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Abstract

Pillar-based 3D object detection has gained traction in
self-driving technology due to its speed and accuracy fa-
cilitated by the artificial densification of pillars for GPU-
friendly processing. However, dense pillar processing fun-
damentally wastes computation since it ignores the inherent
sparsity of pillars derived from scattered point cloud data.
Motivated by recent embedded accelerators with native spar-
sity support, sparse pillar convolution methods like sub-
manifold convolution (SubM-Conv) aimed to reduce these
redundant computations by applying convolution only on
active pillars but suffered considerable accuracy loss.

Our research identifies that this accuracy loss is due
to the restricted fine-grained spatial information flow (f-
SIF) of SubM-Convy in sparse pillar networks. To overcome
this restriction, we propose a selectively dilated (SD-Conv)
convolution that evaluates the importance of encoded pillars
and selectively dilates the convolution output, enhancing
the receptive field for critical pillars and improving object
detection accuracy. To facilitate actual acceleration with
this novel convolution approach, we designed SPADE+ as
a cost-efficient augmentation to existing embedded sparse
convolution accelerators. This design supports the SD-Conv
without significant demands in area and SRAM size, realizing
superior trade-off between the speedup and model accuracy.
This strategic enhancement allows our method to achieve
extreme pillar sparsity, leading to up to 18.1x computational
savings and 16.2x speedup on the embedded accelerators,
without compromising object detection accuracy.

1. Introduction

With the shift of priorities in autonomous driving from conve-
nience to safety, there is a growing need for robust perception
systems that can accurately interpret time-critical semantic
information in real-time, such as identifying and locating
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road users [1]. At the heart of these systems is 3D object
detection that leverages LiDAR-generated point cloud data,
providing comprehensive depth information and obstacle
detection [1, 16]. In pursuit of real-time 3D object detection,
research has gravitated towards grid-based methods that con-
vert point clouds into 3D voxels or 2D pillars. One prime
example is PointPillars [1 1], which utilizes a bird’s-eye-view
encoding technique, aggregating 3D point cloud features
into sparse 2D pillars and transforming them into a dense
pseudo-image for GPU-friendly 2D convolution (Conv2D).
Thanks to this improved GPU efficiency, PointPillars has
emerged as a leading solution for time-critical 3D object
detection [13, 19, 20, 22, 24, 26].

However, emphasizing the fundamental inefficiency in
dense pillar processing, which disregards the inherent spar-
sity of pillars stemming from dispersed point cloud data, the
emergence of dedicated embedded accelerators with native
support for sparse point cloud data imposes significant op-
portunities for sparse pillar-based object detection toward
further speedup [6, 7, 12, 14]. A notable attempt is Sparse-
PointPillars [21], which introduces submanifold convolution
(SubM-Conv [10]) to sparsify pillar representation and sig-
nificantly reduces the number of computations. Although
SubM-Conv effectively preserves point cloud’s original spar-
sity by limiting convolution dilation, the improved sparsity
comes at the cost of significant degradation in 3D object
detection accuracy; as shown in Fig. 1, Sparse PointPillars,
which employs SubM-Conv, results in significant accuracy
loss, especially for the complex mode (Hard). Therefore,
a comprehensive understanding of the trade-off between
sparsity and accuracy on sparse pillar convolution is lacking.

In this work, we identify that the key cause of the accuracy
loss of previous sparse pillar convolutions is the sparsifica-
tion structure that limits the fine-grained spatial information
Sflow (f-SIF) from the increase of receptive field via dilation.
Note that prior works on voxel-based methods [3, 5, 15] have
noticed a similar issue on the SIF, but they primarily have
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Figure 1. The accuracy and computation trade-off of 3D object
detection. The pillar-based baseline, PointPillars [1 1], delivers high
accuracy but uses redundant computation. Sparse PointPillars [21]
employs SubM-Conv, reducing computation but losing consider-
able accuracy. In contrast to FS-Conv [3]’s inferior trade-off, our
selectively dilated convolution (SD-Conv) retains accuracy while
cutting computations by 18.1x, promising for embedded 3D object
detection.

focused on the extension of the receptive field by strided
sparse convolution only at each stage of 3D object detection
backbone. This approach only enhances the coarse-grained
SIF, thus showing a limited improvement in accuracy. In
contrast, we reveal that the increase of the receptive field
via fine-grained selective dilation at every convolution layer
within the same stage plays a crucial role in constructing nec-
essary receptive fields for identifying 3D objects in the scene.
Therefore, we propose a simple yet effective operation called
selectively dilated convolution (SD-Conv) that can identify
important pillars at every convolution layer, based on their
magnitude for selective dilation.

