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Abstract

Recent advances in pre-trained vision transformers have
shown promise in parameter-efficient audio-visual learning
without audio pre-training. However, few studies have in-
vestigated effective methods for aligning multimodal fea-
tures in parameter-efficient audio-visual transformers. In
this paper, we propose MA-AVT, a new parameter-efficient
audio-visual transformer employing deep modality align-
ment for corresponding multimodal semantic features.
Specifically, we introduce joint unimodal and multimodal
token learning for aligning the two modalities with a frozen
modality-shared transformer. This allows the model to learn
separate representations for each modality, while also at-
tending to the cross-modal relationships between them. In
addition, unlike prior work that only aligns coarse features
from the output of unimodal encoders, we introduce block-
wise contrastive learning to align coarse-to-fine-grain hier-
archical features throughout the encoding phase. Further-
more, to suppress the background features in each modal-
ity from foreground matched audio-visual features, we in-
troduce a robust discriminative foreground mining scheme.
Through extensive experiments on benchmark AVE, VG-
GSound, and CREMA-D datasets, we achieve considerable
performance improvements over SOTA methods.

1. Introduction
When observing a scene, humans can simultaneously iden-
tify sounding objects, distinguish background noises, and
locate silent regions. Such natural audio-visual perception
arises from fine-grain correspondence of environmental vi-
sual and auditory cues. In this work, we explore improv-
ing audio-visual feature alignment of audio-visual learn-
ers, from the initial feature extraction to the final decision-
making stage, and systematically evaluate its impact on
complex audio-visual recognition tasks.

Earlier work on audio-visual learning primarily focused
on late multi-modal feature alignment by extracting features
from separate uni-modal encoders [13, 16, 32, 37]. These
methods required large-scale separate audio and visual pre-

Figure 1. A visual image contains sounding foreground object re-
gions, as well as silent background regions. MA-AVT aims to align
the foreground visual features with corresponding audio features.
Simultaneously, MA-AVT learns mismatched uni-modal features
to enhance cross-modal contrast. In particular, MA-AVT leverages
a pre-trained frozen vision transformer in audio-visual tasks with
learnable uni-modal and shared cross-modal tokens.

training, as they used different encoders for each modality.
Later, to leverage deeper cross-modal fusion, Nagrani et al.
[20] introduced uniform audio and visual transformers with
bottleneck fusion modules. This uniform architecture en-
abled blockwise fusion of cross-modal features across sep-
arate uni-modal encoders. However, this method requires
large-scale joint training of uni-modal encoders with bot-
tleneck fusion modules, which can be burdensome for de-
ploying large transformer models (ViT-Large, 656M param-
eters). Very recently, Lin et al. [15] introduced a lightweight
adapter module (LAVISH) to leverage pre-trained frozen
vision transformer (ViT) in audio-visual tasks, without the
need for any audio pre-training. This adapter enables deep
cross-modal alignment by fusing the output of each ViT
block features. Despite its promising performance and high
parameter efficiency, this method has several limitations.

First, this method only trains cross-modal fusion mod-
ules with a frozen encoder, while ignoring unique unimodal
feature components. However, natural images and sounds
contain unique components that do not have multimodal
correspondence but are still important for learning and sep-
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arating the context. For example, most regions in visual
frames usually contain silent objects, while the correspond-
ing audio may contain significant background environmen-
tal sounds that are not present in the image. Therefore, it is
necessary to simultaneously process unique unimodal and
common cross-modal features in audio-visual learning. To
address this issue, we introduce joint unimodal and mul-
timodal token learning, which simultaneously learns dis-
joint unimodal and common cross-modal representations.
However, the learned tokens may have varying significance
based on different class representations. To selectively en-
able the most relevant tokens in each modality, we introduce
a local self-attention module for each group of tokens.

Second, LAVISH and most prior work [7, 16] train
only with late supervision applied to the coarse-grain fea-
tures, extracted from the output of audio and visual en-
coders. This enforces explicit coarse-grain multimodal fea-
ture alignment, but the fine-grain features in earlier trans-
former blocks do not receive any explicit supervision for
cross-modal alignment. To tackle this problem and align the
hierarchical features of each modality throughout the en-
coding, we introduce blockwise semantic contrastive learn-
ing (SCL). Our approach inherently searches for the seman-
tic visual representation with its corresponding audio repre-
sentation by utilizing shared multimodal tokens. Thus, we
introduce SCL on intermediate feature representations of
multimodal tokens to strengthen modality alignment.

