




Figure 3. A depiction of the accuracy (y-axis) of all architectures against their respective hardware costs measured in terms of latency
(x-axis), in a population size of 5. As the value of diversity increases, the architectures in the population exhibit a spread in hardware costs
along the latency axis.

ing a penalty term that reduces the performance metric of an
architecture whenever it does not satisfy the hardware cost
constraint. Yet, this latter solution suffers from high com-
putational cost. Specifically, when multiple hardware con-
straints are present, the same single objective problem has
to be solved multiple times to accommodate all hardware
constraints. The second method to address multiple objec-
tives in HW-NAS employs techniques to identify the pareto
optimal solutions [6, 32]. Pareto optimal solutions are those
that cannot be improved in one objective without compro-
mising at least one other objective. For instance, improving
the accuracy of an architecture may require increasing net-
work parameters, thereby elevating the hardware cost. The
pareto approach effectively tackles the elevated search cost
issue linked to the single-objective relaxation. Hence, it will
be exploited in this work as it provides a set of architectures
(pareto optimal set) in a single run, in contrast to multiple
runs required by the single objective approach. Our method
also ensures that these architectures have diverse hardware
costs. This stands in contrast to previous multi-objective
methods [6, 32], where the diversity of architecture hard-
ware cost was not considered as one of the objectives.

3. Proposed Method

3.1. Search Method

Our proposed architecture search method employs a meta-
heuristic optimization technique falling under the category
of genetic algorithms [14]. These algorithms have demon-
strated their effectiveness in addressing the NAS prob-
lem [26–28, 30]. They mimic biological adaptation to find
optimal solutions in non-differentiable spaces. Starting with
an initial population of random neural network architec-
tures, the algorithm iteratively updates/evolves the popula-
tion, ensuring that the new population P consists of bet-
ter performing architectures as compared to previous one.
After running the algorithm for a certain number of itera-

tions/generations, the best architecture in the current popu-
lation is returned as the final solution.

To solve the multi-objective problem of HW-NAS, we
employed a popular variant of the genetic algorithm called
NSGA-II [8]. It is a well-known Pareto-based Multi-
objective Evolutionary Algorithm (MOEA), where selection
of individuals is based on Pareto Efficiency. In this con-
text, a solution that outperforms others in all objectives is
termed “non-dominated”. Conversely, one that is inferior
to others in at least one objective is consistently labeled as
“dominated”. During the selection phase, solutions undergo
a sorting process using non-dominated sorting and crowd-
ing distance. This technique has been previously employed
in the NAS [18, 28] literature, offering a suitable solution
for optimizing a neural network architecture based on vari-
ous objectives.

3.2. Problem Formulation

Let α∗ denote a pre-trained reference model with a de-
sired performance metric (e.g. accuracy for classification
task). Also, let A be the architecture search space in which
NAS is performed with α denoting an architecture in the
search space. Further, let Ψ(.) denote the function that mea-
sures the hardware cost (e.g. latency). Formally, the multi-
objective hardware-aware architecture search problem can
be written as:

max
α∈A

ϕ(α∗, α),

min Ψ(α), (1)
max χ(α,P).

This formulation involves solving for three objectives,
including:
1. Maximizing performance similarity metric, ϕ(α∗, α):

Finding an architecture α in the search space with simi-
lar performance to the reference model α∗. More specif-
ically, the performance similarity metric calculates the

8034



mutual information between hidden layer representation
of an architecture and that of the reference model. In
other words,

ϕ(α∗, α) =

L∑
i=1

I(Xi∗, Xi), (2)

where X1∗, X2∗, .., XL∗ and X1, X2, .., XL represent
the random variables of feature maps in each layer of α∗

and α, respectively. More details are available in [30,
35].

2. Minimizing hardware cost, Ψ(α): Finding an architec-
ture α with minimum hardware cost.

3. Maximizing hardware cost diversity, χ(α,P): Maximiz-
ing the diversity of the architecture α in terms of the
hardware cost, i.e. χ(Ψ(α,P)), as will be discussed in
Section 3.3. Note that P refers to the current generation
population of architectures.

