
Block Selective Reprogramming for On-device Training of Vision Transformers

Sreetama Sarkar1 Souvik Kundu2 Kai Zheng1 Peter A. Beerel1
1Universiy of Southern California, Los Angeles, USA 2Intel Labs, San Diego, USA

{sreetama, kzheng44, pabeerel}@usc.edu souvikk.kundu@intel.com

Abstract

The ubiquity of vision transformers (ViTs) for various
edge applications, including personalized learning, has cre-
ated the demand for on-device fine-tuning. However, train-
ing with the limited memory and computation power of
edge devices remains a significant challenge. In particu-
lar, the memory required for training is much higher than
that needed for inference, primarily due to the need to store
activations across all layers in order to compute the gradi-
ents needed for weight updates. Previous works have ex-
plored reducing this memory requirement via frozen-weight
training as well storing the activations in a compressed for-
mat. However, these methods are deemed inefficient due
to their inability to provide training or inference speedup.
In this paper, we first investigate the limitations of existing
on-device training methods aimed at reducing memory and
compute requirements. We then present block selective re-
programming (BSR) in which we fine-tune only a fraction
of total blocks of a pre-trained model and selectively drop
tokens based on self-attention scores of the frozen layers.
To show the efficacy of BSR, we present extensive evalua-
tions on ViT-B and DeiT-S with five different datasets. Com-
pared to the existing alternatives, our approach simultane-
ously reduces training memory by up to 1.4× and compute
cost by up to 2× while maintaining similar accuracy. We
also showcase results for Mixture-of-Expert (MoE) mod-
els, demonstrating the effectiveness of our approach in
multitask learning scenarios. Code will be available at:
https://github.com/sreetamasarkar/BSR.

1. Introduction
Over the past several years, there has been an unprecedented
growth in the deployment of deep learning applications on
edge devices. Mutitask learning (MTL) is gaining momen-
tum in edge applications due to their ability to dynamically
adapt to different tasks with minimum overhead. Currently,
edge devices primarily handle inference, while the train-
ing or fine-tuning processes take place in the cloud. This
not only involves substantial communication overhead for

Figure 1. Test accuracy, training time, and memory comparison
for a ViT-B on CIFAR-10 with a batch size of 32. In particular, we
achieve a 5.47× memory reduction and 2.43× training speedup
while yielding similar test accuracy. Our benefits are even more
significant for higher batch sizes.

transferring both the model and data, but also raises con-
cerns about data privacy [28]. Although on-device training
is preferred, memory limitations of edge devices pose chal-
lenges. Naive solutions include directly using pre-trained
models or fine-tuning only the last layer. However, these
approaches can lead to a notable drop in accuracy if the
distribution of the new data differs significantly from the
pre-training data.

Previous works on efficient on-device learning [3, 22]
have pointed out that the training memory is primarily dom-
inated by activations, rather than parameters. In order to
reduce activation memory, training residual modules while
keeping the original backbone network frozen, has been
widely explored in convolutional neural networks (CNNs)
[3, 44]. However, this approach is not effective in vision
transformers (ViTs) due to the presence of non-linear lay-
ers such as self-attention, softmax, and GELU, that require
storing the input activation for gradient computation, even
with frozen weights. Another line of research has explored
reducing the memory cost of ViTs by introducing irregu-
lar sparsity in activation tensor [22]. However, such ap-
proaches might not yield significant memory savings due to
the overhead of sparse representations and do not provide
any potential speedup.

In contrast, this work presents a memory and parameter-
efficient fine-tuning approach called block selective repro-
gramming (BSR) that fine-tunes only a fraction of the pre-
trained weight tensors such that the activation memory re-

This CVPR Workshop paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.

8094



quirement to propagate the gradients is minimized.
Our Contributions We first investigate and identify the
limitations of existing SoTA methods applied to CNNs in
the context of ViTs, as well as the shortcomings of existing
on-device ViT fine-tuning approaches. In particular, we ob-
serve that residual fine-tuning does not necessarily reduce
activation memory and can suffer from increased computa-
tional overhead.

Based on our observation, we propose BSR where we se-
lectively fine-tune a small fraction of blocks of a pre-trained
network. Additionally, to reduce the compute cost, we em-
ploy a token-dropping method that drops tokens primarily
based on the self-attention score of the frozen layers. This
saves activation memory and yields training speedup, unlike
activation sparsification [22].

We present a detailed empirical evaluation of the impact
of the block selection choice and token drop locations on ac-
curacy. We demonstrate the efficacy of BSR on two differ-
ent transformer models with five different datasets. Specif-
ically, compared to the existing alternatives, our approach
yields additional training memory saving of up to 1.4×
while saving compute cost by up to 2×. Compared to fully
fine-tuning an ImageNet pre-trained ViT-B [13] model on
CIFAR-10 (Figure 1), our approach provides 5.47× train-
ing memory reduction along with 2.43× reduction in train-
ing time for a batch size of 32.

Finally, we consider multi-task learning (MTL) as a tar-
get for our fine-tuning approach because of the benefits of
maintaining a single model across different tasks in edge
applications. In particular, mixture-of-expert (MoE) mod-
els [8, 31] are becoming popular in MTL due to their ability
to disentangle the parameter space yielding improved MTL
performance. We achieve close to baseline accuracy for
fine-tuning MoE using BSR while reducing training mem-
ory and FLOPs by 2.3× and 1.5× respectively, demonstrat-
ing the effectiveness of our approach in MTL scenarios.

