(It,Pt, t) as an observation of the scene. We assume ob-
servations to be taken in constant time intervals ∆t. The
problem is now to synthesize a target view of the scene Ĩ
from an arbitrary viewpoint defined by P̃ and continuous
time t̃ ∈ R, based on the set of available observations

O = {(It,Pt, t)}Tt=1. (1)

Overview: Our proposed method combines a pre-trained
generalizable novel view synthesis method with a scene
flow field which is learned per scene. In this section, we
will review the rendering backbone used for static scenes,
introduce the scene flow field model, describe the loss and
regularization terms, and propose a training regime for fast
training on a single GPU.

3.1. Pre-training on static scenes

For our rendering backbone we build upon Generalizable
NeRF Transformer (GNT) [44], a transformer-based exten-
sion of IBRNet[53]. GNT is able to synthesize novel views
of a static scene not seen during training, at an arbitrary
target viewpoint. Novel view synthesis is performed pixel-
wise in a two-stage process that involves two transformers.

View Transformer (VT): This initial stage encompasses
aggregating information from source observations close to
the target view. This is achieved by firstly encoding each
source observation into a feature map using a U-Net [37]

image encoder Ft = U-Net(It). Using the camera ma-
trix of the target view, a camera ray rt,m is cast from
the focal point et of the camera through the target pixel
m ∈ {1, . . . ,H ×W} in ray direction dt,m,

rt,m(l) = et + ldt,m. (2)

Afterwards, N points pt,m,n = rt,m(ln) are sampled at
different distances ln ∈ R along this ray and projected onto
each considered source observation. To simplify notation,
we omit n andm indexes wherever possible. Consequently,
these projected points are located on the respective epipolar
lines, defined by the target pixel and the image planes of the
source observations. Image features are extracted by inter-
polating the feature map at these projected points. For every
individual point along the camera ray, the view transformer
aggregates the associated image feature vectors through at-
tention into a single feature vector, representing the scene
content at that particular spatial location.

Ray Transformer (RT): This stage utilizes a ray trans-
former to conduct a learned ray-based rendering using the
feature vectors created by the view transformer in the first
stage. Using attention, the features along the ray are aggre-
gated into a unified feature representation of that ray. A final
multi-layer perceptron (MLP) is then applied to decode this
ray feature vector, translating it into the corresponding RGB
value for that particular ray.

Optimization: GNT is trained by using one of the obser-
vations as target, while employing the remaining observa-
tions as source observations. This is a technique commonly
found in NeRFs [28] where a color prediction loss term

Lrgb =
∑
m

||Cm − Ĉm||22, (3)

is applied to the final pixel color Cm and ground truth Ĉm

color of pixel m. In contrast to NeRF, GNT is trained
for each training step on a different scene. This enables
novel view synthesis for scenes not observed during train-
ing, without additional optimization. We select GNT as ren-
dering backbone for our work, based on its state-of-the-art
generalization capabilities and rendering quality. For more
details about GNT, we refer to the original paper [44].

3.2. Scene flow field

Naively applying neural image-based rendering to dynamic
scenes will yield insufficient results (see Sec. 4.3) due to
the assumption that relevant neural image features can be
aggregated along the epipolar lines of the target pixel on the
observations. However, in dynamic scenes where each ob-
servation captures a distinct state, this faces challenges due
to potential misalignment between the potentially moving
scene content and the epipolar lines. Our goal is therefore

8018

Figure 2. Scene flow compensation The scene flow (Sf , Sb) is
used to adjust the ray rt̃,m from the target camera P̃t̃ through the
current pixel m, so that it follows the motion of the balloon at the
two adjacent times t̃+1 and t̃−1. This allows the projection of the
ray on the source observations to contain the pixels corresponding
to m, marked by arrows.

to learn the underlying scene motion as scene flow fields
[12, 22] in order to be able to realign the neural feature ag-
gregation with the dynamic image content.

We represent per-scene learned scene flow as a forward
flow field

Sf : (pt, t) → sf (4)

which maps each time t ∈ R and position pt ∈ R3 to a
forward scene flow vector sf ∈ R3 and a backward flow
field

Sb : (pt, t) → sb (5)

which maps to a backward scene flow vector sb ∈ R3.
These scene flow vectors can be used to displace a point
from one time to an adjacent time step with

pt→t+1 = pt + Sf (pt, t) (6)
pt→t−1 = pt + Sb(pt, t) (7)

where we generally denote pt→t+1 as the position pt ad-
justed to the next time t+1 and pt→t−1 to the previous time
t − 1 . The fields are represented by two different heads of
the same MLP

MLPθ : (ψ(p), t) → (sf , sb). (8)

To decrease the computational complexity of estimating the
scene flow, we combine a shallow MLP with the multi-
resolution permutohedral lattice from PermutoSDF [38].
The number of vertices in common voxel [24] or Instant-
NGP [29] based data structures grows exponentially with
the input dimension, which quickly leads to a poor mem-
ory footprint and convergence time. Differently, permuto-
hedral lattices scale linearly with the input dimension and

have been shown to work well with the 4D inputs used in
our case [38]. Details of the scene flow network architecture
are illustrated in the supplementary materials.

