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Abstract

Hardware-aware Neural Architecture Search ap-
proaches (HW-NAS) automate the design of deep learning
architectures, tailored specifically to a given target hard-
ware platform. Yet, these techniques demand substantial
computational resources, primarily due to the expensive
process of assessing the performance of identified architec-
tures. To alleviate this problem, a recent direction in the
literature has employed representation similarity metric for
efficiently evaluating architecture performance. Nonethe-
less, since it is inherently a single objective method, it
requires multiple runs to identify the optimal architecture
set satisfying the diverse hardware cost constraints, thereby
increasing the search cost. Furthermore, simply converting
the single objective into a multi-objective approach results
in an under-explored architectural search space. In this
study, we propose a Multi-Objective method to address
the HW-NAS problem, called MO-HDNAS, to identify
the trade-off set of architectures in a single run with
low computational cost. This is achieved by optimizing
three objectives: maximizing the representation similarity
metric, minimizing hardware cost, and maximizing the
hardware cost diversity. The third objective, i.e. hardware
cost diversity, is used to facilitate a better exploration
of the architecture search space. Experimental results
demonstrate the effectiveness of our proposed method in
efficiently addressing the HW-NAS problem across six edge
devices for the image classification task.

1. Introduction

Advancements in deep learning systems have brought about
a revolutionary impact on various domains, particularly in
computer vision [13, 19, 20, 23–25, 33], natural language
processing [7, 9, 31], and more. These remarkable achieve-
ments were made possible by the creation of meticulously
designed architectures that are specifically tailored for indi-
vidual tasks.

Figure 1. An illustration of the difference between a single ob-
jective approach to HW-NAS problem and our proposed method
MO-HDNAS.

In response to the growing need for more advanced ar-
chitectures, researchers have turned their focus towards de-
veloping algorithms that can effectively explore the exten-
sive space of neural architectures. These algorithms, collec-
tively known as Neural Architecture Search (NAS) [11, 36,
37], are specifically designed to discover the most optimal
architecture for a given task.

The rise in the utilization of edge devices, character-
ized by low energy consumption, necessitated adaptations
to NAS algorithms to incorporate performance considera-
tions from the particular hardware being employed. These
customized NAS algorithms are referred to as Hardware-
aware Neural Architecture Search (HW-NAS) [1, 2]. While
NAS focuses on finding the optimal architecture for a spe-
cific task, HW-NAS aims to find architectures with minimal
trade-offs between task performance and targeted hardware
cost. However, HW-NAS algorithms face a bottleneck due
to the extensive time required for evaluating the architec-
ture performance metrics within the search space [22, 37].
This challenge has led to the development of methods that
utilize a supernet-based solution [3, 4, 17], treating all ar-
chitectures in the search space as sub-networks of the super-
net. While employing this strategy reduces computational
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Figure 2. Results of a naive conversion from a single objective to a multi-objective NAS with two objectives: maximize representation
similarity and minimizing device latency. It fails to identify the best architecture within the search space. The architecture search is
performed in the search space, NAS-Bench-201 [10] on CIFAR10 dataset. More details about the search space are given in Section 4.1.

cost, it compromises architecture search performance due
to inaccurate performance estimations by the supernet.

To address the mentioned challenge, [30] has recently
proposed the use of a representation similarity metric [15,
35], which significantly reduced the search cost while find-
ing the best matching architecture under a single hardware
cost constraint. This was achieved by using the single ob-
jective of maximizing the representation similarity metric
with respect to a reference model, while penalizing the
search whenever the given architecture constraint is not sat-
isfied (illustrated in Figure 1). However, if multiple differ-
ent constraints need to be satisfied, the search cost adds up
as the algorithm must run multiple times to fulfill each one.
Additionally, the naive conversion of the single objective
method of [30] to a multi-objective one with two objectives
(i.e. maximizing representation similarity metric and mini-
mizing hardware cost) fails to identify the best architecture.
In this regard, Figure 2 illustrates the hardware costs, mea-
sured in terms of device latency, of the set of architectures
discovered after performing the multi-objective architecture
search. It is evident from the figure that the architectures
discovered through the architecture search do not exhibit
similar performance (test accuracy) to the best architecture
found within the search space. This failure is attributed
to the high hardware cost of the best architecture, contra-
dicting the second objective aimed at minimizing hardware
costs. Note that best architecture in the figure refers to the
architecture with the highest accuracy in the search space.

