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Abstract

This paper provides an efficiency study of training

Masked Autoencoders (MAE), a framework introduced by

He et al. [13] for pre-training Vision Transformers (ViTs).

Our results surprisingly reveal that MAE can learn at a

faster speed and with fewer training samples while main-

taining high performance. To accelerate its training, our

changes are simple and straightforward: in the pre-training

stage, we aggressively increase the masking ratio, decrease

the number of training epochs, and reduce the decoder

depth to lower the pre-training cost; in the fine-tuning stage,

we demonstrate that layer-wise learning rate decay plays a

vital role in unlocking the full potential of pre-trained mod-

els. Under this setup, we further verify the sample efficiency

of MAE: training MAE is hardly affected even when using

only 20% of the original training set.

By combining these strategies, we are able to acceler-

ate MAE pre-training by a factor of 82 or more, with little

performance drop. For example, we are able to pre-train

a ViT-B in ∼9 hours using a single NVIDIA A100 GPU

and achieve 82.9% top-1 accuracy on the downstream Im-

ageNet classification task. Additionally, we also verify the

speed acceleration on another MAE extension, SupMAE.

1. Introduction

Masked Image Modeling (MIM) [1, 13] is a powerful self-

supervised pretext task that trains a model to predict masked

signals, such as raw pixels or semantic tokens, based on vis-

ible regions of an image. The most recent instantiation of

MIM, the Masked Autoencoder (MAE)[13], has played a

pivotal role in enabling the successful pre-training of data-

intensive Vision Transformers (ViTs)[10]. Subsequently,

these pre-trained ViTs demonstrate state-of-the-art perfor-

mance on a wide range of downstream recognition tasks and

out-of-distribution tests.

However, despite its impressive performance, MIM pre-

training typically involves a substantial computational cost.

For instance, BEiT [1] requires a long schedule of 800
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Figure 1. We show that MAE can actually pre-train at a much

faster speed on a smaller amount of images, but still attain a com-

petitive accuracy on ImageNet with ViT-B.

pre-training epochs on the ImageNet-1k dataset to attain

competitive performance. The follow-up work MAE [13],

which utilizes a high masking ratio and an asymmet-

ric encoder-decoder design, substantially accelerates pre-

training; however, MAE still requires an excessive sched-

ule of 1,600 pre-training epochs. This elevated pre-training

overhead impedes the wider exploration of MIM in the

ultra-large-computation regime, which is a key factor in un-

locking the emerging properties of deep learning systems

[23, 24].

In this paper, we embark on a systematic investigation

into the efficiency of training MAE. Particularly, our moti-

vation stems from a simple yet intriguing observation: ag-

gressively lightening the pre-training setups of MAE (i.e.,

decreasing the number of pre-training epochs from 1600 to

100, increasing the masking ratio from 75% to 90%, and re-

ducing the decoder depth from 8 to 1) . In essence, models

that undergo light MAE pre-training are nearly as adept at

modeling masked signals as their fully pre-trained counter-

parts. Based on this observation, we posit that these lightly

pre-trained models should yield comparable performance

when fine-tuned to different downstream tasks.

This CVPR Workshop paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.
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Interestingly, contrary to our initial assumption, we ob-

serve a significant decrease in performance on ImageNet

classification when fine-tuning lightly MAE pre-trained

models using the official setup from [13]. Specifically, top-

1 accuracy drops from 83.6% to 80.4% with ViT-B. How-

ever, this decrease in accuracy can be mitigated by a longer

fine-tuning period. For instance, by doubling the fine-tuning

duration from 100 to 200 epochs, the accuracy increases

to 81.8% (+1.4%). This phenomenon suggests that our

lightly MAE pre-trained model does not fully converge with

the original setup, and invites us to ponder the following

question: Can we develop a fine-tuning recipe that enables

lightly MAE pre-trained models to converge more effectively

and achieve performance comparable to fully pre-trained

models?