3.3. Combined method

As introduced in Fig. 2, we utilize the scene flow to ad-
just the 3D position of the points along the camera ray.
This essentially bends the camera ray [34] — ensuring the
ray points are projected to the parts of the image plane
that contain dynamic content. Therefore, the camera rays
will follow the moving scene content and thus allow static
image-based rendering from being affected by scene mo-
tion, which allows for its use in dynamic scenes without
any adjustments to the basic formulation.

For using more than just the two images closest to the
target time t̃ as source observations, it is necessary to esti-
mate the scene flow st̃→t from the target over a larger time
window. This can be done with an iterative function evalu-
ation of the scene flow network.

St̃→t(pt̃) =

Sf (pt̃, t̃) + St̃+1→t(pt̃+1→t) , t̃ < t

Sb(pt̃, t̃) + St̃−1→t(pt̃−1→t) , t̃ > t

0 , t̃ = t

(9)

This stays computationally feasible when selecting a suf-
ficiently small MLP (e.g. 6 to 8 layers) for the scene flow,
and basing the image synthesis process on images which
are taken at temporally close to the target time N (t̃) ∋ t, to
limit the number of times to adjust the rays for.

Rendering at continuous target times t̃ ∈ R outside the
intervals ∆t, in which the scene has been observed, is fa-
cilitated by estimating the scene flow at the target time, and
then linearly scaling the scene flow vectors, so they displace
the points not over the full interval ∆t but to the times of the
next observations. Following this initial step, the motion ad-
justment can continue as previously described. A more for-
mal introduction of this can be found in the supplementary
materials.

3.4. Losses

The problem of learning a non-rigid dynamic scene from
monocular observations is highly ambiguous. For exam-
ple, an object that has seemingly grown from one obser-
vation to the next can either have changed its actual size
or just moved towards the camera. This ambiguity creates
the need for additional supervision and regularization be-
sides the previously introduced Lrgb loss. For the selection
of losses that are used, we take inspiration from previous
scene flow-based works [12, 22, 23].

Optical flow loss: Given the absence of a ground truth for
the scene flow, the optical flow between the target image and
source observations serves as an effective proxy which can

8019

be used for additional supervision. For this we use RAFT
[45] to estimate the optical flow ot̃→t from the target image
at time t̃ to the used source observations at times t.

The optical flow estimate for each pixel is a 2D vector
that represents the displacement to the corresponding pixel
location in a second image. We use this as supervision for
the 3D scene flow, by taking the scene flow-adjusted points
along the target ray, and projecting them onto the image
plane of the observations. Then we calculate the difference
between the pixel locations of the projected points and the
pixel in the target image corresponding to the camera ray.
This yields one pixel displacement vector per projected ray
point. We use the attention weights of the ray transformer
to estimate a weighted average dt̃→t of these. The optical
flow loss is then calculated with the L1-norm between the
optical flow ot̃→t estimated with RAFT and the weighted
average dt̃→t of projected scene flow,

Lof =
∑

t∈N (t̃)

||ot̃→t − dt̃→t||1. (10)

This procedure is comparable to related methods [22, 23]
which weigh pixel displacements with the opacity values of
the NeRF representation. Due to noise in the optical flow,
we only use Lof to initialize the scene flow to a general
direction, and linearly anneal its weight during training.

Cycle consistency regularization: To ensure that the
learned forward and backward scene flows are consistent
to each other, we utilize cycle consistency regularization
[12, 22, 23]. This means that the backwards scene flow of
point pt should be equal to the forward scene flow of the
displaced point pt→t−1, but in the opposite direction,

Lcyc =
∑

t∈N (t̃)

||Sb(pt, t) + Sf (pt→t−1, t− 1)||1

+||Sb(pt→t+1, t+ 1) + Sf (pt, t)||1.
(11)

Scene flow regularisation: We introduce three supple-
mentary regularization terms to the scene flow, guiding it
to learn anticipated properties of the inherent scene motion.
For this we use the squared L2-norm between forward and
backward scene flow as temporal smoothness regularization
[12, 22, 23, 49]

Ltemp =
∑

t∈N (t̃)

||Sf (pt, t) + Sb(pt, t)||22 (12)

which encourages the learning of a piece-wise linear solu-
tion. Additionally, we use the L1-norm on the predicted
scene flow to support a generally slow scene flow, based on
the common assumption, that most of the scene does not
contain motion [12, 22, 47].

Lslow =
∑

t∈N (t̃)

||Sf (pt, t)||1 + ||Sb(pt, t)||1 (13)

Lastly, we encourage spatial smoothness so that narrow
points along a ray are going to have similar scene flow [22,
23, 30]. For this, the difference between the forward and
backward flows of neighbouring points p′ ∈ N (p) is
weighted based on their distance

w(p′,p) = exp(−2||p′ − p||22). (14)

The loss is then calculated on the L1-norm between the de-
viations in the flow.

Lspat =
∑

t∈N (t̃)

∑
p′∈N (pt)

(||Sf (pt, t)− Sf (p′, t)||1+

+ ||Sb(pt, t)− Sb(p
′, t)||1)× w(p′,pt)

(15)

We summarize these losses to an aggregated regularization
loss term

Lreg = Ltemp + Lslow + Lspat. (16)

Final loss: The final total loss is calculated by a weighted
summation over the different loss terms

L = Lrgb + αk
ofLof + αcycLcyc + αregLreg, (17)

with αk
of being linearly annealed over k steps of training.