To achieve actual speedup, we have designed a special-
ized sparse point cloud accelerator architecture that operates
in a streaming manner to support SD-Conv for acceleration.
We evaluate the proposed method on various state-of-the-art
pillar-based 3D object detection networks, including Point-
Pillars [11], CenterPoint [24], and PillarNet [19], as well as
popular benchmarks like KITTI [8] and Nuscene [2]. The
experimental results consistently demonstrate that the pro-
posed SD-Conv can simply replace SubM-Conv to recover
accuracy while achieving higher sparsity. The achieved ac-
curacies are on par with or even surpass the accuracy of
the dense baseline models, while reducing the number of
computations by 94.5%, 72.3%, 41.3% for PointPillars, Cen-
terPoint, and PillarNet, respectively. With in-depth ablation
study, we further demonstrate that our SD-Conv achieve
superior accuracy-sparsity trade-offs compared to the prior
sparse convolution approaches [3, 5, 15]. Moreover, when
simulated on SPADE+, the method exhibited significant
sparsity-proportional speedup of 16.2x, 3.1x, 1.7x, respec-
tively. These findings emphasize the effectiveness of our
approach and its potential to enable real-time 3D object de-
tection, making it suitable for time-critical applications such
as autonomous driving.

2. Background and Challenges
2.1. Pillar-based 3D Object Detection

Essential for autonomous driving, 3D object detection can
be implemented through a variety of approaches, including
point-based, voxel-based, and pillar-based techniques. Point-
based methods, such as PointNet [17] and PointNet++[ 18],
deal directly with point cloud data, but they can encounter
complexity issues due to sampling and sorting processes.
Conversely, voxel-based methods like VoxelNet [25] par-
tition space into 3D grids, but the inherent sparsity of 3D
voxels can pose difficulties in GPU utilization. Pillar-based
methods, such as PointPillars [11] as seen in Fig. 2(a), which
segment space into 2D grids and utilize bird-eye-view (BEV)
encoding, have risen in popularity for real-time 3D object
detection [13, 19, 20, 22, 24, 26]. However, densify sparse
BEV-based 2D convolution can lead to redundant computa-
tion, suggesting that improvements can be made in PointPil-
lars’ current implementation.

Fig. 2(b) illustrates the details of this feature extraction
consisting of a backbone, neck, and head. The backbone
consists of multiple stages of convolutions led by sparse
down-sample convolution layers for the increased receptive
fields. The outcome of all these stages is deconvoluted and
then concatenated in the neck for box, class, and direction
prediction in the head. Note that variations exist; Center-
Point [24] incorporates center-based prediction heads while
PillarNet [19] strengthens pillar encoding with additional
SubM-Conv layers in front.

To achieve real-time speed, the key challenge in pillar-
based methods is to reduce computations while extracting
sufficient features for accurate object detection. To this end,
the sparsification of pillars and utilizing sparse convolutions
are getting significant attention for embedded 3D object
detection since dedicated point cloud accelerators with na-
tive sparse convolution support have emerged as attractive
alternatives for GPU [6, 7, 12, 14].

2.2. Sparse Convolution

Given the intrinsic sparsity of point cloud data, 3D object
detection methods employ sparse 3D convolution [9] for
efficiency. While conventional sparse convolution uses only
non-zero elements in the input feature map, reducing the
number of floating point operations (FLOPs) and memory
demands, its dilation property can compromise overall spar-
sity.

Submanifold Sparse Convolution (SubM-Conv) [10]
addresses this by forming a receptive field only around non-
zero elements without dilation, further reducing computa-
tional requirements. However, this limited receptive field
can lead to significant accuracy loss.