2. Related Work
On-device Training TinyTL [3] was one of the first papers
to show that storing activation, not parameters, is the pri-
mary bottleneck for on-device training. Therefore, model
compression techniques like weight pruning [15, 17, 19,
20, 24, 25, 34, 40], quantization [11, 18, 27], and knowl-
edge distillation [26, 41] do not significantly reduce the cost
of on-device training. Parameter efficient training methods,
like Bitfit [47] or training only Batch Normalization param-
eters [21], reduces parameter memory, which is only a small
fraction of the total train memory [3, 22]. Recomputing dis-
carded activations during back-propagation [6, 16] reduces
memory cost at the expense of large computational over-
head, making them unsuitable for edge devices. TinyTL
proposes training only biases with frozen weights. To com-
pensate for reduced learning capacity, they introduce resid-

ual blocks, which are much smaller in width and employ
group convolution to reduce memory footprints. Rep-Net
[44] improves on this residual learning approach by design-
ing six small residual modules which exchange features in-
termittently with a frozen pre-trained network, achieving
a lower memory footprint and improved accuracy. How-
ever, introducing residual blocks leads to an increase in pa-
rameters, as well as both training and inference compute.
Other methods for activation memory reduction include ac-
tivation quantization [14, 27, 36] and pruning [4, 22, 25].
Back-Razor [22] proposes pruning the activation stored for
backpropagation after the forward pass. They sparsify ac-
tivations up to 95%, yielding a 5.5× reduction in training
memory for ViTs. Their training memory reduction is lim-
ited by the memory required to save a binary mask of the
sparse activations and hence, cannot achieve memory re-
duction proportional to activation sparsity. Notably, none
of the current on-device learning methods provide speedup
or computational efficiency during inference.

Efficient Vision Transformers Design for efficient ViTs
is an active area of research and can be partitioned into
two broad categories, namely architecture design for ef-
ficient ViTs and optimization of the operations for ViTs.
In the first category, researchers have explored different
self-attention alternatives including Linformer [43], SAL-
ViT [48], and Performer [10], that targeted reducing its
quadratic compute complexity. Other works presented re-
source and latency friendly efficient architectures includ-
ing Mobile-former [9] and Efficientformer [30]. However,
these works do not target on-device fine-tuning. For the
second category, researchers have developed various com-
pression [29, 45, 46], token dropping [33], and token merg-
ing [1] schemes to yield compute efficiency which are de-
signed to provide inference speedup. However, despite re-
ducing compute and often latency, such methods alone can-
not yield the desirable reduction in activation and gradient
storage necessary for on-device fine-tuning. In this paper,
we leverage token dropping for on-device fine-tuning with
resource-constrained memory and compute budget.

3. Motivational Analysis

3.1. Preliminaries

ViT models partition the input image into N patches, also
called tokens, and embed each token into an embedding
vector of length L. An extra classification token cls token
is added to the set of image tokens, creating N + 1 to-
kens. The cls token is responsible for aggregating global
image information. A trainable positional embedding is
added to each of the token embeddings, which are then
passed through a series of transformer encoder blocks, each
consisting of a multi-head self-attention (MHSA) layer fol-

8095



lowed by a feed forward network (FFN). The tokens are
mapped into Query (Q), Key (K), and Value (V ) matrices,
each having a dimension of [N + 1, d], where d = L/H
and H is the number of heads in the MHSA. Each head
performs the self-attention operation

Attention(Q,K,V ) = Softmax(
QKT

√
d

)V . (1)

The FFN is usually a 2-layer network with GELU activation
and a hidden dimension denoted Dffn.

3.2. Analyzing Memory Cost

We perform a detailed analysis of the activation memory
required for gradient computation in a ViT block. The gra-
dient for back-propagation for linear and non-linear layers
are given by Equation 2 and Equation 3 respectively, as fol-
lows.

∂L
∂ai

=
∂L

∂ai+1

∂ai+1

∂ai
=

∂L
∂ai+1

wT
i for linear layers (2)

=
∂L

∂ai+1
h (ai) for non-linear layers

(3)

Here, the input and output activations for the ith layer are
denoted by ai and ai+1. For linear layers, ai+1 = wiai+ b

and the gradient ∂ai+1

∂ai
is independent of ai, whereas, for

non-linear layers, the gradient is a function of ai, given by
h(ai). The gradient for the weights are given by Equations
4 and 5 where g denotes the gradient function with respect
to weights for non-linear layers, as follows.

∂L
∂wi

=
∂L

∂ai+1

∂ai+1

∂wi
=

∂L
∂ai+1

aTi for linear layers (4)

=
∂L

∂ai+1
g (ai) for non-linear layers

(5)

The gradients of weights are dependent on input activations,
whether the layer is linear or non-linear. Thus, trainable
blocks must store activations both for linear layers, includ-
ing LayerNorm or fully-connected layers, and non-linear
layers, including Softmax, GELU, and Attention. In con-
trast, frozen blocks situated in the gradient flow path only
need to store activations for non-linear layers. The memory
cost for the stored activations for non-linear layers in DeiT-
S [39] are presented in Table 1. A detailed analysis of the
gradient activation memory required by each block reveals
that a frozen block stores ∼2.9 MB whereas a fully trainable
block stores ∼5.5 MB, indicating that training with frozen
weights reduces memory requirements by ∼ 2×. From Ta-
ble 1, it is clear that activation memory is largely depen-
dent on the number of input tokens. Softmax input exhibits

Module Stored Dimension Memory
Activation Cost (MB)

Self-Attention Q,K,V [B, H, N+1, L/H] 0.87
Softmax QKT [B, H, N+1, N+1] 0.89
GELU [B, N+1, L×Dffn] 1.15

Table 1. Memory cost for DeiT-S (patch size = 16, N =
196, L = 384, H = 6, Dffn = 4) model with a batch size B=1
and input image dimension of 224× 224

quadratic dependence, while all saved activations exhibit
linear dependence. With this motivation, we employ an effi-
cient token dropping mechanism, where we selectively drop
uninformative tokens, achieving over linear reduction in ac-
tivation memory without sacrificing accuracy.