3.5. Dynamics focused optimization

In the following, we will describe details of the process
which will allow for optimization on a single GPU. For this
we take advantage of the aspect that the optimization can
focus on learning the scene flow, since the rendering has al-
ready been learned during pre-training. The general idea is
to follow a coarse-to-fine approach [32] in learning scene
flow, focusing on eliciting a coarse scene flow at the begin-
ning, and then refining it as training time progresses.

Low-to-high number of source images: Training starts
with a low number of source images to initially learn the
scene flow between close time steps. Once the scene flow
has started to emerge, we steadily increase the maximum
number of source images at pre-defined steps to also learn
more nuanced long-term dynamics. To keep a constant
maximum GPU utilization, we adjust the ray batch size so
that the total number of rays for all views remains constant,
with a larger batch size in the beginning and then smaller
batch sizes as the number of views increases.

Coarse-to-fine image resolutions: Directly training the
model on the original image resolution often leads to a zero
collapse of the scene flow, i.e. the scene is incorrectly pre-
dicted to be fully static. To avoid falling into a trivial lo-
cal minimum created by high-frequency details, we apply

8020

a coarse-to-fine scheme with the images originally subsam-
pled by a factor of f = 8. The subsampling reduces the
overall complexity of the correspondence problem, and the
batches of rays are more likely to cover also small dynamic
areas. During training, we incrementally increase the image
resolution by reducing f in steps of 2 to gradually refine the
scene flow to represent the finer details of the underlying
scene dynamics.

Masked ray sampling: The regularization factors in Lreg

benefit learning of a near-zero scene flow in static regions
of the scene. This allows us to focus the computational re-
sources on the dynamic regions of the scene. We do so us-
ing binary motion masks that represent a coarse segmenta-
tion of dynamic regions in the image. Instead of sampling
pixels uniformly across the image, we increase the sampling
probability of pixels in regions that are potentially dynamic.

Motion masks are estimated by using an off-the-shelf
instance segmentation network [15]. Of the detected in-
stances, we retain potentially dynamic classes (e.g. person,
car) with a confidence above an intentionally small thresh-
old (p = 0.1) to avoid discarding dynamic content. Overly
small instances are removed via morphological opening,
where we use a large dilation filter mask to create a wide
boundary around the remaining segments which allows for
learning a better transition from static to dynamic regions.
The segmentation mask also allows us to downscale the
Lslow loss at potentially dynamic pixels, encouraging a
stronger scene flow. Li et al. [22] also utilize dynamic
masks, but use them in a separate stage at the beginning of
the training to sample additional rays in dynamic regions.

Fine-tuning of rendering backbone: To further increase
the rendering quality we also fine-tune the rendering back-
bone per-scene. This is possible with minimum computa-
tional overhead, since GNT is part of the optimization loop
of the scene flow network. We found this especially benefi-
cial in combination with the optical flow loss, since the fine-
tuning leads to refined attention weights of the ray trans-
former and therefore a more refined optical flow loss.

4. Experimental Results
In this section, we show the capabilities of our method,
compare it to state-of-the-art baselines and ablations in
quantitative and qualitative experiments, as well as analyse
the learned scene flow.

4.1. Experimental setup

Optimization of the scene flow network and fine-tuning of
GNT is done jointly with the Adam optimizer [19] on a
Nvidia 3080 RTX GPU. For the GNT backbone, we train
a smaller version of the original GNT architecture with 4

transformer blocks instead of 8 and otherwise follow the
training regime from Varma T. et al. [44]. This allows for
faster rendering and the reduced memory permits a higher
batch-size. Further implementation and parameter details
can be found in the supplementary materials.

As dataset for the evaluation we use the Nvidia Dynamic
Scenes Dataset [56]. The eight scenes in the dataset are
observed in a resolution of 1920 × 1080 by 12 static and
synchronized cameras. A moving camera is simulated by
selecting one of the cameras for each timestep in a circular
fashion to create the train set. Then for each training step,
one camera position is selected to sample a ray batch, while
the source observations are selected from the set of remain-
ing images. During evaluation, observations present in the
train set are kept as the source observations, while obser-
vations unseen during training are used as target images to
estimate the metrics. We utilize two versions of the dataset
which differ in the temporal resolution: A default version
with 24 timesteps, and the long version from Li et al. [23]
with, depending on the scene, 90 to 200 timesteps. If not
explicitly mentioned, the default version is used.

Calculating the optical flow, motion masks and subsam-
pling for the scenes takes on average 6:45min for the default
and 13:51min for the long scenes. This is similar to the set-
up times of the baselines and is therefore not included in
later reported training times.

For the quantitative evaluations we report Peak Signal-
to-Noise Ratio (PSNR), Structural Similarity Index Mea-
sure (SSIM) [3] and Learned Perceptual Image Patch Simi-
larity (LPIPS) [60]. In addition to estimating these metrics
for the full image, we also estimate them for dynamic image
regions, leveraging the motion masks from the dataset.