We identify that the appropriate usage of Layer-wise

Learning Rate Decay (LLRD), a hyperparameter that

scales the learning rate of each layer differently, is a key fac-

tor in effective fine-tuning of lightly MAE pre-trained mod-

els. LLRD was first introduced by LAMB for BERT [8, 30]

and then applied to the Vision Transformers by BEiT [1]

to secure high fine-tuning performance. With LLRD, the

learning rate of each layer decreases from top to bottom,

with the learning rate of the first layer being the smallest

and that of the last layer being the largest. For instance, in

the official MAE fine-tuning recipe, a small scaling factor of

0.65 is adopted for ViT-B encoder, making the learning rate

of the first layer less than 1% of that of the last layer. The

main motivation behind LLRD is that the encoder has al-

ready learned strong low-level features during pre-training,

rendering any significant changes to early layers unneces-

sary during fine-tuning. However, given the aggressive na-

ture of our pre-training strategy, resulting feature represen-

tations may not fully converge. Consequently, the default

setup of LLRD, which restricts the learning rate to be small

(particularly for early layers), may not be optimal for fine-

tuning.

Therefore, we propose a new fine-tuning recipe for

lightly pre-trained MAE. Specifically, we adapt a larger

value for LLRD to effectively improve fine-tuning accuracy.

By increasing the LLRD from 0.65 to 0.75, a lightly MAE

pre-trained ViT-B, which is ∼82× faster than its vanilla

counterpart, achieves a top-1 ImageNet accuracy of 82.9%,

resulting in a performance boost of 1.4%. Furthermore,

we demonstrate the enhanced sample efficiency of our ap-

proach, as it learns effective feature representations even

when only 20% of the original training set is available. Fi-

nally, we showcase the generalizability of our findings to

another MAE-based method, SupMAE, through a set of ab-

lation studies and provide a simple and efficient strategy for

tuning LLRD. We hope our findings can benefit future re-

search in studying the efficiency of MIM, or self-supervised

learning in general.

2. Related Works

Hand-crafted self-supervised learning. In the field of vi-

sual self-supervised learning, the goal is to train models to

learn effective feature representations using supervision sig-

nals derived from the images or videos themselves, without

the need for manual annotation. Early methods in this area

employed a variety of hand-crafted pretext tasks to provide

this supervision. Representative examples of such tasks in-

clude image colorization [18], image inpainting [22], solv-

ing jigsaw puzzles [21, 27], predicting rotations [17], and

temporal information verification [20]. However, these

hand-crafted pretext tasks generally are less effective than

contrastive learning and masked image modeling, which we

will review next.

Contrastive Learning. Contrastive learning is a widely

adopted self-supervised learning paradigm that utilizes the

task of distinguishing different views of the same image

from other images [3, 5, 7, 12, 14]. Its core principle is

to train the model to pull positive sample pairs (e.g. views

from the same image) closer together and push negative

sample pairs (e.g. views from different images) farther apart

in the feature space [6]. The use of Siamese architectures

has proven to be an essential element in the success of con-

trastive learning [6]. Recently, ViT has also been introduced

in the field of contrastive learning, utilizing the class token

to represent the entire image [2, 7].

Masked Image Modeling. The masked image modeling

paradigm, which builds upon the success of the masked lan-

guage modeling approach in Natural Language Processing,

has been adapted for use in the visual domain. Early works

in this field include IGPT [4], which learns image repre-

sentations by regressing images pixel by pixel, and BEiT

[1], which encodes image patches into semantic tokens and

trains the model to predict them. Subsequently, studies such

as MaskFeats [26] and MFM [28] have investigated the effi-

cacy of predicting features such as masked HOG or masked

frequency.