Third, audio and visual modalities may not contain any
matching pairs of objects, resulting in complete misalign-
ment. Employing fusion modules in such misaligned back-
ground regions can introduce significant noise during train-
ing. However, existing audio-visual transformers, such as
LAVISH [15] and MBT [20], do not consider any back-
ground suppression methods to isolate such complete mis-
alignment cases. To overcome this limitation, we intro-
duce a robust discriminative foreground mining scheme by
learning additional background tokens that selectively sup-
press the mismatched background regions, thereby enhanc-
ing modality alignment.

Extensive experiments on three popular benchmarks, i.e.
AVE, VGGSound, and CREMA-D datasets, demonstrate
the superior performance of MA-AVT. The contributions of
the proposed method can be summarized as follows:
1. We propose joint unimodal and multimodal token learn-

ing for extracting disjoint uni-modal and common cross-
modal features from each modality.

2. We introduce blockwise semantic contrastive learning
for deeper coarse-to-fine-grain hierarchical audio-visual
feature alignment.

3. We propose robust discriminative foreground mining to
suppress the mismatched background features.

4. Our method achieves significant performance improve-
ments over other state-of-the-art approaches.

2. Related Works

2.1. Audio-Visual Learning

In recent years, numerous approaches have been explored
in diverse audio-visual learning applications, such as audio-
visual source localization [1, 9, 12, 17, 19], sound separa-
tion [4, 5, 22, 33, 36], video parsing [14, 29, 31], event lo-
calization [16, 28, 34, 37], and classification [15, 20, 23].
In this work, we primarily focus on designing parameter-
efficient multi-modal transformer for the audio-visual clas-
sification task.

In general, much of earlier work in audio-visual learn-
ing has focused on the late fusion of extracted audio-visual
features from separate pre-trained encoders. In MBT [20],
deep and mid-fusion approaches to audio-visual feature fu-
sion have been explored with a unified transformer archi-
tecture with full tuning. However, these methods require
large-scale pre-training on audio and visual data, which can
be computationally expensive and time-consuming. Addi-
tionally, full-tuning can be parameter inefficient and prone
to overfitting on smaller datasets, while partial tuning can
result in sub-optimal results [11, 27, 35]. Recently, LAV-
ISH [15] introduced pre-trained frozen vision transform-
ers for audio-visual tasks without requiring any pre-training
on audio data. However, LAVISH and other existing meth-
ods are trained with late supervision on the final projected
feature spaces for audio-visual feature alignment. This can
limit the effectiveness of feature alignment, as the final fea-
ture space may not capture all of the relevant information
from the intermediate feature spaces. In contrast, we study
the impact of deep audio-visual feature alignment by lever-
aging supervision to the intermediate feature space of pre-
trained frozen transformers with learnable tokens. This al-
lows us to learn more robust and discriminative representa-
tions that are better aligned across modalities.

2.2. Audio-visual Contrastive Learning

Prior work explored audio-visual contrastive learning in
self-supervised representation learning and sound source lo-
calization. Hu et al. [8] and Owens and Efros [21] con-
trast across the global mean-pooled audio, and visual fea-
tures. However, in practice, audible objects correspond to
a small portion of the image while audio includes back-
ground noise from non-visible objects. Hence, such global
alignment introduces significant noise in contrastive learn-
ing. Arandjelovic and Zisserman [1], Ilse et al. [10], Kor-
bar et al. [12], Mo and Morgado [17], Morgado et al. [19]
contrast mean-pooled audio features with the most-similar
corresponding image patch region. Nevertheless, the sound-
ing object may extend to multiple patches across the image
where these methods cannot represent the complete seman-
tic relationships. Guzhov et al. [6] used class token pooled
features for representing visual modality. Senocak et al. [26]
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Figure 2. The overview of the proposed MA-AVT framework. The image and audio spectrogram are processed simultaneously with
frozen transformer encoders. Initially, we extract patch tokens using pre-trained patch extractors of transformers. We introduce learnable
unimodal audio and visual tokens to learn unique unimodal representation as well as introduce multimodal shared tokens to learn joint rep-
resentation. To focus on most relevant tokens for the target class, we introduce local self-attention (LSA) modules on each group of tokens.
To further enhance the modality alignment, we operate blockwise semantic contrastive learning on the intermediate shared multimodal
token embeddings after each transformer block. To suppress mismatching background regions, we introduce learnable background (BG)
and foreground (FG) class tokens. Here, Lbf denotes foreground-background loss and Lk

cnt denotes contrastive loss after each kth block.

introduced hard positive sample mining in contrastive learn-
ing for semantic audio-visual matching. Qian et al. [24]
and Mo and Tian [18] introduced a combination of source
classification and contrastive learning for multiple sounding
source localization. Most of the prior work mainly consid-
ered audio-visual correspondence on coarse-grain features
extracted from the outputs of unimodal encoders. Differ-
ent from past work, we introduce audio-visual contrastive
learning for aligning coarse-to-fine-grain hierarchical fea-
tures in audio-visual transformers.