4.2. Comparative evaluation

We benchmark FlowIBR against NSFF [22], DVS [12] and
HyperNeRF [33], retraining each baseline using the config-
urations provided by the respective authors. For DynIBaR
[23], which represents the current state-of-the-art in terms
of rendering quality, we present the numbers reported in
the original publication. For a fair comparison in rendering
time, we use images down-sampled by a factor of f = 4 to
a resolution of 480× 270 before using them for training or
evaluation of the methods.

Qualitative results: Fig. 3 presents images rendered with
FlowIBR and the retrained baselines. FlowIBR demon-
strates the capability to synthesize novel views from pre-
viously unobserved viewpoints, achieving a quality that is
competitive with the state-of-the-art. Further qualitative re-
sults are presented in the form of image sequences in the
supplementary materials and as continuous renderings in
the accompanying video.

8021

Table 1. Quantitative evaluation on Nvidia Dynamic Scenes [56] We report metrics as average over all 8 scenes for the whole image as
well as dynamic parts only. For NSFF we report results on two different training checkpoints with the number of train steps in brackets.
FlowIBR (ours) has a significantly lower training time than the compared methods while obtaining competitive rendering quality.

Data Method
Train Time Render Time Full Image Dynamic Regions

NGPU h GPUh NGPU GPUsec PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓

default

HyperNeRF 4 16:00 64:00 4 10.0 20.03 0.481 0.212 17.40 0.327 0.301
DVS 4 18:30 74:00 1 20.4 25.98 0.730 0.083 22.12 0.690 0.152
NSFF (30k) 4 2:05 8:20 1 6.2 26.57 0.604 0.103 20.84 0.627 0.178
NSFF (1M) 4 58:15 233:00 1 6.2 28.20 0.681 0.044 21.75 0.681 0.103
FlowIBR (Ours) 1 1:27 1:27 1 11.8 26.81 0.742 0.099 21.13 0.651 0.192

long
DynIBaR† 8 48:00 384:00 1 20.0 30.92 0.958 0.027 24.32 0.827 0.061
FlowIBR (Ours) 1 1:32 1:32 1 11.3 27.32 0.793 0.083 22.06 0.702 0.132

† Results were taken from the original publication

(a) GT (b) FlowIBR (Ours) (c) HyperNeRF (d) DVS (e) NSFF (1M)

Figure 3. Qualitative evaluation on Nvidia Dynamic Scenes (default) [56] Renderings for FlowIBR and the retrained methods (Hy-
perNeRF, DVS, NSFF). We can clearly see that FlowIBR is able to synthesize novel views from previously unobserved viewpoints, with
quality close to the ground truth (GT) image and to state-of-the-art methods.

Quantitative results: As the results in Tab. 1 indicate,
FlowIBR performs competitively with respect to the base-
lines, but requires significantly shorter training time and
only uses a single GPU. In terms of rendering quality, the
results are the most comparable to those of NSFF, which
requires an order of magnitude more GPU hours for train-
ing. To better understand the relative performance of the
methods, we limited NSFF to a more similar training bud-
get, causing it to underperform in comparison to FlowIBR.
The moderate rendering speed of our approach can be at-
tributed to two primary factors. First, we employ a gener-
alizable rendering backbone that, although highly versatile,
has not been specifically optimized for speed. Second, our
image-based rendering approach necessitates the projection
of camera rays across all source observations, unlike NeRF-
based methods that often render in a single forward pass.

4.3. Ablation study

We evaluate ablations of our method, summarized in Tab. 2,
to analyze the contribution of the different components.
The full method outperforms all ablated versions, although
some ablations show high performance in individual met-
rics. Most importantly, the results show that the introduc-
tion of flow compensation improves the image quality by
3.3 in PSNR for the whole image and 3.2 for the dynamic
regions of the image. We found 60k training steps to be the
optimal training time as displayed in Tab. 3. Shorter and
longer training times lead to consistently worse metrics, es-
pecially in the dynamic parts of the image. Replacing the
permutohedral encoding with an vanilla ReLU MLP yields
marginally better qualitative results, at the cost of an in-
creased rendering time of 15.1 s/img – more details on this

8022

Table 2. Method ablation Ablations are obtained by selectively
omitting one component at a time: (1) GNT without the scene
flow, (2-3) const. subsampling f instead of the coarse-to-fine sub-
sampling, (4) optical-flow loss Lof , (5) cycle loss Lcyc, (6) scene
flow reg. losses Lreg = Lslow + Lspat + Ltemp, (7) the usage
of dynamic-static masks for ray sampling, and (8) the GNT fine-
tuning. Metrics are averaged over the scenes Balloon1, Truck and
Playground. Best result is bold and second best underlined.

Ablation Full Image Dynamic Regions
PSNR SSIM LPIPS PSNR SSIM LPIPS

(1) default GNT 24.1 0.693 0.233 18.5 0.482 0.394
(2) f = 4 26.0 0.732 0.157 19.8 0.589 0.289
(3) f = 8 25.8 0.717 0.130 20.7 0.534 0.241
(4) Lof 26.5 0.781 0.130 19.8 0.532 0.281
(5) Lcyc 26.0 0.793 0.118 21.2 0.610 0.206
(6) Lreg 26.3 0.795 0.124 21.0 0.625 0.205
(7) dyn. mask 26.2 0.803 0.127 19.7 0.488 0.275
(8) fine-tune 25.3 0.782 0.145 18.5 0.492 0.258
full 26.4 0.799 0.118 21.5 0.631 0.197

Table 3. Training time ablation Training time based parameters
such as subsample frequency and learning rate decay were scaled
proportionally for the ablations. Metrics are averaged over the
scenes Balloon1, Truck and Playground.

