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Abstract

Training only the last few layers in deep neural networks
has been considered an effective strategy for enhancing the
efficiency of on-device training. Prior work has adopted
this approach and focused on accelerating backpropaga-
tion. However, by conducting a thorough system-wide anal-
ysis, we discover that the primary bottleneck is actually the
forward propagation through the frozen layers, rather than
backpropagation, if only the last few layers are trained. To
address this issue, we introduce the “cache and reuse” idea
for on-device transfer learning and propose a two-stage
training method, which consists of a cache initialization
stage, where we store the output from the frozen layers, fol-
lowed by a training stage. To make our approach practical,
we also propose augmented feature caching and cache com-
pression to address the challenges of non-cacheable fea-
ture maps and cache size explosion. We carry out extensive
experiments on various models (e.g., convolutional neural
network and vision transformers) using real edge devices
to demonstrate the effectiveness of our method. As an ex-
ample, on NVIDIA Jetson Orin NX with MobileNet-V2, our
approach boosts the training speed by 6.6⇥, and improves
the accuracy by 2.1%. For EfficientNet-b0, our method in-
creases the training speed by 2.2⇥ and improves its accu-
racy by 1.3%. Therefore, our approach represents a signif-
icant improvement in enabling practical on-device transfer
learning for edge devices with limited resources.

1. Introduction

On-device transfer learning serves as the foundation for nu-
merous resource-limited machine learning applications [1,
7, 9, 21, 24, 29, 37, 41]. For instance, in federated learn-
ing [7, 29, 41], to safeguard users’ privacy, training is re-
stricted to an individual’s personal device, which typically
has limited computational and energy resources [20, 33,
38]. In such situations, training efficiency is of paramount
importance. Indeed, users may be willing to spend 10 min-
utes and use 5% of their battery energy to achieve a 70%

accuracy improvement on their smartphones, but may de-
cline to invest 10 hours and consume 90% of their bat-
tery power for a model with 75% accuracy, despite the
marginally higher accuracy.

In fact, as shown in Figure 1a, we observe a diminish-
ing rate of return in transfer learning-based neural network
adaptation: the marginal accuracy gain obtained by training
one additional parameter, decreases as more parameters are
trained. This finding implies that training only the last few
layers (closer to the output) and freezing the earlier layers
is a more beneficial design choice for on-device learning.
Some previous works have implicitly incorporated this ap-
proach in their designs [12, 25, 27, 39, 40]. For example,
[25] trains only a few selected convolutional filters among
the last layers, while keeping the other parameters frozen;
similarly, [39] trains the last 2 or 4 layers in ResNets [13].
We note that these methods primarily concentrate on the ef-
ficiency of the backpropagation (BP) process during train-
ing, while overlooking the end-to-end efficiency; we argue
that they should actually consider both forward and back-
ward propagation instead. Indeed, to further improve the
efficiency of on-device training, we ask two research ques-
tions:

(i) What causes the key bottleneck for on-device training
if only the last few layers are trained?

(ii) How can we improve the end-to-end efficiency if only
the last few layers are trained?

To tackle the first research question, we perform an end-
to-end analysis to identify the unnecessary computations in
the traditional “single-stage” training loop, which encom-
passes data processing, forward propagation, and backward
propagation. We discover that, when training only the last
few layers, the forward propagation becomes the primary
bottleneck instead of BP (which is the constraint when train-
ing the entire model). To address the second research ques-
tion, we introduce a new two-stage training method to fur-
ther improve end-to-end efficiency. Drawing inspiration
from modern memory hierarchy design used in computer
systems, we propose to alleviate the bottleneck by caching
and reusing the output from the frozen sub-network. How-
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Figure 1. (a) Accuracy on VTAB-1K when finetuning varying numbers of layers in MobileNet-V2 and EfficientNet-B0. (b) Analysis
of computation and memory footprint for Steps (2-4) in Algorithm 1 when training different numbers of layers in MobileNet-V2 using
single-stage transfer learning. For many cases, forward propagation through the frozen sub-network is the key bottleneck instead of BP.

ever, due to the inherent randomness and large data size,
simply storing the output is not feasible. Therefore, we also
propose new augmented feature caching and cache com-
pression techniques to make the feature caching idea truly
practical. In summary, our contributions are as follows:

• We identify the key computational bottleneck for on-
device training when only the last few layers are trained.
Contrary to popular belief that BP is the main bottle-
neck, we discover that the true bottleneck lies in the for-
ward propagation through the frozen sub-network.