3.3. Hardware Cost Diversity

For the current generation population P , the hardware cost
diversity term for each architecture α is calculated as

χ(α,P) =
∑
α†∈P

(Ψ(α)−Ψ(α†))2. (3)

This formulation measures the difference between the hard-
ware cost of a given architecture α, and those of the remain-
ing architectures α† in the given population P . Maximizing
this term leads to a population characterized by architec-
tures with diverse hardware costs. This is illustrated in Fig-
ure 3 which plots the hardware costs of architectures in a
population of size five and the impact of the diversity term.
This allowed the discovery of architectures with lower la-
tency that preserve the same level of accuracy.

To measure the diversity of the population, we introduce
a term called population diversity, χ̄(P), formalized as

χ̄(P) = 1

N

∑
α∈P

χ(α,P), (4)

where N is the population size. It is worth mentioning that
χ̄(P) measures the average hardware cost diversity of ar-
chitectures within the population.

The leftmost plot in Figure 3 shows the population of
architectures with the same hardware cost, consequently re-
sulting in the population diversity term being zero. As we
progress to the right on the plots in the figure, we observe
an increase in the population diversity term. This ensures
that the search algorithm explores the architecture search
space, encompassing architectures with varying hardware
costs. Please note that the hardware cost used in Figure 3
represents latency. However, the proposed method is ag-
nostic to the specific type of hardware cost utilized for the
architecture search.

Algorithm 1: MO-HDNAS
Input: Reference model α∗, Search space A, Total

generations Ngen, Population size Npop,
training epochs Ntrain

Output: Pareto optimal front of architectures,
Poptimal

1 P ← Initialize population for NSGA-II algorithm;
2 g ← 0 (Initialize the generation counter);
3 archive← Initialize to empty set;
4 while g ≤ Ngen do
5 for each individual architecture (α) in P do
6 Frs ← ϕ(α∗, α) (using Equation 2);
7 Fhw ← Ψ(α) ;
8 Fdiv ← χ(α,P) (using Equation 3);
9 end

10 UpdateArchive(P , archive);
11 g ← g + 1;
12 P ← NSGA-II(Frs, Fhw, Fdiv);
13 end

3.4. MO-HDNAS

The pseudo-code of the proposed MO-HDNAS is presented
in Algorithm 1. It begins by initializing a population P con-
sisting of Npop architectures randomly sampled from A.
MO-HDNAS iterates for Ngen generations. During each
generation, the performance of every architecture α (Frs)
in the current population, in terms of similarity to reference
model, is evaluated in line 6 using Equation 2. Next, hard-
ware cost Fhw and hardware cost diversity Fdiv of the ar-
chitectures are calculated in lines 7, 8 respectively. Then,
the archive is updated in line 10 to include the new archi-
tectures from the current population. Finally, NSGA-II is
used to generate the next generation population in line 12.
MO-HDNAS returns a pareto optimal front of architectures
Poptimal (i.e. set of possible neural architecture solutions)
after Ngen generations.

4. Experiments

We adopt the architecture representation introduced in [26]
and conduct the architecture search using a single NVIDIA
RTX A4000 GPU, with a population size (Npop) set to
20. Following [35], we employ ResNet-20 as the reference
model. The representation similarity score is calculated in
accordance to the procedure outlined in [30] and the archi-
tecture search is performed for 100 generations (Ngen).

Further details on the experiments, such as the search
space and datasets are presented in Section 4.1 and Sec-
tion 4.2, respectively. Section 4.3 reports the architecture
search performance for six different edge devices, consid-
ering various hardware cost settings for each. Finally, an

8035



Figure 4. Results of MO-HDNAS for 6 different edge devices performed with only 3 objectives: maximize representation similarity,
minimizing device latency and maximizing the hardware cost diversity. (a), (b), (c) show the results for image classification task on
CIFAR10, CIFAR100 and ImageNet16-120 respectively.

ablation study is performed on the hardware cost diversity
objective in Section 4.4.