To address these challenges, we propose a Multi-
Objective method to address HW-NAS called Multi-
Objective Hardware Aware Neural Architecture Search us-
ing Hardware Cost Diversity (MO-HDNAS). Our approach
aims to identify a set of high-performing architectures with
diverse hardware costs in a single run. It achieves this goal
by optimizing three objectives (illustrasted in Figure 1): (1)
Maximizing the representation similarity metric. (2) Mini-
mizing hardware cost. (3) Maximizing hardware cost diver-
sity. Our contributions can be summarized as follows:
• We generalize the single objective HW-NAS framework

proposed in [30] to a multi-objective one in order to ad-
dress the issue of increased search cost when multiple

hardware cost constraints are present.
• We propose a hardware cost diversity term aimed at en-

couraging the consideration of architectures with diverse
hardware costs. This allows the search algorithm to ex-
plore architectures with higher hardware costs, as high-
performing architectures typically tend to have higher
hardware cost requirements.

• The robustness of the proposed method is demonstrated
on six different edge devices for classification tasks.

2. Related Works

Any NAS method, as described in [12], consists of three
key components: search space, search strategy, and per-
formance estimation. The search space generally outlines
the potential architectures that can be theoretically repre-
sented. Performance estimation involves assessing the ex-
pected performance of a neural architecture for a specified
task. The search strategy dictates the approach used to ex-
plore the defined search space, utilizing architecture per-
formance estimation to find the optimal architecture. It
involves techniques such as reinforcement learning (RL)-
based methods [21, 37], evolutionary algorithm (EA)-based
methods [22, 26–29], and gradient-based methods [17, 34].

Hardware-aware NAS (HW-NAS) is a specialized ver-
sion of NAS aimed at identifying the optimal architecture
tailored for a specific task and target device. HW-NAS typ-
ically involves addressing multiple objectives, such as max-
imizing the architecture performance metric while minimiz-
ing the associated hardware cost for the target hardware [1].

Addressing the challenge of multiple objectives can be
pursued through two distinct approaches [2]. The first
method entails converting the multiple objective problem
into a single objective one and solving the latter instead.
This can be achieved via rejection sampling [3], which elim-
inates any architecture that fails to meet the hardware cost
constraint during the search process. However, rejection
sampling is susceptible to the halting problem, as indicated
by [30], particularly when it rejects all candidate architec-
tures for failing to meet a low hardware cost constraint. An
alternative solution to rejection sampling involves employ-
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Figure 3. A depiction of the accuracy (y-axis) of all architectures against their respective hardware costs measured in terms of latency
(x-axis), in a population size of 5. As the value of diversity increases, the architectures in the population exhibit a spread in hardware costs
along the latency axis.

ing a penalty term that reduces the performance metric of an
architecture whenever it does not satisfy the hardware cost
constraint. Yet, this latter solution suffers from high com-
putational cost. Specifically, when multiple hardware con-
straints are present, the same single objective problem has
to be solved multiple times to accommodate all hardware
constraints. The second method to address multiple objec-
tives in HW-NAS employs techniques to identify the pareto
optimal solutions [6, 32]. Pareto optimal solutions are those
that cannot be improved in one objective without compro-
mising at least one other objective. For instance, improving
the accuracy of an architecture may require increasing net-
work parameters, thereby elevating the hardware cost. The
pareto approach effectively tackles the elevated search cost
issue linked to the single-objective relaxation. Hence, it will
be exploited in this work as it provides a set of architectures
(pareto optimal set) in a single run, in contrast to multiple
runs required by the single objective approach. Our method
also ensures that these architectures have diverse hardware
costs. This stands in contrast to previous multi-objective
methods [6, 32], where the diversity of architecture hard-
ware cost was not considered as one of the objectives.