• We propose a new two-stage training method that sub-
stantially improves the end-to-end on-device training ef-
ficiency when only the last few layers are trained.

• We propose new augmented feature caching and cache
compression techniques to solve the issue of non-
cacheable feature maps and cache size explosion.

• We conduct extensive experiments with various neural
networks (i.e., convolutional neural network and vision
transformer) on a real edge device, and demonstrate the
effectiveness of our proposed method. For example,
our approach accelerates training for MobileNet-V2 by
6.6⇥ and improves the testing accuracy by 2.1%.
The paper is organized as follows. Section 2 introduces

the motivation for efficient on-device transfer learning. Sec-
tion 3 formulates the on-device training problem. Section 4
presents our method in detail. Experimental results are pro-
vided in Section 5. Section 6 discusses related prior works.
Finally, Section 7 summarizes our main contributions.

2. Background: Why training only the last few

layers?

The idea of training only layers close to the network out-
put has been commonly used in previous on-device transfer

learning studies [12, 25, 27, 39, 40]. There are two main
reasons for this:

Diminishing Returns in Transfer Learning: Figure 1a
shows the accuracy when finetuning a variable number of
layers for ImageNet [32]-pretrained neural networks [33,
36]. For both models, a generally concave type of accuracy-
computation curve is observed, indicating strong diminish-
ing returns. For instance, by spending around 500 MFLOPs
to train 4 blocks in MobileNet-V2, we can achieve an 68.3%
accuracy or 0.14% accuracy gain per MFLOP. However,
training the full model with 1258 MFLOPs yields only a
1.5% increase in accuracy and a very low efficiency of only
0.04% accuracy gain per MFLOP. This suggests that train-
ing only the last few layers often results in better efficiency.

Limited Computation for Training: For gradient-
based optimizers, such as stochastic gradient optimizers [2],
the BP algorithm is employed to compute the gradient for
each weight in the neural network. BP calculates gradients
layer-by-layer, starting from the model’s output towards its
inputs. With a fixed budget, we may opt to halt BP early,
thus resulting in training only the last few layers.

Although the strategy of training just the last few layers
can reduce computation for BP and enhance the efficiency
of on-device training, as shown in Figure 1b and later ex-
plained in Section 4.1, we find that under the conventional
single-stage training framework, numerous redundant cal-
culations lead to both computation and memory waste. We
address this issue next by proposing a new two-stage on-
device transfer learning framework.

3. Problem Formulation

We assume that a deep neural network f(x;⇥), which
has inputs x and a set of weights ⇥, can be divided
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Figure 2. Workflow of (a) conventional single-stage transfer learning and (b) our proposed two-stage transfer learning. Symbols and steps
correspond to Algorithms 1 and 2. Essentially, we speed up the training by caching and reusing the output from the frozen sub-network.
To make two-stage traing viable and practical, we also introduce augmented feature caching (Step A1, A3, B2, Section 4.2) and cache
compression techniques (Step A2, B1, Section 4.3).

into two nested sub-networks: fF with weights ⇥F ,
and fT with weights ⇥T . In other words, f(x;⇥) =
fT (fF (x;⇥F );⇥T ).

Since most state-of-the-art neural networks are built by
stacking basic building blocks (e.g., the residual block in
ResNet), this assumption is valid in general [13, 26, 33, 36].
Under this assumption, fT (·;⇥T ) and fF (·;⇥F ) represent
the sub-networks with blocks closer to the output and input,
respectively. Then, with data augmentation method T (·),
dataset (X ,Y) and optimizer optim(·), the vanilla single-
stage on-device transfer learning for N epochs can be writ-
ten as in Algorithm 1.