Spatial Pruned Sparse Convolution (SPS-Conv) [15]
& Focal Sparse Convolution (FS-Conv) [3] both offering
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Figure 2. (a) Pillar-based 3D object detection network structure. (b) Feature extraction steps: Backbone, Neck, and Head. (c) Comparison of
the receptive field of various sparse convolution operations within a stage: Dense-Conv, SubM/SPS-Conv, FS-Conv, and SD-Conv.

coarse adaptive dilation based on voxel importance only
once at each stage. SPS-Conv measures importance based
on magnitude, whereas FS-Conv calculates the importance
of each voxel through additional parameters learned during
training. Furthermore, FS-Conv also learns the importance
of dilation direction using extra parameters, enabling partial
dilation.

Pruned Sparse Convolution (PS-Conv) [12] initially
performs dilation on all non-zero values, akin to Dense-
Conv as illustrated in Fig. 2(c), to then increase sparsity by
applying pruning for computational reduction. However,
employing high sparsity pruning during training can hinder
stable learning, thereby imposing a limitation on accuracy.

Hardware for Sparse Convolution: To accelerate
Sparse Convolution on Pillars, it’s essential to operate only
on non-zero values. This involves utilizing mapping in-
formation that represents the relationship between sparse
input and sparse output [23]. One approach applicable to
general-purpose processors like GPUs is employing hash
tables. However, implementing hash tables introduces over-
head from mapping that often outweighs the reduction in
computation, thereby falling short of fully realizing the
benefits of sparse convolution. Dedicated accelerators like
PointAcc [14] or SPADE [12] address this by parallelizing
the mapping process, reducing mapping overhead, and effi-
ciently managing data to achieve speedup based on sparsity.

2.3. Challenges: Spatial Information Flow (SIF)
within a Stage

To address SparsePointPillars’ limitations and the challenges
of existing sparse convolutions for pillars, we implemented
SPS-Conv and FS-Conv into the pillar-based object detection
backbone. As illustrated in Fig. 2(c), these methods aimed to

balance computational savings and model accuracy through
adaptive dilation but still failed to provide sufficient spatial
information flow (SIF) [3] that constructs spatial expansion
of features of important pillars to supply necessary cues for
object detection. Both SubM-Conv and SPS-Conv do not
increase receptive fields within a stage, while FS-Conv only
allows one-time dilation towards deformable directions. This
coarse dilation severely limits SIF, impeding the connection
of sparse pillars inside the bounding box unless they proceed
through downsampling layers in subsequent stages.

The main challenge lies in augmenting SIF by expanding
the foreground pillar group, triggered by dilation and active
pillars generated by point clouds. Previous convolution oper-
ations have not achieved this, either Dense-Conv facilitating
the growth of foreground pillars without discerning back-
ground, or SubM-Conv suppressing both background and
foreground pillar dilation together. SPS-Conv and FS-Conv
enhance only the coarse-grained SIF, resulting in insufficient
foreground information. Given that such SIF discrepancies,
specifically the insufficient dilation of the foreground, hin-
der appropriate feature extraction for object detection, we
propose a novel convolution method that selectively and ef-
fectively increases the receptive field for important pillars.
As shown in Fig. 2(c), our proposed methods promote the
fine-grained dilation of important pillars at every sparse con-
volution, achieving extreme sparsity while preserving model
accuracy.

3. Method

To tackle the problem of granting SIF while preserving pillar
sparsity, we introduce novel operations: selectively dilated
convolution (SD-Conv).
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Figure 3. An overview of Selective Dilated Convolution.