Training Full Image Dynamic Regions
steps h PSNR SSIM LPIPS PSNR SSIM LPIPS
30k 0:43 24.31 0.774 0.148 18.90 0.511 0.252
60k 1:29 26.42 0.799 0.118 21.53 0.631 0.195
90k 2:13 22.57 0.623 0.211 19.03 0.483 0.320

can be found in the supplementary.

4.4. Analysis of learned scene flow

To analyze the learned scene flow, we visualize the forward
(sf) and backward (sb) scene flow for the rays of a selected
reference view in Fig. 4. We project this flow onto the im-
age plane and color code the direction and magnitude. The
flow is predominantly observed at pixels corresponding to
the balloon, and the color-coded directions indicate a proper
counter-clockwise movement, where sf and sb are nearly
inverse to each other. This visualization illustrates the ca-
pability of FlowIBR in capturing correct scene dynamics.
Nevertheless, the scene flow does not exactly follow the
contour of the balloon, which is one explanation for the oc-
casional motion blur in rendered images.

4.5. Limitations

Since FlowIBR is initialized with optical flow, it inherits
issues that complicate optical flow estimation, such as oc-
clusions and undefined flow in large homogeneous areas.
Long sequences can become challenging as a singular scene
flow network, restricted by its finite capacity, must cap-
ture the entire flow. In Fig. 5 we illustrate common fail-
ure cases. These issues can typically be alleviated through
scene-specific parameter tuning or alternative network ini-
tialization.

(a) Reference view (b) Scene flow

Figure 4. Scene flow visualization Projection of sf (top) and sb

(bottom) onto the image plane. The arrows in the reference view
show the true scene motion. Scene flow is visualized with hue indi-
cating the direction and intensity the magnitude. Here our method
correctly learned the rotating motion shown in the image.

(a) Motion blur (b) Zero flow (c) Render artifacts

Figure 5. Failure cases (a) Fast moving objects can exhibit motion
blur. (b) For small objects, FlowIBR occasionally fails to learn any
scene flow at all, instead learning a continuous near-zero function.
(c) In some cases, images contain rendering artifacts, especially
for unbounded backgrounds.

5. Discussion and Conclusion
In this paper, we presented FlowIBR, a novel view synthesis
method for dynamic scenes which utilizes a pre-trained ren-
dering method, to decrease the necessary training time. We
solve the problem of a limited number of dynamic training
scenes by employing a per-scene learned scene flow net-
work, which is used to adjust the observations from differ-
ent points in time, so they appear to be static to the ren-
dering module. This allows for the utilization of a readily-
available rendering backbone for static scenes in the dy-
namic domain – enabling shorter training times on a single
consumer-grade GPU. We would like to address the moder-
ate rendering speed of FlowIBR in future work, by creating
a specialized rendering backbone which focuses even more
on fast training and rendering.

Acknowledgements
This work was supported by the Wallenberg AI, Au-
tonomous Systems and Software Program (WASP) funded
by the Knut and Alice Wallenberg Foundation.

8023

References
[1] Jonathan T. Barron, Ben Mildenhall, Matthew Tancik, Peter

Hedman, Ricardo Martin-Brualla, and Pratul P. Srinivasan.
Mip-NeRF: A Multiscale Representation for Anti-Aliasing
Neural Radiance Fields. In IEEE/CVF International Confer-
ence on Computer Vision (ICCV), pages 5835–5844, 2021.
2

[2] Jonathan T. Barron, Ben Mildenhall, Dor Verbin, Pratul P.
Srinivasan, and Peter Hedman. Mip-NeRF 360: Unbounded
Anti-Aliased Neural Radiance Fields. In IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition (CVPR),
pages 5460–5469, 2022. 2

[3] Dominique Brunet, Edward R. Vrscay, and Zhou Wang. On
the Mathematical Properties of the Structural Similarity In-
dex. IEEE Transactions on Image Processing, 21(4):1488–
1499, 2012. 6

[4] Ang Cao and Justin Johnson. HexPlane: A Fast Representa-
tion for Dynamic Scenes. In IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition (CVPR), pages 130–
141, 2023. 2

[5] Anpei Chen, Zexiang Xu, Fuqiang Zhao, Xiaoshuai Zhang,
Fanbo Xiang, Jingyi Yu, and Hao Su. MVSNeRF: Fast Gen-
eralizable Radiance Field Reconstruction from Multi-View
Stereo. In IEEE/CVF International Conference on Computer
Vision (ICCV), pages 14104–14113, 2021. 2

[6] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov,
Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner,
Mostafa Dehghani, Matthias Minderer, Georg Heigold, Syl-
vain Gelly, Jakob Uszkoreit, and Neil Houlsby. An Image is
Worth 16x16 Words: Transformers for Image Recognition at
Scale. In International Conference on Learning Representa-
tions (ICLR), 2022. 2