The work of MAE [13] has further demonstrated the ef-

fectiveness of a simple raw pixel reconstruction objective in

training models to learn effective representations. Notably,

it’s crucial to set a large masking ratio (e.g. 75%) for these

tasks to avoid simple extrapolation from visible neighboring

patches. Additionally, MAE’s asymmetric encoder-decoder

architecture, which only takes unmasked image patches as

input to the encoder, results in significant training accel-

eration. Further developments such as SupMAE [19] and

VideoMAE [11, 25] introduce golden labels and extend the

method to the video domain respectively. In this work, in-

stead of proposing new designs, we aim to investigate the

underlying efficiency of the vanilla MAE approach.
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3. Revisiting Masked AutoEncoders

Our work is built upon the foundation of MAE [13], with the

goal of further reducing training cost while preserving ef-

fectiveness. In this section, we first provide a brief overview

of MAE, and then review Layer-wise Learning Rate Decay,

the key factor that enables extremely efficient pre-training

with MAE.

3.1. Masked AutoEncoders

In essence, MAE pre-training involves masking random

patches of the input image and reconstructing the missing

pixels from remaining visible patches. The main compo-

nents of MAE include:

Masking strategy. By using ViT [9], MAE operates on

non-overlapping image patches. A small subset of the em-

bedded patches are randomly sampled without replacement

while the rest of the patches are masked and used as the

prediction target of the decoder. In MAE [13], it has been

observed that a high masking ratio (e.g., 75%) is crucial in

preventing shortcut learning (by simply extrapolating from

visible neighboring patches).

MAE encoder. The MAE encoder is a vanilla ViT [9] that

takes only visible patches as input. This design significantly

reduces training time and memory cost, especially when

combined with a high masking ratio. For instance, it leads

to more than 4× training acceleration with a 75% masking

ratio.

MAE decoder. The MAE decoder is another vanilla ViT

[9] that processes both visible patches and mask tokens.

Note that the MAE decoder is solely used for the image re-

construction task in the pre-training stage, and is typically

much narrower and shallower than the encoder. The default

MAE decoder depth is 8, but it has been observed that a

1-layer decoder is sufficient to produce compelling results

[13].

3.2. Layer­wise Learning Rate Decay

Layer-wise learning rate decay (LLRD) strategy is a tech-

nique that adaptively adjusts the learning rate of each layer

in a deep neural network. It was first introduced by LARS

to facilitate the training of ResNet with a large batch size

[29]. Subsequently, it was simplified by ELECTRA [8] and

applied to fine-tune MIM pre-trained models in BEiT [1].

LLRD involves multiplying the learning rate of each
layer by a scaling factor, which is computed using a scal-
ing function that takes as input the layer weights. In BEiT,
a simple polynomial function is used to calculate the scal-
ing factor. In a model with h layers, the learning rate of the
i-th layer, ηi, is given by:

η
i
= η α

(h−i)
, (1)

75% Masked

100 epochs 1600 epochs

100 epochs 1600 epochs

Model with 75%MR

Model with 90%MR

Figure 2. Comparison on the reconstructed images. We show

the reconstruction results of a certain masked image from mod-

els pre-trained for different epochs and masking ratios (MR). We

observe that a short pre-training schedule can achieve close recon-

struction quality to that of a much longer pre-training schedule, for

both 75% and 90% MR.

where η is the overall learning rate provided by the opti-

mizer and α is the hyper-parameter that controls the decay

rate of the learning rate from the last layer to the first layer.

The default value of α for ViT-B in the fine-tuning recipe

of BEiT and MAE is 0.65, a value specifically designed for

slower updates of low-level features. However, we observe

that in our lightly pre-trained models, the low-level features

need to be updated in a more rapid manner for better con-

vergence. Therefore, selecting a suitable LLRD becomes

crucial to unlock the potential of efficient MAE learning.

4. Efficient Training with MAE

In this section, we conduct a systematic investigation into

the efficiency of training MAE. We first introduce the de-

fault MAE setup and our modifications to accelerate pre-

training. We then progressively devise key factors in our

fine-tuning recipe, including Layer-wise Learning Rate De-

cay and fine-tuning learning rate, to attain a comparable per-

formance with fully MAE pre-trained models.