Table 1. Performance comparison for t% in top-k selection (BEV
Hard mAP of PointPillars on KITTI val set.

t baseline 5 4 3 2 1
mAP 1 85.63 85.80 8575 85.66 85.61 83.38
FLOPs(G) }| 63.14 5.23 4.58 4.10 3.48 3.06

3.1. Selectively Dilated Convolution

Addressing the issue of discontinued SIF, we introduce a
novel module, selectively dilated convolution (SD-Conv).
The foundation of this method is the measurement of pillar
importance (1), defined as follows:

I, :GiEgp(M(fi))a (1)

where g,, denotes a group of pillars in the vicinity of a pillar
p, while M (-) signifies an importance measure applied to
a feature vector f; € RY. An overview of these proposed
methods is depicted in Fig. 3. This module performs a
regular convolution selectively dilating important pillars,
determined by I,,, with g, = p, G(-) = identity(-) and
M(-) = mean(] - |). The intuition is to allow each pillar
to expand its feature to its neighbor, provided the feature is
strong enough. The ablation study for justification of the
proposed importance measure is more discussed in Sec. 5.3.

For an efficient on-the-fly decision of important pillars,
we propose a dilation threshold learned throughout training.
The top-k method is employed during this training to iden-
tify the important pillars, choosing pillars with the top t%
importance for dilation, and performing SubM-Conv for the
remaining less significant pillars. To prevent unnecessary
dilation and preserve sparsity, the selection ratio ¢ is kept
small. Through an ablation study in Table 1, we confirmed
that ¢ = 2 is sufficient for PointPillars [11] on KITTT [8],
while ¢ = 4 is preferred in other cases. After training, an
importance threshold satisfying the selection ratio becomes
the dilation threshold for efficient inference.

(a) L1
" —Magnitude Importance
§ 0.9 ——Learnable Importance
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8
5 0.5
o
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Iterations
(b) Dilate |FLOPs| BEV Detection (%) | 3D Detection (%)

direction | (G) |[Easy Mod Hard | Easy Mod Hard
PointPillars| 63.14 | 89.72 87.42 85.63|87.01 77.31 75.61
Learnable | 4.23 |90.07 87.24 84.72|87.21 76.82 74.90
Random | 4.27 {90.04 87.19 84.81|86.93 76.71 74.79
SD-Conv | 3.48 [90.28 87.76 85.61|87.44 77.43 75.54

Figure 4. (a) Training curve for SparsePointPillars with SD-Conv
employing magnitude-based and trainable-based importance in
high sparsity. (b) Performance comparison of the car detection
task in SparsePointPillars using different methods to determine the
dilation directions of SD-Conv applied to the KITTI dataset.

Input Pillars SubM FS-Conv SD-Conv

Figure 5. Feature representation of a single car object based on
sparse convolution type. “Input Pillars” represents the initial input
of the backbone network, while the images corresponding to SubM-
Conv, FS-Conv, and SD-Conv are the outputs of the last layer in
Stage 2. The white rectangles indicate the boundaries of GT-boxes.

3.2. Convergent Selective Dilation

SD-Conv employs two intuitive design aspects: a magnitude-
based importance measure and dilation in all directions.
These choices contrast with previous studies that advocated
for more flexible dilation using learnable parameters. How-
ever, our findings showed that this parameterized approach
is not suitable for extreme pillar sparsity.

Fig. 4(a) presents the training curve of SD-Conv on KITTI
for PointPillars with 14% sparsity, comparing importance
measured by either pillar magnitude or learnable parameters.
The graph shows that the loss associated with the learnable
parameters is consistently higher than that of magnitude-
based importance, indicating optimization challenges under
significant sparsity. Furthermore, Fig. 4(b) contrasts 3D
object detection accuracy and FLOPs for various dilation
direction choices. Surprisingly, random direction dilation
outperforms the learned dilation direction in both FLOPs
and mAP, while our all-direction dilation yields the best per-
formance. Consequently, we choose to measure importance
based on magnitude and implement dilation in all directions,
eliminating additional overhead associated with learnable pa-
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Figure 6. An overview of SPADE+ (Minor modification for SD-Conv).

rameters and dilation choices. As a result, SD-Conv demon-
strates higher performance compared to both random and
learnable-based dilation directions, with the added benefit of
lower FLOPs.