Algorithm 1 Training Process for Vanilla Single Stage On-
device Transfer Learning

for epoch in 1...N do . Training for N epochs

for (x, ŷ) 2 (X ,Y) do

Step (1): Data augmentation
xA  T (x)
Step (2): Forward for frozen sub-network
yAF  fF (xA;⇥F )
Step (3): Forward for training sub-network
yAT  fT (yAF ;⇥T )
Step (4): Back propagation and weight update
�⇥T  optim(⇥T , yAT , ŷ, y

A
F )

⇥T  ⇥T +�⇥T

end for

end for

For every sample in dataset, we first perform data aug-
mentation. Next, in Steps (2-3), we pass the input through
both frozen and training sub-networks. Finally, in Step (4),
we perform BP and update the weights in the training sub-
network. This process is repeated for N epochs.

4. A New Two-Stage On-device Transfer

Learning Approach

In this section, we present our two-stage on-device trans-
fer learning method. First, we identify performance bot-
tlenecks in the standard single-stage training method when
only the last few layers are trained, as shown in Figure 2a.
To address these bottlenecks, we then suggest a two-stage
on-device transfer learning approach, as shown in Fig-
ure 2b. The main idea involves caching and reusing the
output yAF created by the frozen sub-network fF in Fig-
ure 2a, which would eliminate the primary bottleneck in
both computation and memory usage. Consequently, our
method comprises two stages, as illustrated in Figure 2b: A
cache initialization stage (Stage A), where the frozen sub-
network is run for building the cache only once, and a train-
ing stage (Stage B), where the training sub-network is fine-
tuned using the cached feature map for multiple epochs.

Although our idea appears simple, there are two main
challenges. First, the randomness of yAF renders it non-
reusable and, therefore, non-cacheable. Second, if we were
to make the intermediate feature map yAF cacheable, the re-
sulting cache would be significantly larger than the orig-
inal dataset. This would be undesirable since it would
place an excessive strain on the memory system. To over-
come these challenges, we introduce the augmented feature
caching (Section 4.2) and cache compression (Section 4.3)
techniques, as demonstrated in Figure 2b, and outline our
method in Algorithm 2.

4.1. Motivation: Forward propagation through the

frozen sub-network is the New Bottleneck

Figure 3 shows the accuracy for training different numbers
of blocks. Figure 1b presents the breakdown of computa-
tion and memory footprint, i.e., FLOPs and I/O between
processor and main memory, needed for steps (2-4) in Algo-
rithm 1 when various layers are trained. From these figures,
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we have the following findings:
• When training the entire model, back propagation con-

sumes most resources.
• For both EfficientNet-B0 and MobileNet-V2, training

fewer than 7 blocks delivers almost the same accuracy as
training the entire model, but with significantly reduced
computational demand. For instance, training 7 blocks
in MobileNet-V2 results in an accuracy that is only 0.4
lower than a full training, while demanding just half the
computational resources.

• When less than 7 blocks are trained, forward propaga-
tion through the frozen part of the model is the major
consumer of computation and memory I/O. For example,
when training 5 blocks, forward propagation through the
frozen part of the model consumes 53% computation and
79% memory I/O, which is higher than the sum of others.
Our first observation confirms that when training the

whole model, back propagation is the primary resource
drain. However, our second observation highlights that in
the context of transfer learning, it might not be resource-
efficient to train the entire model. This insight steers our at-
tention to scenarios where only the latter layers are trained.
In such situations, as indicated by our third observation, the
main resource drain is the forward propagation through the
non-trained subsection, denoted as sub-network fF .

4.2. Augmented Feature Caching (Steps A1, A3 and

B2 in Figure 2b)

When training the last few layers, it is essential to address
the system-wide efficiency, specifically the efficiency of
Step (2) in Algorithm 1, which is the forward propagation
through the frozen part. To tackle this issue, we propose an
augmented feature caching method based on the following
properties:
1. For a given input, the inference through the frozen part

fF produces a deterministic output;
2. With a fixed dataset, the only source of randomness for

the input is data augmentation T (·);
3. Vision models can exhibit equivariance to commonly

used data augmentation transformations [23].
The first two properties are straightforward. Indeed, since
all parameters in the frozen part fF are fixed, the network
is static and will always return the same output for the same
input. Moreover, given the fixed data source, data augmen-
tation is the only source of randomness. However, we can-
not directly cache and reuse the feature map yAF produced
by the frozen neural network fF due to the unpredictable
nature of input. To make it cacheable, we need the third
property.