4.1. Pilot Study Setup

We follow MAE’s pre-training and fine-tuning setup out-

lined in Tables 1a and Table 1b. We use the ViT-B archi-

tecture as the backbone and evaluate the performance using

the top-1 accuracy metric on the ImageNet-1k dataset. To

improve the efficiency of our model, we use a one-layer de-

coder as the default setting. This design choice is motivated

by the fact that using an eight-layer decoder, while provid-

ing only marginal improvements, consumes over 50% of the

total FLOPs in the MAE model [13]. In practice, switching

to a one-layer decoder setup leads to an acceleration of over

60% compared to the speed of an eight-layer decoder.
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config MAE ours

optimizer AdamW AdamW

base lr 1.5e-4 1.5e-4

weight decay 0.05 0.05

optimizer β1, β2=0.9, 0.95 β1, β2=0.9, 0.95

batch size 4096 1024

lr schedule cosine cosine

warmup epochs 40 5

full epochs 1600 100 or 200

masking ratio 75% 75% or 90%

decoder depth 8 1

augmentation RRC RRC

(a) Pre-training

config MAE ours

optimizer AdamW AdamW

base lr 5e-4 1e-3

weight decay 0.05 0.05

optimizer β1, β2=0.9, 0.999 β1, β2=0.9, 0.999

layer-wise lr decay 0.65 0.82 (100 / 90)

batch size 1024 1024

lr schedule cosine cosine

warmup epochs 5 5

training epochs 100 100

augmentation RandAug (9, 0.5) RandAug (9, 0.5)

label smoothing 0.1 0.1

mixup 0.8 0.8

cutmix 1.0 1.0

drop path 0.1 0.1

(b) End-to-end fine-tuning

Table 1. Hyper-parameter comparison. The differences between MAE’s default setting and our recipe are bolded. We use an LLRD

found by our low-cost parameter searching w.r.t. each pre-train setup, i.e., pre-train epochs and masking ratios.

fine-tune epochs top-1 acc. (%)

100 80.4

200 81.8

Table 2. Aggressive training schedule results in not converged

pre-trained models. Increasing the fine-tuning epochs boosts the

top-1 accuracy by 1.4%, indicating the pre-trained model is far

from convergence.

batch size top-1 acc. (%)

512 81.8

1024 81.6

4096 80.4

Table 3. MAE pre-training with different batch sizes. We note

that a smaller batch size leads to better convergence for shortly

pre-trained models.

We begin by aggressively reducing the number of pre-

training epochs from 1600 to 100 and increasing the mask-

ing ratio from 75% to 90%, which further speeds up the

MAE training by 23×. Based on our analysis of the re-

construction quality, as shown in Figure 2, we can see that

the MAE model is able to decently reconstruct images even

with this light pre-training recipe. This visualization leads

us to conjecture that this lightly pre-trained MAE model

would perform similarly to the one trained with the full

MAE setup after fine-tuning. However, our assumption is

not supported by our experimental results. Table 2 shows

the fine-tuning results on the ImageNet-1k dataset. The re-

sult from 100 epochs fine-tuning is 3.2% worse than the

result from the original MAE model (80.4% vs 83.6%).

Interestingly, we find that an additional 100 epochs of

fine-tuning can improve the top-1 accuracy by 1.4% (80.4%

vs 81.8%). This highlights that the pre-trained model does

not fully converge with such a limited training budget. De-

spite this improvement, the final result is still inferior to

the original MAE setup by 1.8% (81.8% vs 83.6%). In

conclusion, increasing the fine-tuning duration can allevi-

ate the challenges introduced by reduced pre-training to

some extent. However, fine-tuning is much more expen-

sive than pre-training, as the model needs to compute with

the whole image patches, making it not ideal to increase

the fine-tuning duration. As such, we investigate alternative

approaches that do not incur additional computational cost.

Pre-training batch size. We here investigate the impact of

batch size on the performance of the MAE pre-training.