3.3. Fine-Grain Spatial Information Flow

Fig. 5 contrasts SIF of various sparse convolution methods
by observing output features from Stage 2 of PointPillars
on KITTI. Specifically, we examine a focused region cor-
responding to a car (indicated by the white ground truth
bounding box). Note that the input pillars are sparsely dis-
tributed and disconnected along the bounding box. The
SubM-Conv output feature illustrates a discontinuous SIF,
failing to provide sufficient features for object detection. FS-
Conv, on the other hand, offers a more connected, albeit
deformed, SIF that doesn’t adequately cover the bounding
box. Conversely, our proposed SD-Conv extends the SIF to
fill most features within the bounding box, demonstrating
that selective dilation within a stage by employing SD-Conv
enhances feature provision for object detection.

4. SPADE+

We adapted SPADE [12] to support not only Sparse Convolu-
tion, PS-Conv and SubM-Conv, but also SD-Conv, creating
new one called SPADE+. SPADE effectively handles op-
erations only for non-zero points but considers dilation for
all active points. In contrast, SPADE+ supports the gen-
eration of mapping for SD-Conv, where only important
active pillars are dilated, through four stages: Alignment
(a), Row Merge (e), Dilation Check Window (@J), and

Column-wise Dilation (9) by rule generation unit (RGU).
While the mapping operation in the original SPADE only
consists of Alignment, Row Merge, and Column-wise Dila-
tion, SPADE+ adds a Dilation Check Window (9) between
Row Merge and Column-wise Dilation. Additionally, infor-
mation regarding dilation status is added to the FIFOs of
each stage in SPADE+, facilitating the generation of map-
ping information based on dilation status.

In SPADE+, only important input pillars dilate to gener-
ate output, so output index calculation depends on whether
the merged column index dilates, determined by neighboring
columns within Dilation Check Window (9). For dilated
merged columns, the SPADE+ behaves like SPADE. For non-
dilated ones, rule generation depends on nearby columns’
information. As illustrated in the example of Fig. 6, when
generating the mapping for the 4-th target output row, the
Merge Row results in a total of three merged columns. Sub-
sequently, in cycle 0, column-wise dilation is applied to the
first merged column, followed by column-wise dilation for
the second merged column in cycle 1. In cycle 1, since I
and I3 are not dilated and there are no adjacent columns
with merged columns, no output is generated for the merged
column (C?), resulting in the mapping for W. o not being
created. However, for W. _ and W. ., adjacent columns
are expanded to generate mapping information. As a result,
it can be observed that Iy is shifted by W_ | to be com-
puted with O, indicating that when the positions of all
outputs are known, I is indeed shifted to the O;9 by W_ ..
With minor tweaks to the rule generation unit, the SPADE+
operates akin to SPADE, facilitating SD-Conv operations.

SPADE+ retains the rest of SPADE’s components un-
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Table 2. Performance comparison of PointPillars among various
types of sparse convolution (KITTI val set).

FLOPs| 3D Detection (%) 71
(G)) | Easy Mod Hard
PointPillars | Dense 63.14 | 87.01 77.31 75.61
SubM-Conv | 2.65 | 87.35 7491 7245
PS-Conv 16.73 | 86.10 76.94 74.15
5.99 | 87.09 76.82 75.09
4.60 | 87.16 76.85 72.64
SD-Conv 348 | 87.44 7743 75.54

Method | Conv type

Sparse
PointPillars | FS-Conv

Table 3. Hardware comparison between SPADE and SPADE+.

SPADE SPADE+
Cores 64 x 64 = 4096
SRAM (KB) 654
Area (mm?) 11.6 11.73
ifg;%e 6.27 22.13
Supported | Sparse Conv, PS-Conv, | Sparse Conv, PS-Conv,
Conv Type | SubM-Conv SubM-Conv, SD-Conv

changed, except for the RGU, which is modified to generate
mapping information for SD-Conv. To streamline mapping
in SPADE [12], it simultaneously identifies output positions
from convolution operations and generates relevant mapping
details using a RGU. Additionally, a gather-scatter unit man-
ages input, weight, and output to minimize data movement
during convolutions, enhancing performance based on spar-
sity. Furthermore, in SPADE, PS-Conv was proposed to
minimize computational overhead without sacrificing per-
formance. However, as evident from the Table 2 results,
PS-Conv fails to address the discontinued SIF issue properly,
resulting in higher computational complexity compared to
SD-Conv.