The third property can be either embedded in the neu-
ral network architecture (e.g., translation equivariance in
CNN) or learned during model pretraining before on-device
transfer learning (e.g., translation equivariance and scaling

CIFAR100 - 224⇥224 664MB
FP32 Cache 3.6GB
INT8 Cache 898MB
INT4 Cache 460MB
INT2 Cache 226MB
INT1 Cache 113MB

Table 1. Comparision between size of CIFAR100 dataset, cache
without compression (FP32), and cache with compression (INT).

equivariance for ViT). More importantly, the third prop-
erty suggests that the transformation on the model input
can be approximately shifted to the model output. For in-
stance, steps (1) and (2) in Algorithm 1 can be written as
yAF = fF (T (x);⇥F ), where x 2 X . With property 3, this
can be approximated as:

ỹAF = T (yF ) = T (fF (x;⇥F ))
prop.3
⇡ fF (T (x);⇥F ) = yAF

(1)
For simplicity, in Equation (1), we skipped the compres-
sion C(·) and decompression D(·) shown in Figure 2b. By
doing this, randomness is eliminated from the input of the
frozen part of the neural network, and yF , the output of fF ,
becomes deterministic and cacheable.

4.3. Cache Compression (Steps A2 and B1, Fig-

ure 2b)

Although augmented feature caching can alleviate the com-
putational bottleneck, it puts stress on the memory system.
As shown in Table 1, the CIFAR100 [19] dataset occupies
664MB of memory space, which can fit in the DRAM of
most devices. However, when training the last five blocks of
the MobileNet-V2 neural network and caching the interme-
diate feature maps from previous layers, the cache size bal-
loons to 3.6GB. This size, which is about 5.6⇥ larger than
the original dataset, may not fit in the DRAM of most edge
devices (e.g., Raspberry Pi [11]). Storing cached feature
maps on a hard drive and retrieving them back into DRAM
when needed is not an ideal solution since the throughput
and latency for accessing a hard drive are much worse than
accessing DRAM, thus leading to significant system de-
lays [14].

The primary issue is that feature maps typically have
higher numerical precision than input images (INT8 vs.
single-precision floating-point), which means that pixels in
feature maps require more storage space than those in im-
ages. To address this problem, we draw inspiration from
model compression techniques and propose a feature quan-
tization method. Specifically, we apply a channel-wise
quantile-based quantization method. For yF [i], the i-th
channel data generated by the frozen sub-network fF , we
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quantize the feature map to n-bit yq with C(·) as follows:

yq[i] = C(yF [i]) = round (s ⇤ (yF [i]� b))

s =
2n � 1

Q1�k(yF [i])�Qk(yF [i])
, b = Qk(yF [i])

(2)

where Qk(yF [i]) is the value k-th quantile for yF [i]. As
illustrated in Table 1, by quantizing the feature map to 2-
bit, the cache size reduces to 226MB, which is smaller than
both the original CIFAR100 dataset and the uncompressed
cache. More importantly, we demonstrate that, in most
cases, quantizing the feature map to 2-bit has minimal im-
pact on accuracy.

Finally, to minimize the effect of cache compression on
model training, we introduce a decompression step D(·) to
recover the feature map to its original data format (e.g., de-
quantize the 2-bit data to floating-point data):

ỹF [i] = D(yq[i]) = yq[i]/s+ b (3)

To this end, we have tackled both problems related to non-
cacheable feature maps and excessive cache size, resulting
in our method being concisely represented as Algorithm 2.
In the first stage, we process each sample in the dataset us-

Algorithm 2 Training Process for Two Stage On-device
Transfer Learning

Stage A: Cache initialization for only once
for x 2 X do

Step (A1): Forward for frozen sub-network
yF  fF (x;⇥F )
Step (A2): Cache compression
yQ  C(yF )
Step (A3): Caching
C  C [ yQ

end for

Stage B: Training with cache for N epochs
for epoch in 1...N do

for (yQ, ŷ) 2 (C,Y) do

Step (B1): Cache decompression
ỹF  D(yQ)
Step (B2): Feature augmentation
ỹAF  T (yF )
Step (B3): Forward for training sub-network
ỹAT  fT (ỹAF ;⇥T,i)
Step (B4): Back propagation and update weights
�⇥T  optim(⇥T , yAT , ŷ, y

A
F )

⇥T  ⇥T +�⇥T

end for

end for

ing the frozen sub-network. The output feature map is then
compressed and stored in the cache. This stage is carried

out only once. In the second stage, we first load and de-
compress the feature map from the cache. After augmenting
these features, we feed them into the training sub-network.
Finally, we perform BP and update the trainable weights.
This stage is repeated for a total of N epochs.