3. Methodology
Our goal is to build a parameter-efficient audio-visual trans-
former with modality alignment for audio-visual recogni-
tion tasks. The overview of the proposed framework is
shown in Figure 2. To maintain learning efficiency, we
adopt frozen ViTs as audio and visual encoders. Upon
the framework, we first extract corresponding patch token
embeddings from the input image and audio spectrogram.
Then, we introduce unimodal token embeddings to both

modalities to learn separate and unique unimodal feature
representations. We also introduce shared multimodal to-
kens to both modalities to learn the common cross-modal
semantic relationship. To focus on the most relevant tokens
for the target class, we utilize local self-attention (LSA)
modules for each group of tokens. In addition, we propose
to use background tokens to detect complete mismatches
of audio-visual pairs and foreground class tokens to de-
tect the audio-visual class in both modalities. After ag-
gregating all token embeddings separately for each modal-
ity, we process frozen transformer blocks sequentially. The
shared multimodal tokens inherently search for the audio-
visual corresponding regions in both modalities. To fur-
ther strengthen cross-modal alignment, we introduce block-
wise semantic contrastive learning (SCL) across the mean-
pooled intermediate token representations extracted from
each transformer block. This blockwise contrastive learn-
ing is only used during training to align coarse-to-fine-grain
audio-visual feature representations. Finally, the foreground
class token generates the foreground class prediction, and
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the background class token predicts the binary background
class. In the case of complete misaligned background class
predictions, the foreground and blockwise contrastive loss
gradient propagations are suppressed during training.

3.1. Preliminaries

Let’s consider the dataset D = {(vi, ai) : i = 1, . . . , N}
representing N pairs of images vi ∈ R3×H×W sampled
from a video at time t, and corresponding audio spectro-
grams ai ∈ RF×T centered at time t with a span of several
seconds. Following previous work [15, 20], vi is divided
into m non-overlapping patches which are flattened to ex-
tract image patch token embeddings P 0

v ∈ Rm×d. Similarly,
audio spectrogram ai is split into n audio patch token em-
beddings P 0

a ∈ Rn×d. Moreover, linear interpolation across
pre-trained position embeddings is carried out, particularly
for audio tokens, to match with the number of patch tokens
in case of mismatch with pre-trained embeddings.

3.2. Multimodal Alignment with Learnable Tokens

Leveraging a pre-trained frozen vision transformer in audio-
visual learning [15] poses two main challenges. First, the
disparate unimodal audio and visual features should be ex-
tracted separately since visual and auditory signals come
with unique feature representations. Second, the grounded
modality-shared features across two modalities need to be
processed simultaneously as a fusion step. To solve the
former one, we introduce modality-specific token prompts
which are uniquely trained for each modality. And, for the
latter one, we introduce modality-invariant token prompts
which are jointly trained across both modalities. Before
merging with the patch token embeddings, all three bags
of modality-invariant and modality-specific tokens are pro-
cessed with separate local self-attention (LSA) units. These
units enhance vanilla prompt training capacity by focus-
ing on most relevant prompts for different classes. These
LSA units are formed with residual multi-headed attention
(MHA) [30] operations such that,

LSA(x) = x+ MHA(x) (1)

Let’s denote LSA units operating on audio, visual, and mul-
timodal shared prompt tokens as Aa(·), Av(·), and As(·),
respectively, and bags of audio, image, and shared tokens
as za ∈ Rna×d, zv ∈ Rnv×d, and zs ∈ Rns×d, respec-
tively. Hence, intermediate image and audio token embed-
dings (Ea, Ev) after kth transformer block are given by

Ek
a = Aa(za)

k || P k
a || As(zs)

k; ∀k = {1, . . . ,K} (2)

Ek
v = Av(zv)

k || P k
v || As(zs)

k; ∀k = {1, . . . ,K} (3)

where K denotes a total number of transformer blocks, and
|| denotes the feature concatenation operation.