Since SPADE+ only modifies the RGU portion to support
SD-Conv, the area overhead of SPADE+ is only about 1%
compared with original SPADE [12] as shown in the Table 3.
When comparing the effective TOP/W of SPADE for PS-
Conv and SPADE+ for SD-Conv, the latter utilizing SD-Conv
shows a 3.5x improvement thanks to the small hardware
overhead and computation efficiency of SD-Conv.

S. Experiments
5.1. Experimental Setting

We employed three state-of-the-art pillar-based 3D object
detection networks, PointPillars (PP) [11], CenterPoint
(CP) [24], and PillarNet (PN) [19], for evaluation of the

proposed method on KITTI [8] (for PP) or nuScenes [2]
(for CP and PN) benchmarks. We followed the baseline
settings of SparsePointPillars [21] to replace the existing
convolution operations (Conv2D and SubM-Conv) of PP,
CP, and PN with SD-Conv. All the experimental settings
are implemented with PyTorch-based frameworks, including
OpenPCDet' for PP and the popular CenterPoint” code-base
for PN and CP, and run on the NVIDIA A100 GPU.

5.2. Main Results

PointPillars (PP): We begin by comparing the performance
of our proposed SD-Conv with other sparse convolution op-
erations, SubM-Conv, PS-Conv and FS-Conv, on the Point-
Pillars (PP) with the popular KITTI dataset. As shown in
Table 2, SubM-Conv achieves a remarkable 95% reduction
in computational operations (FLOPs). However, this comes
at the cost of a significant decrease in accuracy, particularly
evident in the Hard category (-3.16 mAP). This outcome
underscores the adverse impact of constrained SIF caused
by SubM-Conv on object detection. PS-Conv demonstrates
a lesser accuracy degradation in the Hard category, with a
-1.46 mAP decrease. While PS-Conv alleviates accuracy
degradation to some extent, it offers a significantly lesser
reduction in computational operations compared to the other
methods. This highlights that merely applying pruning while
concurrently training does not suffice to efficiently maintain
SIF. To improve accuracy while saving computations, we
systematically vary the target FLOPs for both FS-Conv and
SD-Conv. Notably, FS-Conv demands 5.99 GFLOPs to main-
tain the original object detection accuracy. Any reduction in
FLOPs below this threshold results in a substantial decline
in accuracy, similar to what we observed with SubM-Conv.
Conversely, SD-Conv achieves a remarkable 94.5% reduc-
tion in FLOPs while preserving the original accuracy. This
demonstrates the effectiveness of our proposed fine-grained
selective dilation in constructing essential SIF, thereby en-
abling accurate object identification.

CenterPoint (CP): We evaluate SD-Conv using Center-
Point (CP), another popular pillar-based 3D object detection
framework. The results in Table 4 show the FLOPs and 3D
object detection accuracies in two categories, and errors in
five categories, following the nuScenes val set convention.
In the case of SubM-Conv, we observe a substantial 74.1%
reduction in computations, but this comes at the cost of no-
ticeable accuracy degradation across all categories. PS-Conv
reduces computational load by 61.28%, which is smaller
than the reduction achieved by SubM-Conv, but it demon-
strates improved accuracy. In contrast, FS-Conv maintains
original accuracy while achieving only up to a 66.7% re-
duction in computational load. SD-Conv, on the other hand,
safely reduces computation by 72.3% while surpassing FS-

Uhttps://github.com/open-mmlab/OpenPCDet
Zhttps://github.com/tianweiy/CenterPoint
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Table 4. Performance comparison between CenterPoint and its variants on the nuScenes val set.

Model Conv type F(IE}C))lis mAP 71 | NDS 1 | mATE mASE mAOE mAVE mAAE ]
CenterPoint | Dense-Conv | 70.01 50.79 60.55 | 31.77 2597 3594 3477 19.97
SubM-Conv | 18.13 47.89 | 5894 | 32.04 2632 36.83 34.53 20.36
Sparse PS-Conv 27.09 50.12 | 60.42 | 31.38 2624 36.34 3227 19.73
CenterPoint | FS-Conv 23.34 50.30 | 60.41 | 31.55 26.10 38.14 32.67 19.95
SD-Conv 19.37 50.33 | 60.84 | 31.28 2596 3426 32.11 19.66

Table 5. Performance comparison between PillarNet and its variants
on the nuScenes val set.