Previous research has shown that a limited pre-training

length combined with a large batch size can lead to the

model stuck in a sharp minimum [15, 16]. To explore this

phenomenon, we conduct experiments with various batch

sizes, as reported in Table 3. Our results indicate that a

smaller batch size, such as 512 or 1024, consistently outper-

forms the default batch size of 4096 by a significant margin

(over 1%) in our modified pre-training setup. Therefore, we

opt for a batch size of 1024 as a balance between efficiency

and accuracy in our proposed pre-training recipe.

Despite these improvements, we note that our pre-

training results are still suboptimal compared to those ob-

tained using a 1600-epoch pre-training approach (81.6% vs

83.6%). To further compensate for this gap, we adopt more

aggressive fine-tuning techniques, as introduced next.

4.2. Layer­wise Learning Rate Decay

In the original MAE setup, a small value for LLRD is used

under the assumption that lower-level features are well-

learned during pre-training and do not require aggressive

updates during fine-tuning. However, this may not be the

case with our reduced pre-training budget.

Therefore, we experiment using a larger LLRD value
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(c) ImageNet-10%

Figure 3. Optimal Layer-wise learning rate decay of different datasets. (a) Optimal LLRD outperforms the default one 0.65 by 1.3%.

(b)(c) We observe a similar trend for LLRD between target dataset ImageNet-1k and small proxy datasets like ImageNet-200 & ImageNet-

10%, which enables low cost LLRD search.

during fine-tuning. This significantly increases learning

rates for shallow layers while only slightly increasing the

learning rates for deeper layers. Our results, as shown in

Figure 3(a), illustrate that this approach significantly im-

proved performance. For instance, when using a masking

ratio of 90%, the best LLRD rate outperforms the default

LLRD of 0.65 by 1.3%. These results demonstrate the cru-

cial role of a proper layer-wise learning rate decay in the

success of MAE learning under a limited computational

budget.

Optimal LLRD of different pre-train recipes. To further

investigate the impact of low-level feature quality on fine-

tuning performance, we examined the optimal layer-wise

learning rate decay (LLRD) rate for models pre-trained for

varying numbers of epochs, as shown in Figure 4. The

results validate that models pre-trained for shorter periods

typically require larger LLRD values, indicating a need for

larger and faster updates on the weights of shallow lay-

ers. Furthermore, fine-tuning performance improves more

significantly with fewer pre-training epochs when using an

optimized LLRD rate. For example, as shown in Figure

4, our proposed recipe outperforms the default recipe by

1.2% when the model is pre-trained for only 100 epochs, but

the performance difference is only 0.1% when the model is

well-pre-trained (i.e., 1600 epochs + 8-layer decoder).

Low-cost parameter searching. Finding the optimal value

for layer-wise learning rate decay rate is crucial to our

method. Figure 3 shows a typical relation between layer-

wise learning rate decay rate and final model performance:

LLRD has a sweet point, i.e., the fine-tuning accuracy will

first increase and then decrease. To determine this optimal

value, a parameter search is typically required, which can be

computationally expensive, especially with a large training

set. This motivates us to explore the possibility of perform-

ing parameter searches with smaller proxy datasets, such as

ImageNet-200 and ImageNet-10%, to efficiently and effec-

tively locate the optimal value of LLRD. Specifically, these

datasets are subsets of ImageNet-1k, where 200 classes are

randomly chosen from the 1000 classes in ImageNet-200,

and 10% of the images are kept for each class in ImageNet-

10%, respectively.

As demonstrated in Figure 3(b) and Figure 3(c), the re-

lationship between layer-wise learning rate decay (LLRD)

and model performance on ImageNet-200 and ImageNet-

10% follows a similar trend as it does on the full ImageNet-

1k dataset. For example, the optimal value for LLRD is
∼0.8, which is consistent with the region identified on the

full ImageNet-1k dataset. By conducting the parameter

search on these smaller proxy datasets, we are able to sig-

nificantly expedite the search process and reduce the com-

putational cost by a factor of 10.