4.1. Search Space

The effectiveness of the proposed method is demonstrated
on the NAS-Bench-201 [10] benchmark search space. It
provides a unified benchmark for fair comparison of NAS
algorithms by providing the results on CIFAR-10, CIFAR-
100 and ImageNet16-120 for image classification task.
Given that any NAS algorithm aims to search for the type of
the operation present between two nodes in a neural archi-
tecture, the search space of NAS-Bench-201 includes con-
volution 3x3, convolution 1x1, max pooling 3x3, skip con-
nection, and none. Note that none indicates the absence of
any operation between the two nodes. Nevertheless, NAS-
Bench-201 lacks information about the hardware cost as-
sociated with its architectures. Consequently, we utilize
the HW-NAS-Bench [16] benchmark. It is an extension
of NAS-Bench-201, containing various hardware costs for
all architectures in its search space across six edge devices
including, NVIDIA Edge GPU Jetson TX2, Raspberry Pi 4,
Edge TPU, Pixel 3, ASIC-Eyeriss, and FPGA.

4.2. Datasets

We test the effectiveness of the proposed method on three
different datasets: CIFAR-10, CIFAR-100, and ImageNet-
16-120. CIFAR-10 consists of 50,000 train and 10,000 test
images, categorized into 10 classes. As for the CIFAR-100,

Figure 5. Comparison of architecture search results for FPGA
on CIFAR-100 dataset between HW-EvRSNAS [30] and MO-
HDNAS.

Search cost
Methods (GPU hours)

HW-EvRSNAS [30] 20.87
MO-HDNAS (Ours) 0.65

Table 1. Search cost comparison of architecture search results
for FPGA on CIFAR-100 dataset between HW-EvRSNAS [30]
and our method.

the number of images in the train and test sets are the same
as CIFAR-10, but instead coming from 100 classes. On the
other hand, the ImageNet-16-120 [5] is a modified version

8036





chitecture search with reduced computational cost. This is
achieved by searching for architectures with similar inter-
nal representation to a reference model, and simultaneously,
with minimum hardware cost. Additionally, we introduced
a third search objective, hardware cost diversity, to facilitate
a better exploration of the architecture search space. The ef-
fectiveness of the proposed method is demonstrated on six
edge devices for image classification task on three different
datasets.

6. Acknowledgement
This work is supported by the Luxembourg National
Research Fund (FNR), under the project reference
C21/IS/15965298/ELITE.

References
[1] Hadjer Benmeziane, Kaoutar El Maghraoui, Hamza

Ouarnoughi, Smail Niar, Martin Wistuba, and Naigang
Wang. Hardware-aware neural architecture search: Survey
and taxonomy. In Proceedings of the Thirtieth International
Joint Conference on Artificial Intelligence, IJCAI-21, pages
4322–4329. International Joint Conferences on Artificial In-
telligence Organization, 2021. Survey Track. 1, 2

[2] Hadjer Benmeziane, Kaoutar El Maghraoui, Hamza
Ouarnoughi, Smail Niar, Martin Wistuba, and Naigang
Wang. A comprehensive survey on hardware-aware neural
architecture search. arXiv preprint arXiv:2101.09336, 2021.
1, 2

[3] Han Cai, Chuang Gan, Tianzhe Wang, Zhekai Zhang, and
Song Han. Once-for-all: Train one network and specialize it
for efficient deployment. arXiv preprint arXiv:1908.09791,
2019. 1, 2

[4] Han Cai, Ligeng Zhu, and Song Han. ProxylessNAS: direct
neural architecture search on target task and hardware. In In-
ternational Conference on Learning Representations, 2019.
1

[5] Patryk Chrabaszcz, Ilya Loshchilov, and Frank Hutter. A
downsampled variant of imagenet as an alternative to the ci-
far datasets. arXiv preprint arXiv:1707.08819, 2017. 5

[6] Xiangxiang Chu, Bo Zhang, and Ruijun Xu. Multi-objective
reinforced evolution in mobile neural architecture search. In
European Conference on Computer Vision, pages 99–113.
Springer, 2020. 3

[7] Ronan Collobert, Jason Weston, Léon Bottou, Michael
Karlen, Koray Kavukcuoglu, and Pavel Kuksa. Natural lan-
guage processing (almost) from scratch. Journal of machine
learning research, 12(ARTICLE):2493–2537, 2011. 1