Backbone ‘ Neck ‘ Head | FLOPs
Model mAP | NDS
Conv type (G)
PilllarNet| SubM Desne | Desne | 276.26 | 59.58 | 66.95
Sparse SubM SubM | Desne | 151.96 | 57.92 | 66.33
PillarNet | SubM |SD-Conv| Desne | 162.29 | 59.45 | 67.40

Conv in terms of accuracy. This highlights the advantageous
trade-off provided by SD-Conv between FLOPs and accu-
racy, primarily due to its fine-grained SIF construction.

PillarNet (PN): We further assessed SD-Conv’s benefits
in the context of PillarNet (PN), a cutting-edge pillar-based
object detection method, where its backbone incorporates
multiple layers of SubM-Conv to enhance feature extraction.
Given that a significant portion of computation resides in its
neck, our focus was on sparsifying it using both SubM-Conv
and SD-Conv to reduce overall FLOPs while preserving ac-
curacy. Table 5 reports key accuracy metrics, including mAP
and NDS, using the nuScene val dataset, with consistent
overall trends. Replacing the dense convolution in PN’s neck
with SubM-Conv results in substantial computational sav-
ings of 45.0% but noticeable mAP degradation. Conversely,
transitioning from SubM-Conv to SD-Conv fully restores
accuracy (its NDS even surpasses the baseline) with only a
marginal increase in FLOPs compared to . These findings
underscore SD-Conv’s versatile applicability in maintaining
or enhancing performance while simultaneously reducing
computational overhead.

5.3. Ablation Study

In this section, we validate several design choices for our
pillar-based 3D object detection: 1) the metric for measuring
importance of SD-Conv, 2) types of sparse convolution for
down-sampling, and 3) methods for enhancing SIF.
Importance Metric: Table 6 presents findings regarding
various metrics related to I, as discussed in Sec. 3. We
explore different metrics within a magnitude-based approach

Table 6. Ablation study of importance metric of SD-Conv (Sparse
PointPillars with KITTI val set).

MO e 0 FLOPs 3D Detection (%)
(G) Easy Mod Hard
Mean | identity |p 348 | 8744 7743 75.54
Max |identity |p 3.07 | 87.62 7693 72.67
Mean | Avg-Pool |SubM(p)| 3.34 | 86.99 76.49 72.84
Mean | Max-Pool |[SubM(p)| 3.43 | 87.14 77.12 74.73

for I,,. Regarding the selection of important pillars, the mean
across the channel consistently demonstrates the best per-
formance. Conversely, the max metric tends to excessively
emphasize outliers. Average pooling (Avg-Pool) faces chal-
lenges in making accurate assessments when neighboring
values of a particular pillar were zero, diminishing its rele-
vance. Meanwhile, max pooling (Max-Pool) underperforms
as it places excessive emphasis on high-magnitude pillars.

Types of Down-Sample Sparse Convolution: As dis-
cussed in Sec. 2.1, down-sample sparse convolution at the
beginning of stages increases the receptive field, affecting
the pillar-based object detection’s overall sparsity. Two
down-sampling methods exist: sparse convolution with a 2x2
kernel used by SparsePointPillars [21] and spatial pruned
regular sparse convolution (SPRS-Conv [15]). The former
increases sparsity by shrinking the dilation window from 3x3
to 2x2. Meanwhile, SPRS-Conv dilates only vital features,
risking pruning essential elements due to its pre-feature-
importance stride mask. Table 7 shows that SPRS-Conv
results in lower accuracy than the case with a 2x2 kernel
window, thus we employed the 2x2 kernel approach in our
work.

SD-Conv vs. Additional Down-Sampling for SIF:
Computation savings from SubM-Conv restrict the SIF, com-
promising object detection accuracy. A recent method, Vox-
elNext [4], introduces an additional down-sampling (ADS)
to enhance SIF in SubM-Conv. While ADS can boost SIF
via a larger receptive field, it also increases the computa-
tional load. To compare SD-Conv with ADS, we adjusted
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Table 7. Comparison of down-sample sparse conv: 2x2 kernel vs.
SPRS-Conv (Sparse PointPillars on KITTI val set).