3.3. Blockwise Semantic Contrastive Learning

In practice, visual frames consist of target foreground
sounding regions as well as silent background regions. Sim-
ilarly, audio contains target foreground sounding sources
along with certain noises from invisible background sound-
ing sources. Proper understanding of audio-visual scenes
poses two primary challenges. First, the model should prop-
erly align the corresponding semantic regions of audio-
visual features representing high cross-modal similarity as
well as distinguish unique unimodal features. Second, the
model should discriminate among hierarchical audio-visual
features of target classes.

Our unimodal and multimodal shared prompting tech-
nique inherently solves the first problem. Nevertheless,
we introduce semantic contrastive learning to further
strengthen the modality alignment. Notably, the shared to-
kens explicitly search for the semantic regions with high
audio-visual correspondence over all other patch tokens in
each modality. Hence, we extract the semantic representa-
tion of the target matching pair by taking the mean over the
output of shared token embeddings in each modality. We
introduce cross-modal contrastive learning over these mean
pooled semantic feature representations, which is denoted
as semantic contrastive learning (SCL).

The supervised learning objective operating on the
coarse-grain audio-visual features inherently generates dis-
criminative hierarchical features in subsequent layers,
thereby attempting to solve the second problem. Along with
such coarse-grain supervision, we introduce blockwise se-
mantic contrastive learning for further alignment of the
fine-grain hierarchical features. We note that such block-
wise cross-modal alignment doesn’t alter the inter-block hi-
erarchical feature relationships generated with supervised
learning. Rather, it generates deeper auxiliary supervision
throughout the encoding phase to contrast across coarse-to-
fine-grain cross-modal semantic relationships.

After kth block, assume ak = 1
ns

∑
zks,a ∈ R1×d and

vk = 1
ns

∑
zks,v ∈ R1×d represent the mean-pooled shared

token features from audio, and visual modality, respectively.
The blockwise semantic contrastive loss (Lk

cnt) at kth block
with a batch size of B is given by

Lk
cnt = (Lk

v→a + Lk
a→v)/2 (4)

Lk
v→a = − 1

B

B∑
b=1

log
exp( 1τ sim(vkb , a

k
b ))

B∑
j=1

exp( 1τ sim(vkb , a
k
j ))

(5)

Lk
a→v = − 1

B

B∑
b=1

log
exp( 1τ sim(akb , v

k
b ))

B∑
j=1

exp( 1τ sim(akb , v
k
j ))

(6)
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where sim(vk, ak) represents the cosine similarity, and τ is
a temperature parameter.

3.4. Robust Discriminative Foreground Mining

Audio may contain only background noise or sound from
non-visible objects, which results in a complete misalign-
ment of audio-visual features. We denote such cases as
background class. If the audio-visual pair contains at least
one matching object, that will represent the foreground
class. In certain datasets (e.g., VGGSound [3]) where we
don’t have access to mismatched pairs, we consider syn-
thetic audio-visual pairs from two separate sources for
learning such mismatched background cases.

We introduce unique background class tokens zb ∈
R1×d and foreground class tokens zf ∈ R1×d in both
modalities. Thus, the accumulated tokens at kth layer are:

Ek
a = zkb || Aa(za)

k || P k
a || As(zs)

k || zkf (7)

Ek
v = zkb || Av(zv)

k || P k
v || As(zs)

k || zkf (8)

The output of these class tokens from the last transformer
blocks are concatenated, and processed with MLP layers to
generate final background prediction yb ∈ R1×1 and fore-
ground prediction yf ∈ R1×C . The foreground-background
loss (Lbf ), and total loss (Ltotal) are given by

Lbf = yb ∗BCE(ŷb, yb) + (1− yb) ∗ CE(ŷf , yf ) (9)

Ltotal = Lbf + (1− yb) ∗
K∑

k=1

Lk
cnt (10)

where yb = {0, 1} and yf = {0, 1, . . . , C} represent the
binary background label and C-class foreground labels, re-
spectively. The foreground and semantic contrastive losses
are suppressed for mismatched pairs.

4. Experiments
4.1. Datasets

AVE [28] dataset contains 4, 143 videos of 10-second au-
dio and visual segments. It has per-second frame-level an-
notations for audio-visual event localization and consists of
28 event classes along with background class annotations
representing complete modality misalignment. This dataset
has natural misaligned audio-visual pairs that makes it di-
rectly applicable to MA-AVT. The data-split contains 3, 942
training videos, 742 test videos, and 892 validation videos.
Following prior work, we sample image frames at 1 fps,
and extract corresponding audio segments of 1s duration.
We also use the same evaluation metric of the fraction of
correctly predicted event regions as in prior work [28].