[8] Kalyanmoy Deb, Amrit Pratap, Sameer Agarwal, and TAMT
Meyarivan. A fast and elitist multiobjective genetic algo-
rithm: Nsga-ii. IEEE transactions on evolutionary computa-
tion, 6(2):182–197, 2002. 3

[9] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina
Toutanova. Bert: Pre-training of deep bidirectional
transformers for language understanding. arXiv preprint
arXiv:1810.04805, 2018. 1

[10] Xuanyi Dong and Yi Yang. Nas-bench-201: Extending the
scope of reproducible neural architecture search. In Inter-
national Conference on Learning Representations, 2020. 2,
5

[11] Thomas Elsken, Jan Hendrik Metzen, and Frank Hutter.
Neural architecture search: A survey. arXiv preprint
arXiv:1808.05377, 2018. 1

[12] Thomas Elsken, Jan Hendrik Metzen, Frank Hutter, et al.
Neural architecture search: A survey. J. Mach. Learn. Res.,
20(55):1–21, 2019. 2

[13] Albert Garcia, Mohamed Adel Musallam, Vincent Gaudil-
liere, Enjie Ghorbel, Kassem Al Ismaeil, Marcos Perez, and
Djamila Aouada. Lspnet: A 2d localization-oriented space-
craft pose estimation neural network. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 2048–2056, 2021. 1

[14] David E Goldberg. Genetic algorithms. pearson education
India, 2013. 3

[15] Simon Kornblith, Mohammad Norouzi, Honglak Lee, and
Geoffrey Hinton. Similarity of neural network represen-
tations revisited. In International conference on machine
learning, pages 3519–3529. PMLR, 2019. 2

[16] Chaojian Li, Zhongzhi Yu, Yonggan Fu, Yongan Zhang,
Yang Zhao, Haoran You, Qixuan Yu, Yue Wang, and
Yingyan (Celine) Lin. {HW}-{nas}-bench: Hardware-
aware neural architecture search benchmark. In International
Conference on Learning Representations, 2021. 5

[17] Hanxiao Liu, Karen Simonyan, and Yiming Yang. DARTS:
Differentiable architecture search. In International Confer-
ence on Learning Representations, 2019. 1, 2

[18] Zhichao Lu, Ian Whalen, Vishnu Boddeti, Yashesh Dhebar,
Kalyanmoy Deb, Erik Goodman, and Wolfgang Banzhaf.
Nsga-net: neural architecture search using multi-objective
genetic algorithm. In Proceedings of the Genetic and Evolu-
tionary Computation Conference, pages 419–427, 2019. 3

[19] Mohamed Adel Musallam, Vincent Gaudilliere, Enjie Ghor-
bel, Kassem Al Ismaeil, Marcos Damian Perez, Michel
Poucet, and Djamila Aouada. Spacecraft recognition lever-
aging knowledge of space environment: Simulator, dataset,
competition design and analysis. In 2021 IEEE International
Conference on Image Processing Challenges (ICIPC), pages
11–15, 2021. 1

[20] Marcos Perez, Mohamed Adel Mohamed Ali, Albert Gar-
cia Sanchez, Enjie Ghorbel, Kassem Al Ismaeil, Paul
Le Henaff, and Djamila Aouada. Detection & identifica-
tion of on-orbit objects using machine learning. In European
Conference on Space Debris, 2021. 1

[21] Hieu Pham, Melody Guan, Barret Zoph, Quoc Le, and Jeff
Dean. Efficient neural architecture search via parameters
sharing. In Proceedings of the 35th International Con-
ference on Machine Learning, pages 4095–4104, Stock-
holmsmässan, Stockholm Sweden, 2018. PMLR. 2

[22] Esteban Real, Alok Aggarwal, Yanping Huang, and Quoc V
Le. Regularized evolution for image classifier architecture
search. In Proceedings of the AAAI Conference on Artificial
Intelligence, pages 4780–4789, 2019. 1, 2

[23] Peyman Rostami, Hojatollah Zamani, Mohammad
Fakharzadeh, Arash Amini, and Farokh Marvasti. A

8038