Model Down-Sample FLOPs 3D Detection (%)
Conv Type G) Easy Mod Hard
PointPillars | 2x2 kernel [21] 3.48 87.44 7743 75.54
+ SD-Conv | SPRS-Conv [15] 3.57 8739 76.92 74.16

Table 8. Comparison of additional down-sampling (ADS [4]) and
SD-Conv (PointPillars on KITTI val set).

Method FLOPs 3D Detection (%)
(G) Easy Mod Hard
Dense 63.14 | 87.01 7731 75.61
SubM 2.65 87.35 7491 7245
SubM + ADS 4.10 87.06 76.23 72.37
SD-Conv 3.48 87.44 7743 75.54

Sparse PointPillars to include an extra down-sampling and
SubM-Conv for ADS. Table 8 shows SubM+ADS’s mixed
impact on 3D object detection accuracy (a +1.32 increase
on Moderate but drops of -0.29 on Easy and -0.08 on Hard)
at the cost of additional 1.45G FLOPs of computation. In
contrast, SD-Conv matches the dense baseline’s accuracy
but with fewer computations than SubM+ADS, underscoring
SD-Conv’s advantages.

5.4. Hardware Evaluation

Harnessing the sparsity of point cloud processing for runtime
savings on conventional GPUs is ineffective due to architec-
tural constraints. However, several point cloud-based sparse
convolution accelerators, featuring dedicated logic for sparse
data structures, have been introduced [6, 7, 12, 14]. These
accelerators support sparse convolution by mapping active
inputs to outputs, focusing only on non-zero value GEMM
operations. To assess the proposed SD-Conv’s feasibility
and benefits, we created cycle-accurate simulators for recent
point cloud accelerators [12, 14].

More specifically, mapping information calculates input-
weight-output index tuples, indicating the output from each
input with a specific kernel index. This allows for efficient
storage of each weight’s product with an active point, opti-
mizing sparse convolution calculations. While GPUs often
use hash tables to create this mapping, leading to collisions
and increased overhead, PointAcc [14] employs merge sort-
ing, and SPADE [12] uses a pipelined strategy with sorted
inputs to reduce overhead. Unlike PointAcc, which uses
a cache, deterministically processes the mapping details
and employs scratch pads to minimize memory overhead.
Due to these architectural enhancements, both PointAcc and
SPADE achieve sparsity-related speedup, as verified in our
cycle-accurate simulators.
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Figure 7. Comparison of relative cycle with and without SD-Conv
in embedded accelerators (SPADE+, PointAcc), using dense con-
volution accelerators as the baseline.

To assess the hardware speedup of SD-Conv, we
implement SD-Conv’s mapping algorithm into our
PointAcc/SPADE simulators and tested it on three mod-
els (PP, CP, PN). These simulators also feature a baseline
architecture for executing dense convolution in a systolic
manner. Fig. 7 shows relative execution cycles compared to
the baseline, with SD-Conv configurations as per Tables2-5.
For PP, CP, and PN, SPADE+ attains a 16.2x, 3.1x, 1.7x
speedup, nearing the ideal 18.1x, 3.6, 1.7 speedup from
computational savings, respectively. PointAcc lags behind
SPADE-+ in all tests due to cache misses but still significantly
outperforms the baseline using sparsity.

6. Conclusion

This research demonstrated that pillar-based 3D object detec-
tion, an efficient approach in autonomous driving technology,
outperforms point-based and voxel-based methods in speed
and accuracy, despite the computational redundancy from
densifying the intrinsically sparse pillar data. We discovered
that the accuracy loss in recent submanifold convolution
(SubM-Conv) methods is due to their limited receptive field.
To address this, we introduced a selectively dilated convolu-
tion (SD-Conv) that enhance accuracy by focusing on key
pillars and eliminating non-essential ones. Evaluation across
several state-of-the-art models validated that our approach
maintains superior sparsity without sacrificing mAP.
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