4.3. Fine­tuning Learning Rate

Lastly, we delved into the influence of different learning

rates. Figure 5 illustrates the results of using different

learning rates during fine-tuning. We find that increasing

the learning rate brings a consistent improvement in per-

formance when using the default LLRD of 0.65. This is

expected as a larger learning rate can help feature conver-

gence. However, when examining the combined effect of

learning rate and LLRD, we discover that using excessively

high learning rates results in suboptimal performance, as it

leads to oscillations around the optimal performance due to

overly high learning rates for deep layers. Therefore, we

choose a moderate learning rate of 1e-3 as our default fine-

tuning learning rate in order to achieve a balance between

performance and stability.

5. Experiments

We follow the general MAE pre-training and fine-tuning

setup outlined in Section 3, with some modifications to a

few hyper-parameters. Specifically, for pre-training, we use

a single-layer decoder instead of the eight-layer decoder,

decrease the number of training epochs from 1600 to 100,

increase the masking ratio from 75% to 90%, and use a

batch size of 1024 instead of 4096. For fine-tuning, we in-
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method
masking

ratio

pre-train

epochs

pre-train

hours

normalized

pre-train

cost

fine-tune

epochs

fine-tune

hours

total

hours

normalized

total

cost

top-1

acc.

(%)

VIT-B - 300 - - - - - - 82.3

DEIT-B - 300 - - - - - - 81.8

BEiT-B 40% 800 - - 100 - - - 83.2

MAE-B 75% 1600 202.2 59.2× 100 15.7 217.9 11.4× 83.6

Ours 75% 200 9.9 2.7× 100 15.7 25.6 1.3× 83.3

Ours 75% 100 4.9 1.4× 100 15.7 20.6 1.1× 83.1

MAE-B 90% 1600 148.9 43.6× 100 15.7 164.6 8.6× 83.1

MAE-B 90% 100 3.4 1.0× 100 15.7 19.1 1.0× 80.4

Ours 90% 100 3.4 1.0× 100 15.7 19.1 1.0× 83.0

Table 4. Comparison with other methods on ImageNet-1k. ViT-B is used as the model backbone. We benchmark the speed on a machine

with 8 NVIDIA A5000 GPUs. The normalized cost is calculated relative to our method. Our method achieves competitive results with

much less computational cost.
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Layer-wise Learning Rate Decay
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Figure 4. Optimal LLRD of different pre-train recipes. We

empirically find that the models pre-trained for a longer time tend

to have a smaller optimal LLRD.
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Figure 5. Fine-tuning learning rate. First, increasing the learn-

ing rate consistently boosts the performance using MAE’s default

LLRD 0.65. Second, a moderate learning rate 1e-3 is optimal

when jointly searching for learning rate and LLRD.

crease the base learning rate from 5e-4 to 1e-3 and apply a

layer-wise learning rate decay determined by our low-cost

parameter search for each pre-training setup. Unless oth-

erwise noted, all other hyper-parameters remain consistent

with the original MAE recipe. The implementation details

can be found in Table 1.

5.1. Main Results

ImageNet-1k. We compare our method to other super-

vised and self-pre-trained methods on ImageNet-1k in Ta-

ble 4. We use ViT-B as the baseline model and report each

method’s training speed using an 8 NVIDIA A5000 GPU

server.

We evaluate MAE under several different training sched-

ules. In its original settings, MAE achieved 83.6% top-1

accuracy on the downstream task, with 1600 pre-training

epochs and a 75% masking ratio. However, when we in-

creased the masking ratio to 90%, we observed a decrease

in performance to 83.1%. Additionally, when we further re-

duced the pre-training length to 100 epochs, we observed

a significant decrease in performance to 80.4% top-1 accu-

racy.

However, when trained with our proposed recipe, with-

out any changes to the MAE structure, the model achieves

83.0% top-1 accuracy on the downstream task, which is an

improvement of 1.6% over the original MAE counterpart.

Notably, our performance is comparable to the fully trained

90%-masked-trained MAE (i.e., the gap is only 0.1%) and

even to the 75%-mask one. It’s also important to highlight

that our method significantly reduces pre-training cost by

over 40 times when benchmarked by time spent.