VGGSound [3] is a large-scale audio-visual learning
dataset containing 309 classes that represent “in the wild”

audio-visual correspondence. This dataset contains a large
range of sounding events from day-to-day life. All videos
are collected from YouTube. Since many videos are not
available anymore, we use 161, 234 videos for training, and
12, 873 videos for testing following the data split in [3].
For training and evaluation, we sample single image frames
per video from the middle of each video and extract corre-
sponding audio segments of 5s duration. We use the same
evaluation metric of class accuracy following prior work.
Since the dataset size is reduced for unavailable videos,
we reproduced the reported results of prior work under
the same settings for fair comparison. Since this dataset
only contains audio-visual matched pairs, we introduce syn-
thetic mis-matched pairs during training, particularly to
learn foreground-background tokens.

CREMA-D [2] is a speech emotion recognition dataset
with 7, 442 video clips of 2 ∼ 3 seconds duration collected
from 91 actors. Each actor speaks various short words with
6 usual emotion categories, such as happy, sad, angry, neu-
tral, disgust, discarding, and fear. The dataset is annotated
by crowd-sourcing from 2, 443 raters for categorical emo-
tion labels. We use the same train and test split as prior
work [2], more specially 6, 698 training videos, and 744 test
videos. We use a single frame sampled from the middle of
the video and corresponding audio segments with 3s dura-
tion. Similar to prior work, we use the same evaluation met-
ric of emotion recognition accuracy. We introduce similar
synthetic mismatched audio-visual pairs during training.

4.2. Implementation Details

We use the spectrogram representation for audio by repeat-
ing the channel from 1 to 3 to operate with the same ViT
backbone. All image samples are resized to (224, 224). All
audio spectrograms are extracted with a window length of
512 and overlap of 353. We use 5 tokens for all audio, vi-
sual, and shared multimodal cases in all experiments unless
otherwise specified. We use ADAM optimizer with the ini-
tial learning rate of 1e − 3 which is multiplied by 0.1 after
every 30 epochs. All models are trained on 4 A5000 GPUs
with 24GB memory. We use a batch size of 256 for training
all models.

4.3. Experimental Study

In this work, we propose enhanced modality alignment
techniques for parameter efficient audio-visual transform-
ers. To demonstrate the effectiveness of the proposed
method, we compare the performance with state-of-the-art
approaches on three popular benchmark datasets. For fair
comparison, we reproduced the results of most other ap-
proaches from their open-sourced implementation under the
same setting. We also present the ablation study to show
the effectiveness of different building blocks. We use VG-
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Table 1. Comparison with state-of-the-art methods. We present comparison with CNN and transformer-based approaches. For the audio
encoder, we either use audio pre-trained weights from Audioset or simple image-pretrained weights from ImageNet dataset. * denotes
our improved implementation. Other than the reported results on AVE, we reproduced the results on VGGSound and CREMA-D datasets
from open source implementation. The parameter counts are calculated for AVE dataset. (T) represents fully-trainable and (F) represents
frozen encoder. Our proposed MA-AVT achieves significant performance improvements compared to other state-of-the-art methods while
maintaining parameter-efficiency.

Method Visual Encoder Audio Encoder Total
Params (M)

Trainable
Params (M)

Accuracy (%)