4. Proposed Approach
4.1. Block Reprogramming in ViTs

To improve the SoTA in fine-tuning ViTs, we propose Block
Selective Reprogramming (BSR) which selectively trains a
small fraction of blocks of a pre-trained model coupled with
token dropping. Token-dropping approaches have been
widely studied in ViTs for latency and energy improvement
[1, 33]. However, token dropping has not been used in the
context of activation memory reduction for on-device train-
ing. In this work, we couple token dropping with frozen-
weight training, obtaining activation memory reduction up
to 6×. Our token-dropping method is inspired by EViT
[32]. We calculate token importance using self-attention
scores and fuse low importance tokens based on a token
drop rate. Thus, fewer tokens are passed on to the trainable
blocks, significantly reducing activation memory.

The token importance is calculated by the MHSA mod-
ule of a block using the attention from the classification to-
ken to all other tokens, given by a score Stoken as follows

Stoken =
qclassK

T

√
d

. (6)

The first row of the attention map QKT is the dot product
between the query vector obtained from classification token
(qclass) and key matrix. We use this dot product to calcu-
late token importance because tokens in the value matrix
are linearly combined according to these scores (Stoken) to
predict the output class. The top-K tokens according to the
importance score Stoken are preserved, K being determined
by the token drop rate, while the unimportant ones are fused
and passed onto the subsequent FFN layer. The tokens are
incrementally discarded across the length of the network
through blocks termed token drop locations. Since the clas-
sification token shows an exactly identical distribution for
a pre-trained and fully fine-tuned model 4, we leverage the
pre-trained classification token for importance calculation.

8096



Patch Embedding +
Pos Embedding Block 0 Block 3 Block 6 Block 9Block 7Block 4 Block 11Block 10 Classification

Head
Drop 50%

tokens
Drop 50%

tokens
Drop 50%

tokens

MHSA FFN

N tokens N/2 tokens N/4 tokens N/8 tokens

Frozen Block
Trainable Block

Token Drop Architecture

Gradient Flow Path

Figure 2. Block selective reprogramming framework for a ViT model with 12 layers. The token drop locations are set at 4th, 7th, and 10th

blocks, where 50% of incoming tokens are dropped based on token importance calculated by the MHSA module. The 4th, 8th, and 12th

blocks along with the classification head are trainable. The gradient propagation does not occur beyond the last trainable block.

This alleviates the need to transmit gradients all the way
back to the start of the network, thereby saving memory.

4.2. Understanding the Gradient Flow

In this section, we derive the gradient flow for residual
learning and BSR, and justify why we choose to fine-
tune parts of the main network instead of inserting resid-
ual blocks. We further argue that activation memory reduc-
tion cannot be achieved due to an additive relation between
trainable and frozen blocks in the context of ViTs, contrary
to Rep-Net [44].

Text

Frozen Trainable

Gradient Flow Path

Figure 3. Left: Gradient flow in a residual learning architecture
like [44] Right: Gradient flow in our block selective reprogram-
ming approach

In Figure 3, on the left, we consider a residual learn-
ing network like Rep-net, where the frozen ith main block,
modeled as fMi

exchanges features with a trainable side
block fSi . The input and output activations of the ith blocks
are denoted by ai and ai+1. The individual outputs of the
main and side blocks are denoted by aMi

and aSi
, where

aMi
= fMi

(ai) and aSi
= fSi

(ai). The derivative of block

fk is given by f ′
k. The derivative of the loss L with respect

to the trainable weights wSi of the ith side block Si is given
as follows,

∂L
∂wSi

=
∂L

∂ai+2

∂ai+2

∂wSi

=
∂L

∂ai+2

∂

∂wSi

(
aMi+1 + aSi+1

)
=

∂L
∂ai+2

∂

∂wSi

(
fMi+1

(ai+1) + fSi+1
(ai+1)

)
=

∂L
∂ai+2

∂

∂wSi

(
fMi+1

(
aMi + aSi

)
+ fSi+1

(
aMi + aSi

))
=

∂L
∂ai+2

∂aSi
∂wSi

(
f ′
Mi+1

(aMi + aSi ) + f ′
Si+1

(
aMi + aSi

))
(7)

where the last step of the derivation utilizes the fact that
aMi is independent of wSi

.
Equation 7 clearly shows that the gradient of weights of

the trainable side block depends on the gradient through the
subsequent main block f ′

Mi+1
(ai+1). Because the deriva-

tive of the loss depends on the input activation for the non-
linear components, we still need to store these input activa-
tions along the main path.

The advantage of freezing weights in CNNs stems from
the fact that the derivative of the loss for linear layers like
convolution need only weights, and not their input activa-
tion, as given by Equation 2. ReLU, although non-linear,
only needs to store a binary mask. Therefore, unlike the
claims made by Rep-Net, the additive relationship between
frozen and trainable blocks does not play a role in activation
memory reduction. The memory reduction is obtained by
reducing the activation dimension at the input of trainable
blocks feeding downsampled versions of the activation to

8097



(a) Patch embedding (b) Positional embedding (c) Classification token

Figure 4. Distribution of patch embedding, positional embedding and classification token of two DeiT-S: a pre-trained ImageNet model
and a fully fine-tuned model on CIFAR-10

residual blocks. This advantage, however, is lost for ViTs
where each encoder block consists of self-attention, soft-
max and GELU, each of which requires storing the activa-
tion input for gradient propagation (Equation 3). Therefore,
introducing residual blocks further increases the activation
memory, as demonstrated through our experiments detailed
in Section 5.1. Moreover, in residual learning the forward
pass occurs through both the frozen main blocks and the
trainable residual blocks, resulting in an increase in param-
eters and compute costs, both during training and inference.