Lastly, we evaluate our methods in less aggressive train-

ing scenarios. By decreasing the masking ratio from 90%

to 75%, we observed a slight improvement in top-1 accu-

racy by 0.1%, with an optimal LLRD of 0.85. Moreover,

by increasing the number of pre-training epochs to 200, we

observed a 0.2% improvement in top-1 accuracy, with an

optimal LLRD of 0.775.

Image Segmentation We test our method with the orig-

inal MAE on the Image Segmentation Task. We choose
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method mask ratio pre-train epochs fine-tune iterations mIOU

MAE-B 75% 100 160k 42.4

MAE-Ours 75% 100 160k 44.3

Table 5. Comparison with the Orginal MAE on ADE20K. The

model are samely pretrained as the ImageNet settings. In limited

training budget, our method also shows a significant improvement

compared to the original MAE recipe.

method
masking

ratio

pre-train

epochs

fine-tune

epochs

top-1

acc.(%)

DEIT-S - 300 - 77.9

MAE-S 75% 100 100 77.9

Ours-S 75% 100 100 79.8

Ours-S 90% 100 100 79.9

Table 6. Performance on ViT-S. We validate our methods on

ViT-S, which shows a similar behaviour to our ViT-B experi-

ments. With our recipe, we obtain a largely improved performance

(79.9%) against the original one (77.9%).

LLRD 0.8 0.825 0.85 0.875

masking ratio = 75% 79.66 79.81 79.73 79.75

masking ratio = 90% 79.78 79.88 79.83 79.82

Table 7. Influence of LLRD on ViT-S. We demonstrate how the

downstream task’s performance will change with respect to LLRD

of the region between 0.8 and 0.9. This trend is similar to our ViT-

B experiments.

the ADE20K[31] as our benchmark dataset. By applying

100 epoch pre-train and 160K iteration fine-tune to both the

original MAE recipe and Our recipe. The result shows sig-

nificant improvement of our method (+1.9%) to the original

MAE as shown in Table 5.

Scaling to different size Next, we evaluate our recipe in

models of different scales. In Tab. 6 and Tab. 7, we val-

idate the proposed recipe on ViT-S. Our recipe drastically

decreases the computational cost for MAE training on ViT-

S, while attains significant performance improvement com-

pared with the original recipe. Specifically, as shown in

Tab. 6, our approach has 2% top-1 accuracy improvement

in downstream task over the original MAE fine-tune recipe.

We also conduct a low cost parameter searching for layer-

wise learning rate decay in Tab. 7, where we observe a sim-

ilar increasing-peaking-decreasing pattern as Fig. 3

Generalizing to other MIM Method In addition to MAE,

we also demonstrate the effectiveness of our approach on

another MIM algorithm, SupMAE [19]. SupMAE intro-

duces golden labels into the pre-training stage to help the

model learn global information and is able to shorten the

pre-training length by 4×. By applying our recipe, Sup-

MAE can be further accelerated. With the best LLRD, the

LLRD 0.65 0.775 0.8 0.825 0.85 0.90

Acc.(%) 82.6 82.9 83.0 83.0 83.0 80.5

Table 8. Generalization to SupMAE. We combine our methods

with SupMAE. The experiments shows that with only 50 epoch’s

pre-train, we reach 83.0 top-1 accuracy by using the best LLRD.

We further verify that it has a similar trend in how LLRD affects

final results as we find in MAE.

model reaches 83.0% top-1 accuracy with only 50 epochs

of pre-training, reducing the total training cost by another

half. We demonstrate the influence of LLRD for SupMAE

in Table 8 and observe the following: (1) Proper LLRD out-

performs the default setting by 0.4%, showing the effec-

tiveness of our recipe. (2) SupMAE is relatively robust in

a large region from 0.8 to 0.85, simplifying the parameter

search process.