[7] Yilun Du, Yinan Zhang, Hong-Xing Yu, Joshua B. Tenen-
baum, and Jiajun Wu. Neural Radiance Flow for 4D
View Synthesis and Video Processing. In IEEE/CVF In-
ternational Conference on Computer Vision (ICCV), pages
14304–14314, 2021. 2

[8] Yilun Du, Cameron Smith, Ayush Tewari, and Vincent Sitz-
mann. Learning To Render Novel Views From Wide-
Baseline Stereo Pairs. In IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition (CVPR), pages 4970–
4980, 2023. 2

[9] Bardienus P. Duisterhof, Zhao Mandi, Yunchao Yao, Jia-
Wei Liu, Mike Zheng Shou, Shuran Song, and Jeffrey Ich-
nowski. MD-Splatting: Learning Metric Deformation from
4D Gaussians in Highly Deformable Scenes. arXiv preprint,
arXiv:2312.00583, 2023. 2

[10] Jiemin Fang, Taoran Yi, Xinggang Wang, Lingxi Xie, Xi-
aopeng Zhang, Wenyu Liu, Matthias Nießner, and Qi Tian.
Fast Dynamic Radiance Fields with Time-Aware Neural
Voxels. In SIGGRAPH Asia 2022 Conference Papers, pages
1–9, 2022. 2

[11] Sara Fridovich-Keil, Giacomo Meanti, Frederik Rahbæk
Warburg, Benjamin Recht, and Angjoo Kanazawa. K-
Planes: Explicit Radiance Fields in Space, Time, and Ap-
pearance. In IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), pages 12479–12488, 2023. 2

[12] Chen Gao, Ayush Saraf, Johannes Kopf, and Jia-Bin Huang.
Dynamic View Synthesis from Dynamic Monocular Video.
In IEEE/CVF International Conference on Computer Vision
(ICCV), pages 5692–5701, 2021. 2, 4, 5, 6

[13] Hang Gao, Ruilong Li, Shubham Tulsiani, Bryan Russell,
and Angjoo Kanazawa. Monocular Dynamic View Synthe-
sis: A Reality Check. In Advances in Neural Information
Processing Systems (NeurIPS), pages 33768–33780, 2022.
1, 3

[14] Xiang Guo, Jiadai Sun, Yuchao Dai, Guanying Chen, Xiao-
qing Ye, Xiao Tan, Errui Ding, Yumeng Zhang, and Jing-
dong Wang. Forward Flow for Novel View Synthesis of Dy-
namic Scenes. In IEEE/CVF International Conference on
Computer Vision (ICCV), pages 16022–16033, 2023. 2

[15] Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross Gir-
shick. Mask R-CNN. In IEEE/CVF International Confer-
ence on Computer Vision (ICCV), pages 2980–2988, 2017.
6

[16] Dan Hendrycks and Kevin Gimpel. Gaussian Error Linear
Units (GELUs). arXiv preprint, arXiv:1606.08415, 2023. 12

[17] Mohammad Mahdi Johari, Yann Lepoittevin, and Francois
Fleuret. GeoNeRF: Generalizing NeRF with Geometry Pri-
ors. In IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition (CVPR), pages 18344–18347, 2022. 2

[18] Bernhard Kerbl, Georgios Kopanas, Thomas Leimkuehler,
and George Drettakis. 3D Gaussian Splatting for Real-Time
Radiance Field Rendering. ACM Transactions on Graphics,
42(4):1–14, 2023. 2

[19] Diederik P. Kingma and Jimmy Ba. Adam: A Method for
Stochastic Optimization. In International Conference on
Learning Representations (ICLR), 2015. 6, 12

[20] Abhijit Kundu, Kyle Genova, Xiaoqi Yin, Alireza Fathi,
Caroline Pantofaru, Leonidas Guibas, Andrea Tagliasacchi,
Frank Dellaert, and Thomas Funkhouser. Panoptic Neural
Fields: A Semantic Object-Aware Neural Scene Represen-
tation. In IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), pages 12861–12871, 2022. 2

[21] Tianye Li, Mira Slavcheva, Michael Zollhoefer, Simon
Green, Christoph Lassner, Changil Kim, Tanner Schmidt,
Steven Lovegrove, Michael Goesele, Richard Newcombe,
and Zhaoyang Lv. Neural 3D Video Synthesis from Multi-
view Video. In IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR), pages 5511–5521, 2022.
2, 3

[22] Zhengqi Li, Simon Niklaus, Noah Snavely, and Oliver Wang.
Neural Scene Flow Fields for Space-Time View Synthesis of
Dynamic Scenes. In IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), pages 6494–6504,
2021. 1, 2, 3, 4, 5, 6

[23] Zhengqi Li, Qianqian Wang, Forrester Cole, Richard Tucker,
and Noah Snavely. DynIBaR: Neural Dynamic Image-Based
Rendering. In IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR), pages 4273–4284, 2023.
1, 2, 4, 5, 6

[24] Lingjie Liu, Jiatao Gu, Kyaw Zaw Lin, Tat-Seng Chua, and
Christian Theobalt. Neural Sparse Voxel Fields. In Advances
in Neural Information Processing Systems (NeurIPS), pages
15651–15663, 2020. 4