In Figure 3, on the right, we show the gradient flow
in BSR, where the ith main block is made trainable. The
derivative of the loss L with respect to the trainable weights
wMi

of main block Mi is given as follows

∂L
∂wMi

=
∂L

∂ai+2

∂ai+2

∂wMi

=
∂L

∂ai+2

∂aMi
∂wMi

(
f ′
Mi+1

(aMi )
)
(8)

The lack of a residual path simplifies Equation 8 and implies
only activations along the main path need to be stored.

4.3. Design Choice Discussion

Discussion 1 Which blocks are more essential during fine-
tuning for transferring to small-scale datasets?

We perform an analysis of intermediate features between
an ImageNet pre-trained model and a fully fine-tuned model
on CIFAR-10 dataset to observe which layers show the
maximum differences. The layer statistics for the three
trainable elements before the encoder blocks, patch embed-
ding, positional embedding, and classification token, have
been presented in Figure 4. Surprisingly, we observe that
these elements have an exactly identical distribution for the
pre-trained and fine-tuned models. This is not obvious, par-
ticularly for the classification token, which is responsible
for aggregating information for final classification. In gen-
eral, fine-tuning the last layers of a model is more important
[5, 12, 38], which is why in transfer learning applications,
only the last layers are often fine-tuned. For CNNs, the first
few layers or feature extraction layers are mostly similar

across tasks. This brings us to our next discussion, namely,
is only fine-tuning the last few layers sufficient in terms of
accuracy and activation memory?

Discussion 2 Is fine-tuning the last few blocks enough?
Table 2 presents results for training the last two, three,

and four blocks, with and without token pruning. We ob-
serve that training blocks only towards the end cannot close
the accuracy gap, even without token pruning. With token
pruning, because only a few tokens are left towards the end,
we observe a significant drop in accuracy. This necessitates
an intelligent selection of trainable blocks and token drop
locations, balancing between accuracy and activation mem-
ory to achieve an optimal trade-off.

Trainable Token Train Reduce Accuracy
Blocks Dropping Memory Ratio

Baseline 8649 1× 98.48

(10, 11) ✗ 1477 5.8× 96.14
(10, 11) ✓ 215 40.2× 93.93

(9, 10, 11) ✗ 2187 3.9× 96.35
(9, 10, 11) ✓ 333 25.9× 94.81

(8, 9, 10, 11) ✗ 2896 2.9× 96.81
(8, 9, 10, 11) ✓ 502 17.2× 95.23

Table 2. Training last few blocks of a DeiT-S model on CIFAR-10
Dataset with and without token pruning

Discussion 3 Relative Positioning of Token Drop Loca-
tions and Trainable Blocks The overall token drop rate of
the network depends on the token drop locations and the
fraction of tokens dropped in those locations. For example,
if a higher token drop rate is chosen, placing token drop lo-
cations towards the end of the network will have the same
effect as placing token drop locations in the shallower lay-
ers with a lower drop rate (Table 8). EViT [32] shows that
the token dropping approach causes significant performance
degradation when tokens are dropped before the 3rd layer,
since transformer models are not able to identify important
tokens that early. They further observe that after the 3rd

8098



layer, irrespective of drop location and drop rate, the net-
work exhibits a stable performance for the same level of
overall token reduction. We verify this observation in Sec-
tion 5.3. We place token drop locations at the 4th, 7th, and
10th blocks with a token drop rate of 0.5, resulting in an
overall token reduction of 50%. With this token drop con-
figuration, the position of trainable blocks is varied to find
a suitable trade-off between accuracy and training memory.
An ablation for trainable block positions is presented in Ta-
ble 7. We make several interesting observations.
• Placing trainable blocks before token drop locations im-

proves accuracy, but heavily costs training memory.
• Placing all trainable blocks after token drop locations

yields significant memory advantages but is accompanied
with a drop in accuracy.

• Training blocks at uniformly distributed depths performs
better than solely training the last blocks.

Based on these observations, we keep 3 out of 12, i.e., the
4th, 8th and 12th, blocks as trainable. The 4th block is also
a token drop location, where all N tokens are processed
by the MHSA for token importance calculation, passing on
N/2 tokens to the FFN layer. The 8th and the 12th blocks
process only N/4 and N/8 tokens respectively.

5. Experimental Results
Models and Datasets We demonstrate results on DeiT-S
[39] and ViT-B [13]. Fine-tuning is performed on models
pre-trained on ImageNet1k for DeiT-S, and ImageNet22k
for ViT-B. MoE models are constructed from an Imagenet
pre-trained ViT-B backbone, with three MoE layers, each
consisting of 16 experts. Transfer learning performance is
shown on five datasets: CIFAR-10, CIFAR-100 [23], Flow-
ers [35], Pets [37], and Food [2]. The estimated memory
results are calculated following [3, 22] and the on-device
memory is measured on NVIDIA RTX A6000 GPUs.

Training Hyperparameters ViT-B models are trained in
Pytorch following the training settings in [22]. ViT-B mod-
els are trained using SGD optimizer for 20k steps with co-
sine learning rate decay and initial learning rate tuned for
each dataset. ViT MoE models are trained using SGD for
8k steps with an initial learning rate of 0.01. DeiT-S mod-
els are trained using AdamW optimizer for 50 epochs using
cosine learning rate decay. The default image size is set to
224 and default patch size is set as 16.

5.1. Results and Analysis

ViT-B and DeiT-S models for our approach are configured
according to the settings described in Discussion 3 (Sec-
tion 4.3) with an overall token drop rate of 50%. Table 3
presents results for DeiT-S on CIFAR-10 and CIFAR-100.
Our approach achieves 6.03× training memory reduction,
while showing accuracy degradation of 0.9% on CIFAR-10

Figure 5. Accuracy and on-device memory for DeiT-S and ViT-B
models on CIFAR-100.

and 3.23% on CIFAR-100. We also achieve a FLOPS re-
duction of ∼ 2×.