Model Pretrain Model Pretrain VGGSound1 AVE CREMA-D
PSP ([37]) VGG-19 (F) ImageNet VGGish (F) AudioSet 231.5 1.7 50.1 77.8 62.5
AVEL ([28]) ResNet-152 (F) ImageNet VGGish (F) AudioSet 136.0 3.7 48.3 74.0 59.7
CMRAN( [32]) ResNet-152 (F) ImageNet VGGish (F) AudioSet 148.2 15.9 50.7 78.3 61.8
MM-Pyramid ([34]) ResNet-152 (F) ImageNet VGGish (F) AudioSet 176.3 44.0 49.8 77.8 63.1
MBT ([20]) ViT-B-16 (T) ImageNet ViT-B-16 (T) ImageNet 206.4 206.4 54.6 76.1 70.7
LAVISH ([15]) ViT-B-16 (F) ImageNet ViT-B-16 (F) ImageNet 107.2 4.7 52.5 75.3 68.9
LAVISH* ([15]) ViT-B-16 (F) ImageNet ViT-B-16 (F) ImageNet 110.4 7.3 53.6 75.8 69.7
MA-AVT (ours) ViT-B-16 (F) ImageNet ViT-B-16 (F) ImageNet 110.2 7.1 56.7 77.9 72.3
MBT* ([20]) ViT-L-16 (T) ImageNet ViT-L-16 (T) ImageNet 656.8 656.8 57.1 78.8 72.4
LAVISH ([15]) ViT-L-16 (F) ImageNet ViT-L-16 (F) ImageNet 340.1 14.5 55.4 78.1 70.3
MA-AVT (ours) ViT-L-16 (F) ImageNet ViT-L-16 (F) ImageNet 338.4 12.6 58.6 79.6 74.9
MBT* ([20]) ViT-B-16 (T) ImageNet AST (T) AudioSet 172 172 56.1 77.8 73.8
MA-AVT (ours) ViT-B-16 (F) ImageNet AST (F) AudioSet 180.3 8.3 59.1 80.3 75.2

GSound dataset and ViT-B-16 backbone for most of the ab-
lations unless otherwise specified.

Comparison with prior CNN-based approaches: As
shown in Table 1, we study the performance of several re-
cent CNN-based approaches [28, 32, 34, 37]. Most of these
methods rely on separate pre-trained audio and visual en-
coders for the feature extraction with different late-fusion
techniques. Despite the use of late-fusion techniques for
modality alignment, the early stage of feature extraction
only relies on unimodal encoders. Hence, the fusion tech-
niques are only operated on the coarse unimodal feature rep-
resentation thereby limiting performance. Moreover, perfor-
mance of these methods depends on pre-training on large-
scale audio and image data. Our method achieves +1.3,
+7.9, and +11.8 accuracy improvements in AVE, VG-
GSound, and CREMA-D datasets, respectively, compared
to the best-performing CNN-based counterparts without us-
ing any audio pre-training.

Comparison with prior transformer-based works: We
also compare with several state-of-the-art transformer-
based methods for audio-visual tasks [15, 20]. Compared
to CNN based methods, transformer based approaches can
leverage early fusion techniques for using the uniform ar-
chitecture in both modalities. As shown in Table 1, our pro-
posed MA-AVT achieves superior performance compared
to other existing transformer based methods. We primarily
focus on the recently released LAVISH [15] and MBT [20]
models for the discussion.

LAVISH [15] introduces a parameter-efficient vision
transformer based network for audio-visual tasks without

1Since the dataset size in VGGSound is considerably reduced for un-
available videos, we report the reproduced result in the same setup.

using audio pre-training. We achieve +2.6,+4.2,+3.4 ac-
curacy improvements on AVE, VGGSound, and CREMA-D
datasets, respectively, compared to LAVISH for the ViT-B-
16 model. We also demonstrate the performance improve-
ments with other ViT architectures (ViT-L-16). We note that
the number of additional trained parameters in MA-AVT is
comparable with LAVISH (7.1M vs. 4.7M in ViT-B-16).
For fair comparison, we increase the number of trained pa-
rameters in LAVISH by using larger convolutions in adapter
modules (∼ 7.3M). Nevertheless, our method outperforms
the larger LAVISH model with a considerable margin.

We hypothesize these performance improvements of
MA-AVT are due to three significant modifications. First,
with a pre-trained frozen vision encoder as a common back-
bone for both modalities, LAVISH only trains cross-modal
fusion adapters at each block. However, both audio and vi-
sion modalities have significant unique unimodal feature
components which can be suppressed by focusing only on
fusion adapters. In contrast, we adapt to significant unique
unimodal and common cross-modal feature components by
leveraging separate unimodal and multimodal tokens with
local self-attention modules. Second, despite using early fu-
sion techniques, LAVISH only considers supervision on the
coarse features extracted from unimodal encoder outputs.
In contrast, our blockwise semantic contrastive learning in
MA-AVT operates on hierarchical coarse-to-fine-grain fea-
tures thereby resulting in deeper alignment of multimodal
features. Third, we introduce robust foreground mining to
suppress the complete misalignment of background audio-
visual pairs, which is absent in LAVISH.