8024

[25] Yuan Liu, Sida Peng, Lingjie Liu, Qianqian Wang, Peng
Wang, Christian Theobalt, Xiaowei Zhou, and Wenping
Wang. Neural Rays for Occlusion-aware Image-based Ren-
dering. In IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), pages 7814–7823, 2022. 1, 2

[26] Stephen Lombardi, Tomas Simon, Jason Saragih, Gabriel
Schwartz, Andreas Lehrmann, and Yaser Sheikh. Neural vol-
umes: learning dynamic renderable volumes from images.
ACM Transactions on Graphics, 38(4):65:1–65:14, 2019. 2

[27] Jonathon Luiten, Georgios Kopanas, Bastian Leibe, and
Deva Ramanan. Dynamic 3D Gaussians: Tracking by Persis-
tent Dynamic View Synthesis. In International Conference
on 3D Vision (3DV), 2024. 2

[28] Ben Mildenhall, Pratul P. Srinivasan, Matthew Tancik,
Jonathan T. Barron, Ravi Ramamoorthi, and Ren Ng. NeRF:
Representing Scenes as Neural Radiance Fields for View
Synthesis. In European Conference on Computer Vision
(ECCV), pages 405–421, 2020. 2, 3, 12

[29] Thomas Müller, Alex Evans, Christoph Schied, and Alexan-
der Keller. Instant neural graphics primitives with a multires-
olution hash encoding. ACM Transactions on Graphics, 41
(4):1–15, 2022. 2, 4

[30] Richard A. Newcombe, Dieter Fox, and Steven M. Seitz.
DynamicFusion: Reconstruction and tracking of non-rigid
scenes in real-time. In IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition (CVPR), pages 343–
352, 2015. 5

[31] Julian Ost, Fahim Mannan, Nils Thuerey, Julian Knodt, and
Felix Heide. Neural Scene Graphs for Dynamic Scenes.
In IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), pages 2855–2864, 2021. 2

[32] Keunhong Park, Utkarsh Sinha, Jonathan T. Barron, Sofien
Bouaziz, Dan B Goldman, Steven M. Seitz, and Ricardo
Martin-Brualla. Nerfies: Deformable Neural Radiance
Fields. In IEEE/CVF International Conference on Computer
Vision (ICCV), pages 5845–5854, 2021. 1, 2, 5

[33] Keunhong Park, Utkarsh Sinha, Peter Hedman, Jonathan T.
Barron, Sofien Bouaziz, Dan B Goldman, Ricardo Martin-
Brualla, and Steven M. Seitz. HyperNeRF: a higher-
dimensional representation for topologically varying neural
radiance fields. ACM Transactions on Graphics, 40(6):1–12,
2021. 3, 6

[34] Albert Pumarola, Enric Corona, Gerard Pons-Moll, and
Francesc Moreno-Noguer. D-NeRF: Neural Radiance Fields
for Dynamic Scenes. In IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition (CVPR), pages 10313–
10322, 2021. 1, 2, 3, 4

[35] Rene Ranftl, Katrin Lasinger, David Hafner, Konrad
Schindler, and Vladlen Koltun. Towards Robust Monocu-
lar Depth Estimation: Mixing Datasets for Zero-Shot Cross-
Dataset Transfer. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 44(3):1623–1637, 2022. 2

[36] Jeremy Reizenstein, Roman Shapovalov, Philipp Henzler,
Luca Sbordone, Patrick Labatut, and David Novotny. Com-
mon Objects in 3D: Large-Scale Learning and Evaluation
of Real-life 3D Category Reconstruction. In IEEE/CVF In-
ternational Conference on Computer Vision (ICCV), pages
10881–10891, 2021. 2

[37] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-
Net: Convolutional Networks for Biomedical Image Seg-
mentation. In Medical Image Computing and Computer-
Assisted Intervention (MICCAI 2015), pages 234–241, 2015.
3

[38] Radu Alexandru Rosu and Sven Behnke. PermutoSDF:
Fast Multi-View Reconstruction with Implicit Surfaces Us-
ing Permutohedral Lattices. In IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), pages
8466–8475, 2023. 4, 12

[39] Mehdi S.M. Sajjadi, Henning Meyer, Etienne Pot, Urs
Bergmann, Klaus Greff, Noha Radwan, Suhani Vora,
Mario Lucic, Daniel Duckworth, Alexey Dosovitskiy, Jakob
Uszkoreit, Thomas Funkhouser, and Andrea Tagliasacchi.
Scene Representation Transformer: Geometry-Free Novel
View Synthesis Through Set-Latent Scene Representations.
In IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), pages 6219–6228, 2022. 1

[40] Ruizhi Shao, Zerong Zheng, Hanzhang Tu, Boning Liu,
Hongwen Zhang, and Yebin Liu. Tensor4D: Efficient Neu-
ral 4D Decomposition for High-Fidelity Dynamic Recon-
struction and Rendering. In IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition (CVPR), pages 16632–
16642, 2023. 2

[41] Liangchen Song, Anpei Chen, Zhong Li, Zhang Chen, Lele
Chen, Junsong Yuan, Yi Xu, and Andreas Geiger. NeRF-
Player: A Streamable Dynamic Scene Representation with
Decomposed Neural Radiance Fields. IEEE Transactions
on Visualization and Computer Graphics, 29(5):2732–2742,
2023. 2

[42] Mohammed Suhail, Carlos Esteves, Leonid Sigal, and
Ameesh Makadia. Generalizable Patch-Based Neural Ren-
dering. In European Conference on Computer Vision
(ECCV), pages 156–174, 2022. 1, 2

[43] Mohammed Suhail, Carlos Esteves, Leonid Sigal, and
Ameesh Makadia. Light Field Neural Rendering. In
IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), pages 8259–8269, 2022.