3. Proposed Method

3.1. Search Method

Our proposed architecture search method employs a meta-
heuristic optimization technique falling under the category
of genetic algorithms [14]. These algorithms have demon-
strated their effectiveness in addressing the NAS prob-
lem [26–28, 30]. They mimic biological adaptation to find
optimal solutions in non-differentiable spaces. Starting with
an initial population of random neural network architec-
tures, the algorithm iteratively updates/evolves the popula-
tion, ensuring that the new population P consists of bet-
ter performing architectures as compared to previous one.
After running the algorithm for a certain number of itera-

tions/generations, the best architecture in the current popu-
lation is returned as the final solution.

To solve the multi-objective problem of HW-NAS, we
employed a popular variant of the genetic algorithm called
NSGA-II [8]. It is a well-known Pareto-based Multi-
objective Evolutionary Algorithm (MOEA), where selection
of individuals is based on Pareto Efficiency. In this con-
text, a solution that outperforms others in all objectives is
termed “non-dominated”. Conversely, one that is inferior
to others in at least one objective is consistently labeled as
“dominated”. During the selection phase, solutions undergo
a sorting process using non-dominated sorting and crowd-
ing distance. This technique has been previously employed
in the NAS [18, 28] literature, offering a suitable solution
for optimizing a neural network architecture based on vari-
ous objectives.

3.2. Problem Formulation

Let α∗ denote a pre-trained reference model with a de-
sired performance metric (e.g. accuracy for classification
task). Also, let A be the architecture search space in which
NAS is performed with α denoting an architecture in the
search space. Further, let Ψ(.) denote the function that mea-
sures the hardware cost (e.g. latency). Formally, the multi-
objective hardware-aware architecture search problem can
be written as:

max
α∈A

ϕ(α∗, α),

min Ψ(α), (1)
max χ(α,P).

This formulation involves solving for three objectives,
including:
1. Maximizing performance similarity metric, ϕ(α∗, α):

Finding an architecture α in the search space with simi-
lar performance to the reference model α∗. More specif-
ically, the performance similarity metric calculates the
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mutual information between hidden layer representation
of an architecture and that of the reference model. In
other words,

ϕ(α∗, α) =

L∑
i=1

I(Xi∗, Xi), (2)

where X1∗, X2∗, .., XL∗ and X1, X2, .., XL represent
the random variables of feature maps in each layer of α∗

and α, respectively. More details are available in [30,
35].

2. Minimizing hardware cost, Ψ(α): Finding an architec-
ture α with minimum hardware cost.

3. Maximizing hardware cost diversity, χ(α,P): Maximiz-
ing the diversity of the architecture α in terms of the
hardware cost, i.e. χ(Ψ(α,P)), as will be discussed in
Section 3.3. Note that P refers to the current generation
population of architectures.

3.3. Hardware Cost Diversity

For the current generation population P , the hardware cost
diversity term for each architecture α is calculated as

χ(α,P) =
∑
α†∈P

(Ψ(α)−Ψ(α†))2. (3)

This formulation measures the difference between the hard-
ware cost of a given architecture α, and those of the remain-
ing architectures α† in the given population P . Maximizing
this term leads to a population characterized by architec-
tures with diverse hardware costs. This is illustrated in Fig-
ure 3 which plots the hardware costs of architectures in a
population of size five and the impact of the diversity term.
This allowed the discovery of architectures with lower la-
tency that preserve the same level of accuracy.

To measure the diversity of the population, we introduce
a term called population diversity, χ̄(P), formalized as

χ̄(P) = 1

N

∑
α∈P

χ(α,P), (4)

where N is the population size. It is worth mentioning that
χ̄(P) measures the average hardware cost diversity of ar-
chitectures within the population.

The leftmost plot in Figure 3 shows the population of
architectures with the same hardware cost, consequently re-
sulting in the population diversity term being zero. As we
progress to the right on the plots in the figure, we observe
an increase in the population diversity term. This ensures
that the search algorithm explores the architecture search
space, encompassing architectures with varying hardware
costs. Please note that the hardware cost used in Figure 3
represents latency. However, the proposed method is ag-
nostic to the specific type of hardware cost utilized for the
architecture search.