Method Train Reduce FLOPS CIFAR-10 CIFAR-100
Mem. Ratio (GMacs)

FT-Full 8649 MB 1× 589 98.48 88.79
FT-Last 369 MB 23.4× 589 89.9 75.3

Ours 1433 MB 6.03× 295 97.5 85.56

Table 3. BSR for DeiT-S with batch size 128.

In Table 4, we compare full fine-tuning (FT-Full), fine-
tuning only the last layer or the classification head (FT-
Last), Back Razor [22], and our approach. The training
memory, on-device memory, and FLOPS are calculated
for CIFAR-100. We compare with Back Razor for 80%
and 95% activation sparsity. FT-Last provides the high-
est memory benefits, while performing reasonably well on
datasets like Flowers, but suffers substantial degradation for
CIFAR-100 and Food. Some of our FT-Full accuracies are
marginally lower than baseline accuracies reported in Back
Razor. For example, for Flowers-102, our FT-Full accuracy
is 99.2% as opposed to their reported accuracy of 99.5%.
Both Back Razor and our method suffer 0.1% degradation
in Flowers-102. For Pets, the accuracy of our method is at
par with Back Razor@95%, although our FT-Full accuracy
is lower by 0.4%, implying our method suffers 0.4% less
degradation. Our approach outperforms Back Razor@95%
for CIFAR-100 and Pets by 1.02% and 0.4%, and performs
at par on Flowers dataset. We provide greater training mem-
ory reduction than Back Razor@95% while simultaneously
achieving 2× FLOPS reduction.

On-device Memory The accuracy and on-device memory
for FT-Full, FT-Last, and BSR on CIFAR-100 are presented
in Figure 5. FT-Last provides the highest memory reduction
but suffers substantial (∼10% on DeiT-S) accuracy degra-
dation. Our approach provides on-device memory reduction
of 4.8× for DeiT-S model and 4.4× for ViT-B and outper-
forms Back Razor by 1.4×.

Residual Learning for CNNs and ViTs We also in-
vestigate residual learning inspired from Rep-Net for ViTs.

8099



Method Train Reduce On-device Reduce FLOPS ↓ Reduce Accuracy(%)↑
Mem. (MB) ↓ Ratio ↑ Mem. (MB) ↓ Ratio ↑ (GMacs) Ratio ↑ CIFAR-10 CIFAR-100 Flowers Pets Food

FT-Full 17388 1× 19098 1× 2249 1× 98.98 93.1 99.2 93.7 90.5
FT-Last 525 33× 1629 11.7× 2249 1× 96.1 84.5 99.02 92.2 84.1

BackRazor@80 % [22] 4565 4.2× 8501 2.66× 2249 1× 98.9 92.9 99.4 93.8 90.5
BackRazor@95% [22] 3496 5.5× 7189 3.15× 2249 1× 98.8 90.0 99.4 92.4 88.7

Ours 2938 5.92× 4342 4.4× 1129 2× 98.3 91.02 99.1 92.4 88.4

Table 4. Comparison of BSR with other transfer learning approaches for ViT-B with batch size 128. The values for Back Razor are taken
directly from the paper [22]. The training memory reduction ratios for Back Razor are calculated with respect to their reported baseline.
The best accuracy other than FT-Full is underlined. Back Razor@80% gives the best accuracy with limited memory reduction. BSR yields
the highest reduction in estimated and measured memory and FLOPS (highlighted in bold).

Three trainable side blocks are introduced while the pre-
trained backbone is kept frozen. The output activations of
main and side blocks are added together, similar to Figure
3. BSR outperforms residual learning in accuracy, training
memory and FLOPS, as shown in Table 5.

For testing BSR on CNNs, we train only the last blocks
of layers 2, 3, 4 in ResNet-50. We outperform FT-Full and
achieve similar performance as Rep-Net with lesser FLOPS
and training memory.

Model Method Accuracy ↑ Activation ↓ FLOPS ↓
(%) Mem.(MB) (GMacs)

ResNet-50
FT-Full 95.13 88.4 4.1
Rep-Net 96.37 9.91 6.2

Ours 96.21 8.02 4.1

DeiT-S
FT-Full 98.48 66.9 4.6
Rep-Net 97.81 40.1 5.7

Ours 98.16 34.3 4.6

Table 5. Residual learning and BSR for CNNs and ViTs on
CIFAR-10. The activation memory and FLOPS are reported for
a batch size of 1.

5.2. Extending BSR for Mixture-of-Experts

Multi-task learning (MTL) [7, 31] has become pivotal for
edge intelligence as it allows to adapt to tasks dynamically
with minimum overhead. MTL models learn a shared repre-
sentation for different tasks, thereby avoiding the overhead
of training as well as storing separate models. Mixture-of-
experts (MoE) and its variants [8, 31, 42] constitute a new
paradigm in MTL that separate the parameter space by ac-
tivating parts of the model based on task and input tokens,
providing improved MTL performance. In this section, we
demonstrate that our approach can be easily extended to
fine-tune the MoE models. To the best of our knowledge, no
earlier work has demonstrated on-device training for MoE
models.