[44] Mukund Varma T, Peihao Wang, Xuxi Chen, Tianlong Chen,
Subhashini Venugopalan, and Zhangyang Wang. Is Atten-
tion All That NeRF Needs? In International Conference on
Learning Representations (ICLR), 2023. 1, 2, 3, 6, 12

[45] Zachary Teed and Jia Deng. RAFT: Recurrent All-Pairs
Field Transforms for Optical Flow. In European Conference
on Computer Vision (ECCV), pages 402–419, 2020. 2, 5

[46] Fengrui Tian, Shaoyi Du, and Yueqi Duan. MonoNeRF:
Learning a Generalizable Dynamic Radiance Field from
Monocular Videos. In IEEE/CVF International Conference
on Computer Vision (ICCV), pages 17903–17913, 2023. 3

[47] J. Valmadre and S. Lucey. General trajectory prior for Non-
Rigid reconstruction. In IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), pages 1394–1401,
2012. 5

[48] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszko-
reit, Llion Jones, Aidan N Gomez, Łukasz Kaiser, and Illia
Polosukhin. Attention is All you Need. In Advances in Neu-
ral Information Processing Systems (NeurIPS), pages 6000–
6010, 2017. 2

8025

[49] Minh Vo, Srinivasa G. Narasimhan, and Yaser Sheikh. Spa-
tiotemporal Bundle Adjustment for Dynamic 3D Recon-
struction. In IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), pages 1710–1718, 2016. 5

[50] Feng Wang, Zilong Chen, Guokang Wang, Yafei Song, and
Huaping Liu. Masked Space-Time Hash Encoding for Effi-
cient Dynamic Scene Reconstruction. In Advances in Neural
Information Processing Systems (NeurIPS), page to appear,
2023. 2

[51] Feng Wang, Sinan Tan, Xinghang Li, Zeyue Tian, Yafei
Song, and Huaping Liu. Mixed Neural Voxels for Fast Multi-
view Video Synthesis. In IEEE/CVF International Confer-
ence on Computer Vision (ICCV), pages 19706–19716, 2023.
2

[52] Liao Wang, Jiakai Zhang, Xinhang Liu, Fuqiang Zhao, Yan-
shun Zhang, Yingliang Zhang, Minve Wu, Jingyi Yu, and
Lan Xu. Fourier PlenOctrees for Dynamic Radiance Field
Rendering in Real-time. In IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition (CVPR), pages 13514–
13524, 2022. 2, 3

[53] Qianqian Wang, Zhicheng Wang, Kyle Genova, Pratul Srini-
vasan, Howard Zhou, Jonathan T. Barron, Ricardo Martin-
Brualla, Noah Snavely, and Thomas Funkhouser. IBRNet:
Learning Multi-View Image-Based Rendering. In IEEE/CVF
Conference on Computer Vision and Pattern Recognition
(CVPR), pages 4688–4697, 2021. 1, 2, 3

[54] Guanjun Wu, Taoran Yi, Jiemin Fang, Lingxi Xie, Xiaopeng
Zhang, Wei Wei, Wenyu Liu, Qi Tian, and Xinggang Wang.
4D Gaussian Splatting for Real-Time Dynamic Scene Ren-
dering. arXiv preprint, arXiv:2310.08528, 2023. 2

[55] Wenqi Xian, Jia-Bin Huang, Johannes Kopf, and Changil
Kim. Space-time Neural Irradiance Fields for Free-
Viewpoint Video. In IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), pages 9416–9426,
2021. 2

[56] Jae Shin Yoon, Kihwan Kim, Orazio Gallo, Hyun Soo Park,
and Jan Kautz. Novel View Synthesis of Dynamic Scenes
With Globally Coherent Depths From a Monocular Camera.
In IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), pages 5335–5344, 2020. 2, 3, 6, 7

[57] Alex Yu, Vickie Ye, Matthew Tancik, and Angjoo Kanazawa.
pixelNeRF: Neural Radiance Fields from One or Few Im-
ages. In IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition (CVPR), pages 4576–4585, 2021. 1, 2

[58] Boyu Zhang, Wenbo Xu, Zheng Zhu, and Guan Huang. De-
tachable Novel Views Synthesis of Dynamic Scenes Using
Distribution-Driven Neural Radiance Fields. arXiv preprint,
arXiv:2301.00411, 2023. 2

[59] Kai Zhang, Gernot Riegler, Noah Snavely, and Vladlen
Koltun. NeRF++: Analyzing and Improving Neural Radi-
ance Fields. arXiv preprint, arXiv:2010.07492, 2020. 2

[60] Richard Zhang, Phillip Isola, Alexei A. Efros, Eli Shecht-
man, and Oliver Wang. The Unreasonable Effectiveness of
Deep Features as a Perceptual Metric. In IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition (CVPR),
pages 586–595, 2018. 6

8026