Algorithm 1: MO-HDNAS
Input: Reference model α∗, Search space A, Total

generations Ngen, Population size Npop,
training epochs Ntrain

Output: Pareto optimal front of architectures,
Poptimal

1 P ← Initialize population for NSGA-II algorithm;
2 g ← 0 (Initialize the generation counter);
3 archive← Initialize to empty set;
4 while g ≤ Ngen do
5 for each individual architecture (α) in P do
6 Frs ← ϕ(α∗, α) (using Equation 2);
7 Fhw ← Ψ(α) ;
8 Fdiv ← χ(α,P) (using Equation 3);
9 end

10 UpdateArchive(P , archive);
11 g ← g + 1;
12 P ← NSGA-II(Frs, Fhw, Fdiv);
13 end

3.4. MO-HDNAS

The pseudo-code of the proposed MO-HDNAS is presented
in Algorithm 1. It begins by initializing a population P con-
sisting of Npop architectures randomly sampled from A.
MO-HDNAS iterates for Ngen generations. During each
generation, the performance of every architecture α (Frs)
in the current population, in terms of similarity to reference
model, is evaluated in line 6 using Equation 2. Next, hard-
ware cost Fhw and hardware cost diversity Fdiv of the ar-
chitectures are calculated in lines 7, 8 respectively. Then,
the archive is updated in line 10 to include the new archi-
tectures from the current population. Finally, NSGA-II is
used to generate the next generation population in line 12.
MO-HDNAS returns a pareto optimal front of architectures
Poptimal (i.e. set of possible neural architecture solutions)
after Ngen generations.

4. Experiments

We adopt the architecture representation introduced in [26]
and conduct the architecture search using a single NVIDIA
RTX A4000 GPU, with a population size (Npop) set to
20. Following [35], we employ ResNet-20 as the reference
model. The representation similarity score is calculated in
accordance to the procedure outlined in [30] and the archi-
tecture search is performed for 100 generations (Ngen).

Further details on the experiments, such as the search
space and datasets are presented in Section 4.1 and Sec-
tion 4.2, respectively. Section 4.3 reports the architecture
search performance for six different edge devices, consid-
ering various hardware cost settings for each. Finally, an

8035



Figure 4. Results of MO-HDNAS for 6 different edge devices performed with only 3 objectives: maximize representation similarity,
minimizing device latency and maximizing the hardware cost diversity. (a), (b), (c) show the results for image classification task on
CIFAR10, CIFAR100 and ImageNet16-120 respectively.

ablation study is performed on the hardware cost diversity
objective in Section 4.4.

4.1. Search Space

The effectiveness of the proposed method is demonstrated
on the NAS-Bench-201 [10] benchmark search space. It
provides a unified benchmark for fair comparison of NAS
algorithms by providing the results on CIFAR-10, CIFAR-
100 and ImageNet16-120 for image classification task.
Given that any NAS algorithm aims to search for the type of
the operation present between two nodes in a neural archi-
tecture, the search space of NAS-Bench-201 includes con-
volution 3x3, convolution 1x1, max pooling 3x3, skip con-
nection, and none. Note that none indicates the absence of
any operation between the two nodes. Nevertheless, NAS-
Bench-201 lacks information about the hardware cost as-
sociated with its architectures. Consequently, we utilize
the HW-NAS-Bench [16] benchmark. It is an extension
of NAS-Bench-201, containing various hardware costs for
all architectures in its search space across six edge devices
including, NVIDIA Edge GPU Jetson TX2, Raspberry Pi 4,
Edge TPU, Pixel 3, ASIC-Eyeriss, and FPGA.

4.2. Datasets

We test the effectiveness of the proposed method on three
different datasets: CIFAR-10, CIFAR-100, and ImageNet-
16-120. CIFAR-10 consists of 50,000 train and 10,000 test
images, categorized into 10 classes. As for the CIFAR-100,

Figure 5. Comparison of architecture search results for FPGA
on CIFAR-100 dataset between HW-EvRSNAS [30] and MO-
HDNAS.