Setup For ViT MoE, the transformer block in ViT is re-
placed by a MoE layer. A MoE layer consists of several ex-
perts represented as MLPs with a shared MHSA module. A
task-dependent router takes the MHSA output into account
and sparsely activates a subset of experts for each input to-
ken. We use a MoE model with a ViT-B backbone. We only
replace the FFN layers for the three blocks (corresponding
to the location of trainable blocks in BSR) with MoE MLP
layers. In our experiments, we use a single layer MLP as the
router for each task for each MoE module, allowing train-
ability to meaningfully select the top-k experts. The MoE
layers have 16 expert candidates, out of which top-4 can-
didates for each token are selected by the router, adding up
the results to generate the output of the MoE layer. The
results for BSR fine-tuning with MoE are presented in Ta-
ble 6. Here, single task learning (STL) consists of separate
models for each task. We observe that BSR performs re-
markably well for MoE fine-tuning as well, causing negligi-
ble accuracy drop of only 0.21%, 0.78%, 0.09% and 0.78%
over the MoE baseline for CIFAR-10, CIFAR-100, Flow-
ers, and Food while outperforming the baseline by 1.04%
for Pets. We obtain on-device memory reduction by 2.32×
and FLOPs reduction by 1.5×. Notably, our MoE models
significantly outperform the STL models in most cases.

5.3. Ablation Studies

Number and Position of Trainable Blocks Table 7
presents an ablation on the number and position of train-
able blocks. The indices runs from 0 to 11 corresponding
to the model depth of twelve layers. Training with four
blocks provides no significant advantages over three blocks.
In fact, three blocks often performs better than four blocks,
as seen for training blocks [4, 7, 11] vs [4, 7, 10, 11] or
[2, 5, 8, 11] vs [2, 5, 8]. Training with two blocks causes
much higher degradation. Therefore we choose the num-
ber of trainable blocks as three. The position of trainable
blocks with respect to the token drop locations provides an
accuracy memory trade-off, as discussed in Section 4.3.

8100



Method Model On-device Reduce FLOPS ↓ Reduce Accuracy(%)↑
Mem. (MB) ↓ Ratio ↑ (GMacs) Ratio ↑ CIFAR-10 CIFAR-100 Flowers Pets Food

STL Baseline 19098 1× 2249 1× 98.98 93.1 99.2 93.7 90.5
STL Ours 4342 4.4× 1129 2× 98.3 91.02 99.1 92.4 88.4

MoE Baseline 30722 1× 1801 1× 98.93 92.77 98.33 92.21 90.12
MoE Ours 13244 2.32× 1237 1.5× 98.72 91.99 98.24 93.24 89.34

Table 6. BSR for MoE models with ViT-B backbone with batch size 128.

#Trainable Indices Train Reduce Accuracy
Blocks Mem. (MB) Ratio (%)

4

[3, 6, 9, 11] 1526 5.7× 97.44
[2, 5, 8, 11] 2809 3.1× 97.82
[4, 7, 10, 11] 1132 7.6× 97.17
[8, 9, 10, 11] 502 17.2× 95.23
[0, 2, 5, 8] 3705 2.3× 97.75

3

[3, 7, 11] 1433 6.03× 97.43
[4, 7, 11] 1079 8.0× 97.34
[2, 7, 11] 2731 3.2× 97.81
[9, 10, 11] 333 25.9× 94.81
[2, 5, 8] 2785 3.1× 97.86

2
[4, 11] 986 8.8× 96.80
[7, 11] 460 18.8× 95.84
[10, 11] 215 40.2× 93.93

Table 7. Ablation study on the number and position of trainable
blocks for DeiT-S on CIFAR-10. The token drop locations are kept
frozen at the 4th, 7th, and 11th blocks.

Token Drop Rate and Drop Locations Table 8 presents
an ablation study on token drop rates and locations such
that the overall drop rate is around 50%. We observe that
for similar drops there is minor accuracy variation (∼0.1%)
while the memory and FLOPs reduction are also similar.

Drop Drop Train FLOPs Accuracy
Rate Indices Mem. (MB) (GMACs) (%)

0.3 [1,3,5,7,9] 1363 270 97.54
0.5 [3,6,9] 1433 295 97.42
0.7 [5,7,9] 1673 311 97.43

Table 8. Ablation study on the token drop rate and locations for
DeiT-S on CIFAR-10. The trainable block positions are fixed at
the 4th, 8th, and 12th blocks.

6. Conclusions
We propose BSR, an approach for efficient on-device train-
ing of ViTs that couples selectively fine-tuning a small frac-
tion of blocks of pre-trained models on downstream tasks
with token dropping based on self-attention scores of pri-

marily frozen weights. Unlike existing on-device learn-
ing approaches that reduce training memory at the cost of
increased computational overhead, BSR reduces compute
cost by 2× while reducing training time by ∼2.5× and
memory up to 6.03×. We outperform SoTA approaches in
on-device training memory reduction by 1.4× while main-
taining similar performance. We further demonstrate the
effectiveness of the approach for MoE models in MTL ap-
plications. Our approach is orthogonal to activation quan-
tization which can be used to obtain further reductions in
activation memory.

References
[1] Daniel Bolya, Cheng-Yang Fu, Xiaoliang Dai, Peizhao

Zhang, Christoph Feichtenhofer, and Judy Hoffman. To-
ken merging: Your vit but faster. arXiv preprint
arXiv:2210.09461, 2022. 2, 3

[2] Lukas Bossard, Matthieu Guillaumin, and Luc Van Gool.
Food-101–mining discriminative components with random
forests. In ECCV, 2014. 6

[3] Han Cai, Chuang Gan, Ligeng Zhu, and Song Han. Tinytl:
Reduce memory, not parameters for efficient on-device
learning. Advances in Neural Information Processing Sys-
tems, 33:11285–11297, 2020. 1, 2, 6

[4] Ayan Chakrabarti and Benjamin Moseley. Backprop with
approximate activations for memory-efficient network train-
ing. In Advances in Neural Information Processing Systems.
Curran Associates, Inc., 2019. 2

[5] Ken Chatfield, Karen Simonyan, Andrea Vedaldi, and An-
drew Zisserman. Return of the devil in the details: Delving
deep into convolutional nets. In BMVC, 2014. 5