5.2. Sample Efficiency

In addition to the training efficiency of MAE, we also inves-

tigate the sample efficiency of MAE, i.e., whether MAE can

still achieve competitive performance even if only a small

amount of images are available for pre-training. We would

like to stress that this setup is practically meaningful, espe-

cially in the medical image domain where even unlabelled

data are difficult to collect at scale.

By using a 100 epoch, 75% masking ratio, and 1-layer

decoder MAE as the baseline model, we pre-trained MAE

on subsets of ImageNet. To ensure a fair comparison be-

tween different setups, we adjust training epochs accord-

ingly to maintain the same computational resource as the

baseline, e.g., we will double the training epochs if the

dataset size is halved. The results, as illustrated in Figure

6, demonstrate that using our fine-tuning recipe, MAE can

robustly achieve competitive performance even when sig-

nificantly fewer data during pre-training. Additionally, we

observed that in certain cases, smaller subsets of the data

could even result in better performance. For example, using

a 50% budget, we were able to achieve a performance of

82.9% using only 20% of the data. This suggests that, with

a limited pre-training budget, the performance will exhibit

a tradeoff between the size of the dataset and the number of

epochs.

5.3. Ablation Study

Convergence of MAE model using our recipe In Tab. 2,

we show that in the naive MAE settings, improving the fine-

tuning length leads to a 1.4% improvement in downstream

tasks, suggesting that the model does not fully converge.

Here, we also test our recipe with a longer fine-tune dura-

tion and show the results in Tab. 9. Doubling the fine-tune

epochs marginally improves the accuracy by 0.1%. This re-

sult indicates that the pre-trained model can achieve good
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Default 

MAE

(a) 100% Computational Resource

Default 

MAE

(b) 75% Computational Resource

Default 

MAE

(c) 50% Computational Resource

Default 

MAE

(d) 25% Computational Resource

Figure 6. The sample efficiency of MAE. By fine-tuning MAE

with our recipe, we find that for a fixed computational resource,

the performance on downstream tasks remains consistent. This

holds true even when we change the total computational budget.

We also include how the default MAE performs under the same

pre-train budget.

convergence with our recipe, thus avoiding extra fine-tune

computational overhead.

Decoder depth Although previous work shows that in-

creasing decoder depth may not help improve the model’s

performance when the model has already been well pre-

trained [13], we wonder whether a larger decoder can assist

reconstruction process and bring better downstream perfor-

fine-tuning length top-1 (%)

100 83.0

200 83.1

Table 9. Ablation on the our recipe’s convergence. We study

the convergence of the MAE model pre-trained with our recipe

by varying the fine-tune epochs. Enlarging the fine-tune epochs

brings marginal improvements, suggesting that our recipe can fully

exploit the model’s potential during fine-tuning without introduc-

ing extra computational burden.

decoder depth top-1 (%)

1 82.8

8 82.7

Table 10. Ablation on the decoder depth. We show that the

decoder depth has only a marginal influence in our recipe. This

result is consistent with the findings in MAE [13].

mance under the short pre-train schedule.

As demonstrated in Tab. 10, adding decoder depth has

little influence on the performance of our training recipe.

The difference between the heavy eight-layers decoder and

the lightweight one-layer decoder is minor, which is consis-

tent with the conclusion of MAE [13]. Using the heavier

eight-layers decoder even slightly deteriorates the perfor-

mance by 0.1%, which may come from the fact that the

heavier decoder is harder to converge with the short fine-

tuning stage.

6. Conclusion

In this paper, we delve deep into the MAE pre-training and

fine-tuning recipe. Through extensive experiments, we sys-

tematically showcase MAE as an efficient learner. With

our proposed training recipe, we achieve a remarkable 82×

speed up with little performance loss by aggressively re-

ducing pre-training cost and tuning layer-wise learning rate

decay in the fine-tuning stage. Our exploration also ex-

tends to sample efficiency, where we demonstrate the ability

to achieve comparable performance using only 20% of the

data. Furthermore, our proposed recipe demonstrates versa-

tility across different model scales and MIM methods. We

hope that our work can boost fast experimental prototyping

and validation in this research area.
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