In MBT [20], modality bottleneck fusion tokens are in-
troduced with separate audio and vision transformers with
full fine-tuning of transformer encoders. We show the per-
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Table 2. Effect of unimodal and multimodal learnable Tokens
with local self attention (LSA). Combination of audio, visual,
and shared multimodal tokens generates best performance. Inte-
gration of LSA module considerably improves the performance.
Only classification loss is used for this analysis.

Audio
Tokens

Visual
Tokens

Shared
Tokens

Accuracy (%)
w/o LSA

Accuracy (%)
with LSA

✓ ✗ ✗ 43.3 46.8
✗ ✓ ✗ 41.5 45.7
✗ ✗ ✓ 45.4 49.3
✓ ✓ ✗ 48.5 52.5
✓ ✓ ✓ 51.2 54.1

Table 3. Comparison with existing contrastive learning meth-
ods. Vxy denotes the visual patch embedding of position (x, y) and
A denotes the mean audio patch embedding. Acls, Vcls denote the
output of corresponding class token embedding. Vs, As denote the
output of shared multimodal token embeddings.

Position Matching Function VGGSound

Final
Block

MaxPoolxy(sim(Vxy, A)) [17] 54.7
AvgPoolxy(sim(Vxy, A)) [10] 54.3
sim(MaxPoolxy(Vxy), A) [19] 54.1

sim(Vcls, Acls) [6] 54.0
sim(Mean(Vs),Mean(As)) (Ours) 55.6

Block-
wise

MaxPoolxy(sim(Vxy, A)) [17] 55.8
AvgPoolxy(sim(Vxy, A)) [10] 55.2
sim(MaxPoolxy(Vxy), A) [19] 54.9

sim(Vcls, Acls) [6] 55.1
sim(Mean(Vs),Mean(As)) (Ours) 56.7

formance of MBT with both ImageNet pretrained weights
and AudioSet pretrained weights particularly for the audio
encoder. Our method achieves +1.8,+2.1,+1.6 higher ac-
curacy than ImageNet-pretrained MBT with ViT-B-16 en-
coder on AVE, VGGSound, and CREMA-D datasets, re-
spectively. These improvements demonstrate that our pro-
posed MA-AVT provides superior results to fully-tuning
transformer encoders despite being trained on significantly
smaller number of parameters (7.1M vs. 206.4M). With
AudioSet pre-trained weights in audio encoder, MA-AVT
achieves +2.5,+3.0,+1.4 higher accuracy on AVE, VG-
GSound, and CREMA-D benchmarks, respectively. In gen-
eral, audio encoders with AudioSet pretrained weights
achieve higher performance than ImageNet pretrained
weights for large-scale audio pretraining. Nevertheless,
our approach achieves consistent performance improve-
ment over MBT. We hypothesize that these improvements
are due to our blockwise semantic contrastive learning for
deeper modality alignment and our robust foreground min-
ing methods to suppress background pairs, both of which
are missing in MBT.

Effect of unimodal and multimodal tokens with local
self-attention (LSA) modules: In Table 2, we ablate the

Table 4. Effect of robust foreground (FG) mining. Integration
of robust FG mining considerably improves the performance by
learning complete mismatch cases.

Method AVE VGGSound CREMA-D
w/o FG Mining 77.1 55.6 71.4
with FG mining 77.9 56.7 72.3

Table 5. Effect of multimodal alignment on unimodal learning.
Our multi-modal alignment method improves uni-modal accuracy.

Modality multimodal
Alignment

Accuracy
(%)

Audio ✗ 40.2
✓ 43.3

Visual ✗ 38.7
✓ 41.5

effect of unimodal and multimodal tokens with LSA mod-
ules in MA-AVT. Only classification loss is used for this
analysis. We note that audio-only tokens provide +1.8
higher accuracy than image-only tokens without using any
LSA modules. Since we only use single image frame per
video with full-length audio, the audio contains richer de-
tails of the sounding event compared to single images. Com-
bining unimodal audio and visual tokens provides +5.2
higher accuracy than the audio-only tokens. This shows
the combination of audio and visual tokens performs bet-
ter than single modal tokens. By only using shared multi-
modal tokens, we achieve +2.1 higher accuracy than the
unimodal audio only tokens. Shared tokens are supposed
to perform multimodal alignment over audio and visual
modality that can be responsible for the accuracy improve-
ment. Finally, the combination of audio, visual, and mul-
timodal tokens achieves the best accuracy of 51.2 which
is +5.8 higher than shared multimodal tokens and +2.7
higher than unimodal combinations. Finally, we note con-
sistent performance improvements with the incorporation of
local self-attention (LSA) modules. We achieve the highest
accuracy of 54.1 by integrating LSA modules in all three to-
kens which demonstrates the effectiveness of our approach.