[6] Tianqi Chen, Bing Xu, Chiyuan Zhang, and Carlos Guestrin.
Training deep nets with sublinear memory cost. arXiv
preprint arXiv:1604.06174, 2016. 2

[7] Tianlong Chen, Xuxi Chen, Xianzhi Du, Abdullah Rashwan,
Fan Yang, Huizhong Chen, Zhangyang Wang, and Yeqing
Li. Adamv-moe: Adaptive multi-task vision mixture-of-
experts. In Proceedings of the IEEE/CVF International Con-
ference on Computer Vision, pages 17346–17357, 2023. 7

[8] Tianlong Chen, Zhenyu Zhang, AJAY KUMAR JAISWAL,
Shiwei Liu, and Zhangyang Wang. Sparse moe as the new
dropout: Scaling dense and self-slimmable transformers. In
The Eleventh International Conference on Learning Repre-
sentations, 2023. 2, 7

8101



[9] Yinpeng Chen, Xiyang Dai, Dongdong Chen, Mengchen
Liu, Xiaoyi Dong, Lu Yuan, and Zicheng Liu. Mobile-
former: Bridging mobilenet and transformer. In Proceed-
ings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 5270–5279, 2022. 2

[10] Krzysztof Choromanski, Valerii Likhosherstov, David Do-
han, Xingyou Song, Andreea Gane, Tamas Sarlos, Peter
Hawkins, Jared Davis, Afroz Mohiuddin, Lukasz Kaiser,
et al. Rethinking attention with performers. arXiv preprint
arXiv:2009.14794, 2020. 2

[11] Matthieu Courbariaux, Yoshua Bengio, and Jean-Pierre
David. Binaryconnect: Training deep neural networks with
binary weights during propagations. In NeurIPS, 2015. 2

[12] Jeff Donahue, Yangqing Jia, Oriol Vinyals, Judy Hoffman,
Ning Zhang, Eric Tzeng, and Trevor Darrell. Decaf: A deep
convolutional activation feature for generic visual recogni-
tion. In ICML, 2014. 5

[13] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov,
Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner,
Mostafa Dehghani, Matthias Minderer, Georg Heigold, Syl-
vain Gelly, Jakob Uszkoreit, and Neil Houlsby. An image is
worth 16x16 words: Transformers for image recognition at
scale. In International Conference on Learning Representa-
tions, 2021. 2, 6

[14] R David Evans and Tor Aamodt. Ac-gc: Lossy activa-
tion compression with guaranteed convergence. Advances
in Neural Information Processing Systems, 34:27434–27448,
2021. 2

[15] Jonathan Frankle and Michael Carbin. The lottery ticket hy-
pothesis: Finding sparse, trainable neural networks. In ICLR,
2019. 2

[16] Audrunas Gruslys, Rémi Munos, Ivo Danihelka, Marc Lanc-
tot, and Alex Graves. Memory-efficient backpropagation
through time. In NeurIPS, 2016. 2

[17] Song Han, Jeff Pool, John Tran, and William Dally. Learning
both weights and connections for efficient neural network. In
NeurIPS, 2015. 2

[18] Song Han, Huizi Mao, and William J Dally. Deep com-
pression: Compressing deep neural networks with pruning,
trained quantization and huffman coding. In ICLR, 2016. 2

[19] Yihui He, Xiangyu Zhang, and Jian Sun. Channel pruning
for accelerating very deep neural networks. In ICCV, 2017.
2

[20] Duc Hoang, Souvik Kundu, Shiwei Liu, Zhangyang Wang,
et al. Don’t just prune by magnitude! your mask topology is
a secret weapon. Advances in Neural Information Processing
Systems, 36:65056–65068, 2023. 2

[21] Sergey Ioffe and Christian Szegedy. Batch normalization:
Accelerating deep network training by reducing internal co-
variate shift. In ICML, 2015. 2

[22] Ziyu Jiang, Xuxi Chen, Xueqin Huang, Xianzhi Du, Denny
Zhou, and Zhangyang Wang. Back razor: Memory-
efficient transfer learning by self-sparsified backpropagation.
Advances in Neural Information Processing Systems, 35:
29248–29261, 2022. 1, 2, 6, 7

[23] Alex Krizhevsky and Geoffrey Hinton. Learning multiple
layers of features from tiny images. Technical report, Cite-
seer, 2009. 6

[24] Souvik Kundu, Mahdi Nazemi, Massoud Pedram, Keith M
Chugg, and Peter A Beerel. Pre-defined sparsity for low-
complexity convolutional neural networks. IEEE Transac-
tions on Computers, 69(7):1045–1058, 2020. 2

[25] Souvik Kundu, Mahdi Nazemi, Peter A Beerel, and Massoud
Pedram. Dnr: A tunable robust pruning framework through
dynamic network rewiring of dnns. In Proceedings of the
26th Asia and South Pacific Design Automation Conference,
pages 344–350, 2021. 2

[26] Souvik Kundu, Qirui Sun, Yao Fu, Massoud Pedram, and
Peter Beerel. Analyzing the confidentiality of undistillable
teachers in knowledge distillation. Advances in Neural In-
formation Processing Systems, 34:9181–9192, 2021. 2

[27] Souvik Kundu, Shikai Wang, Qirui Sun, Peter A Beerel,
and Massoud Pedram. Bmpq: bit-gradient sensitivity-driven
mixed-precision quantization of dnns from scratch. In 2022
Design, Automation & Test in Europe Conference & Exhibi-
tion (DATE), pages 588–591. IEEE, 2022. 2

[28] Souvik Kundu, Shunlin Lu, Yuke Zhang, Jacqueline Liu, and
Peter A Beerel. Learning to linearize deep neural networks
for secure and efficient private inference. ICLR, 2023. 1