Search cost
Methods (GPU hours)

HW-EvRSNAS [30] 20.87
MO-HDNAS (Ours) 0.65

Table 1. Search cost comparison of architecture search results
for FPGA on CIFAR-100 dataset between HW-EvRSNAS [30]
and our method.

the number of images in the train and test sets are the same
as CIFAR-10, but instead coming from 100 classes. On the
other hand, the ImageNet-16-120 [5] is a modified version
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Figure 6. The average hardware costs diversity across different generation population for (a) two objectives (b) three objectives. Note that
the search was conducted for the FPGA device using the CIFAR-10 dataset. The x-axis represents the architecture latency on FPGA, while
the y-axis depicts the test accuracy of the architecture on CIFAR-10.

of ImageNet containing 120 out of the 1000 total labels, and
with each image being downsampled to 16× 16 pixels.

4.3. Results

Architecture search results obtained by the proposed MO-
HDNAS method are shown in Figure 4. It shows the pareto
fronts for the multi-objective architecture search performed
on six different edge devices and their hardware cost mea-
sured in terms of latency. It is observed that the architec-
tures present in the pareto front of MO-HDNAS are closer
to the best architecture. Notably, the pareto front contains
architectures with diverse latencies.

To further evaluate the effectiveness of our proposed
method, we compare our architecture search results with
those of HW-EvRSNAS [30], which treats the HW-NAS
problem as a single objective optimization (Figure 1). Re-
sults are illustrated in Figure 5, presenting the pareto front
discovered by MO-HDNAS and the architecture search re-
sults of HW-EvRSNAS under nine different hardware cost
constraints. Note that these results are obtained for the
image classification task on the CIFAR100 dataset using
FPGA. From the figure, it is evident that our method is able
to identify a more diverse set of high-performing architec-
tures, ranging from those with low latency to those with
high latency.

Furthermore, We compare the search cost of our method
with that of HW-EvRSNAS [30] in Table 1. Search costs are
reported in terms of GPU hours, indicating the number of
hours each method spent to perform the architecture search
on a single GPU. These results demonstrate that our method
finds the pareto set of architectures at a search cost that is
32× lower than that of HW-EvRSNAS. This is attributed
to the fact that HW-EvRSNAS requires nine separate runs
to find the optimal architecture for nine different hardware
cost constraints. In contrast, our method finds the pareto set

of 20 architectures in just a single run.

4.4. Ablation Study

To illustrate the influence of the third objective in the Eq 1
(i.e. maximizing hardware cost diversity χ(α,P)), we vi-
sualize the population diversity, χ̄(P), of 6 different gen-
erations (1, 10, 30, 50, 70, 100) in Figure 6. χ̄(P) mea-
sures the average hardware cost diversity for a generation,
as showcased in Equation 4. It is computed by taking the
average of the χ(α,P) term across all architectures within
that generation’s population. Figure 6(a) illustrates the pro-
gression of the population diversity term across generations
when the objective of maximizing hardware cost diversity
is not applied in Equation 1 (i.e. only the first two objec-
tives employed). In this case, we observe a decline in pop-
ulation diversity as generations progress. This results in
architectures within the population being inclined towards
regions with high accuracy and lower hardware costs. Con-
sequently, it hinders the discovery of the best architecture
within the search area characterized by high hardware cost.

On the other hand, Figure 6(b) shows the progression
of the population diversity term across generations when
all three objectives in Equation 1 are utilized in the search
process. In this scenario, we observe an increase in pop-
ulation diversity as generation advances. Hence, architec-
tures within the population exhibit diverse hardware costs,
spanning from low to high latencies. This enhances the ex-
plorability of the search process, facilitating the discovery
of high-performing architectures within regions character-
ized by high hardware cost.

5. Conclusion

In this work, we presented a multi-objective hardware aware
neural architecture search method, which performs the ar-
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chitecture search with reduced computational cost. This is
achieved by searching for architectures with similar inter-
nal representation to a reference model, and simultaneously,
with minimum hardware cost. Additionally, we introduced
a third search objective, hardware cost diversity, to facilitate
a better exploration of the architecture search space. The ef-
fectiveness of the proposed method is demonstrated on six
edge devices for image classification task on three different
datasets.
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