Comparison with existing contrastive learning methods:
In Table 3, we present the results of various contrastive
learning methods. For fair comparison, we keep the same
architecture of MA-AVT for all contrastive losses. We sepa-
rately present the effect of blockwise contrastive loss for all
these cases. We note that our proposed semantic contrastive
loss provides significant performance improvements for all
benchmarks. Moreover, we also observe consistent perfor-
mance improvements with the incorporation of the block-
wise contrastive losses in all cases. Prior work mostly fo-
cuses on matching the spatial visual features V = {Vxy :
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Figure 3. Grad-CAM visualization for qualitative comparison.
Here, red color denotes high attention values and blue color de-
notes low attention values. Modality alignment brings noticeable
improvements in MA-AVT to put more attention on the sound-
ing regions. In general, MA-AVT better discovers the target visual
sounding regions with sharper boundaries compared to other com-
petitive baselines. Moreover, MA-AVT significantly reduces the
attention weights on the silent regions.

∀x, y} from all (x, y) position with the global mean of audio
features A [10, 17, 19]. Considering the complex semantic
relations with audio and visual modality in the presence of
visual backgrounds and secondary noisy-sounding sources,
most of these approaches introduce significant noise in
training. In addition, contrastive learning applied on class-
token provides performance inferior to ours [6]. In contrast,
our approach searches for the corresponding semantic re-
gions in both audio and visual modalities simultaneously
by utilizing the shared multimodal token embeddings which
further strengthens the modality alignment.

Effect of robust discriminative foreground mining: We
ablate the effect of robust foreground mining as shown in
Table 4. The AVE dataset contains annotations for back-
ground classes that can be directly used for both training
and testing of the proposed method. However, for the VG-
GSound, and CREMA-D datasets, we use the robust fore-
ground mining only in training, where we randomly choose
audio and images from two different classes to represent
the background class. By integrating foreground mining,
we achieve +0.8, +1.1, and +0.9 higher accuracy on AVE,
VGGSound, and CREMA-D datasets, respectively.

Multimodal alignment helps unimodal learning: MA-
AVT can work on unimodal data in test scenarios by only
using the separate unimodal tokens and by splitting the last
MLP layer for foreground classification symmetrically. In
Table 5, we study the effect of multimodal alignment meth-
ods on unimodal learning. We achieve +3.1, +2.8 higher

accuracy on audio and visual modalities, respectively, when
comparing the proposed multimodal alignment techniques
with separate unimodal training. We hypothesize the multi-
modal alignment helps unimodal learning by searching for
the target region-of-interests in both modalities.

5. Qualitative Analysis

We visualize the class activation heatmaps in Figure 3 from
the output foreground class token to the RGB image by
using Grad-CAM [25] visualization. We primarily show
the qualitative visualization results for the LAVISH [15],
MBT [20], and proposed MA-AVT models. We note that the
proposed modality alignment techniques better discover tar-
get semantic regions than competitive baselines in general.
Also, MA-AVT generates sharper boundaries with more
weights on the target semantic regions representing sound-
ing objects. Moreover, MA-AVT significantly reduces the
attention weights in silent regions of images compared to
other baselines. We hypothesize that such effective local-
ization of the audio-visual semantic regions leads to its su-
perior performance on audio-visual recognition tasks.

6. Conclusion

In this paper, we present modality alignment techniques for
parameter-efficient audio-visual transformer, dubbed MA-
AVT. Our approach learns unimodal and multimodal to-
kens to adapt to unique unimodal features and extract com-
mon multimodal features thereby achieving superior per-
formance. The local self-attention modules are found to
be effective with learnable tokens to focus on the most
relevant tokens in each modality. To better contrast with
the mismatched background scenarios, we introduce ro-
bust foreground mining that differentiates the corner case
of complete modality mismatch. We propose semantic con-
trastive learning to contrast across the semantic regions
of each modality by utilizing the shared multimodal to-
ken embedding for achieving higher accuracy than baseline
approaches. Moreover, we leverage blockwise contrastive
learning for deeper alignment of cross-modal features for
achieving consistent performance improvements. Modality-
alignment training also demonstrates its effectiveness in
unimodal test scenarios by considerably improving perfor-
mance. Extensive experiments on three benchmark datasets
show the superiority of the proposed MA-AVT over state-
of-the-art methods.
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