[29] Souvik Kundu, Sharath Sridhar Nittur, Maciej Szankin, and
Sairam Sundaresan. Sensi-bert: Towards sensitivity driven
fine-tuning for parameter-efficient bert. ICASSP, 2024. 2

[30] Yanyu Li, Geng Yuan, Yang Wen, Ju Hu, Georgios Evan-
gelidis, Sergey Tulyakov, Yanzhi Wang, and Jian Ren.
Efficientformer: Vision transformers at mobilenet speed.
Advances in Neural Information Processing Systems, 35:
12934–12949, 2022. 2

[31] Hanxue Liang, Zhiwen Fan, Rishov Sarkar, Ziyu Jiang, Tian-
long Chen, Kai Zou, Yu Cheng, Cong Hao, and Zhangyang
Wang. M³ViT: Mixture-of-experts vision transformer for ef-
ficient multi-task learning with model-accelerator co-design.
In Advances in Neural Information Processing Systems,
2022. 2, 7

[32] Youwei Liang, Chongjian Ge, Zhan Tong, Yibing Song,
Jue Wang, and Pengtao Xie. Not all patches are what you
need: Expediting vision transformers via token reorganiza-
tions. In International Conference on Learning Representa-
tions, 2022. 3, 5

[33] Youwei Liang, Chongjian Ge, Zhan Tong, Yibing Song,
Jue Wang, and Pengtao Xie. Not all patches are what you
need: Expediting vision transformers via token reorganiza-
tions. arXiv preprint arXiv:2202.07800, 2022. 2, 3

[34] Pierpaolo Morı̀, Manoj-Rohit Vemparala, Nael Fasfous,
Saptarshi Mitra, Sreetama Sarkar, Alexander Frickenstein,
Lukas Frickenstein, Domenik Helms, Naveen Shankar Na-
garaja, Walter Stechele, et al. Accelerating and pruning cnns
for semantic segmentation on fpga. In Proceedings of the
59th ACM/IEEE Design Automation Conference, pages 145–
150, 2022. 2

[35] Maria-Elena Nilsback and Andrew Zisserman. Automated
flower classification over a large number of classes. In Sixth
Indian Conference on Computer Vision, Graphics & Image
Processing, 2008. 6

[36] Zizheng Pan, Peng Chen, Haoyu He, Jing Liu, Jianfei Cai,
and Bohan Zhuang. Mesa: A memory-saving training frame-

8102



work for transformers. arXiv preprint arXiv:2111.11124,
2021. 2

[37] Omkar M Parkhi, Andrea Vedaldi, Andrew Zisserman, and
CV Jawahar. Cats and dogs. In CVPR, 2012. 6

[38] Ali Sharif Razavian, Hossein Azizpour, Josephine Sullivan,
and Stefan Carlsson. Cnn features off-the-shelf: an astound-
ing baseline for recognition. In CVPR Workshops, 2014. 5

[39] Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco
Massa, Alexandre Sablayrolles, and Hervé Jégou. Training
data-efficient image transformers & distillation through at-
tention. In International conference on machine learning,
pages 10347–10357. PMLR, 2021. 3, 6

[40] Manoj-Rohit Vemparala, Nael Fasfous, Alexander Fricken-
stein, Sreetama Sarkar, Qi Zhao, Sabine Kuhn, Lukas Frick-
enstein, Anmol Singh, Christian Unger, Naveen-Shankar Na-
garaja, Christian Wressnegger, and Walter Stechele. Adver-
sarial robust model compression using in-train pruning. In
Proceedings of the IEEE/CVF Conference on Computer Vi-
sion and Pattern Recognition (CVPR) Workshops, pages 66–
75, 2021. 2

[41] Chaofei Wang, Qisen Yang, Rui Huang, Shiji Song, and Gao
Huang. Efficient knowledge distillation from model check-
points. Advances in Neural Information Processing Systems,
35:607–619, 2022. 2

[42] Hongyi Wang, Felipe Maia Polo, Yuekai Sun, Souvik Kundu,
Eric Xing, and Mikhail Yurochkin. Fusing models with
complementary expertise. arXiv preprint arXiv:2310.01542,
2023. 7

[43] Sinong Wang, Belinda Z Li, Madian Khabsa, Han Fang, and
Hao Ma. Linformer: Self-attention with linear complexity.
arXiv preprint arXiv:2006.04768, 2020. 2

[44] Li Yang, Adnan Siraj Rakin, and Deliang Fan. Rep-net: Effi-
cient on-device learning via feature reprogramming. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 12277–12286, 2022. 1, 2, 4

[45] Lu Yin, Shiwei Liu, Ajay Jaiswal, Souvik Kundu, and
Zhangyang Wang. Junk dna hypothesis: A task-centric angle
of llm pre-trained weights through sparsity. arXiv preprint
arXiv:2310.02277, 2023. 2

[46] Shixing Yu, Tianlong Chen, Jiayi Shen, Huan Yuan, Jianchao
Tan, Sen Yang, Ji Liu, and Zhangyang Wang. Unified visual
transformer compression. arXiv preprint arXiv:2203.08243,
2022. 2

[47] Elad Ben Zaken, Yoav Goldberg, and Shauli Ravfogel. Bitfit:
Simple parameter-efficient fine-tuning for transformer-based
masked language-models. In ACL, 2022. 2

[48] Yuke Zhang, Dake Chen, Souvik Kundu, Chenghao Li, and
Peter A Beerel. Sal-vit: Towards latency efficient pri-
vate inference on vit using selective attention search with
a learnable softmax approximation. In Proceedings of the
IEEE/CVF International Conference on Computer Vision,
pages 5116–5125, 2023. 2

8103