5. Experimental Results

In this section, we first present our experimental results for
running the two-stage on-device training approach on real
edge devices. Next, in order to support our assertion that our
paper provides an orthogonal approach to previous studies,
we showcase an example that combines our methodology
with [25]. Finally, we evaluate the performance of the main
elements of our system - specifically, the augmented feature
caching (see Section 4.2) and cache compression compo-
nents (see Section 4.3).

5.1. Experimental Setup

Evaluation of Training Accuracy: To assess the accuracy
of our method, we utilize a GPU-workstation equipped with
the NVIDIA-A6000 GPU. The environment is set up using
PyTorch 1.13 and MMClassification v0.25 on the Ubuntu
20.04 operating system, along with CUDA 11.7. We fine-
tune ImageNet-pretrained models on six different datasets:
CIFAR100 [19] (CF100), CIFAR10 [19] (CF10), Stanford
Cars [18] (Cars), Flowers [30], Food-101 [4] (Food), and
Oxford-IIIT Pet [31] (Pet). All images across the datasets
are standardized to a resolution of 224⇥224. We fine-
tune each model for 50 epochs, utilizing the AdamW op-
timizer [28] and a batch size of 64. The learning rate
is adjusted for each dataset according to the performance
of ResNet-18 with vanilla BP. For evaluation on large
scale dataset, since our model are pretrained on ImageNet,
we choose the finetuning target as Places365 dataset [43],
which contains more images (1.8M vs. 1.2M in ImageNet)
and is more challenging.
On-Device Training Environment: We measure the effi-
ciency of our method on the NVIDIA Jetson Orin NX [10],
equipped with an 8-core Arm Cortex-A78A CPU and a
1024-core NVIDIA Ampere architecture GPU. During this
evaluation, we set the power mode to MAXN, with the max-
imum frequencies for the CPU and GPU being 1984 MHz
and 918 MHz, respectively. Latency is calculated by aver-
aging the time taken to train 200 batches, with additional
10 batches for warm-up. The data size is determined by
measuring the size of the dataset or the generated cache.
Baselines: Being the first work for two-stage on-device
training, our method offers a unique perspective compared
to previous work on on-device training, making direct com-
parisons impractical. However, our method can be inte-
grated with previous methods to further enhance efficiency.
As such, in Section 5.2, we primarily compare our method
to the traditional single-stage training method, while in Sec-
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Model Type
Latency

[ms]

Cache

[MB]

Accuracy [%]

CF10 CF100 Cars Flowers Food Pets

MobileNet-V2[33]
Last 1 Block

Baseline 3.30 664 91.07 70.53 65.59 91.45 74.27 87.79

Ours-4b 0.50 188 91.67 72.60 64.59 91.82 74.42 87.54
Ours-2b 0.50 95 90.71 70.01 59.76 91.32 75.12 87.71

MobileNet-V2[33]
Last 4 Blocks

Baseline 3.87 664 94.21 76.28 75.79 93.02 77.52 87.52
Ours-4b 1.33 450 94.60 76.60 77.63 93.49 78.86 87.60
Ours-2b 1.34 226 94.43 76.33 77.15 93.40 79.14 87.98

MobileNet-V2[33]
Last 7 Blocks

Baseline 4.70 664 95.10 77.74 80.13 92.41 79.43 87.52

Ours-4b 2.49 300 94.83 77.18 80.67 92.42 80.10 87.38
Ours-2b 2.49 151 94.84 76.99 80.49 91.72 80.17 87.30

EfficientNet-B0[36]
Last 3 Blocks

Baseline 7.41 664 94.19 76.49 74.58 93.46 79.62 91.50
Ours-4b 2.32 226 94.45 77.09 75.20 92.78 79.15 91.44
Ours-2b 2.34 113 94.38 76.76 74.17 92.39 79.24 91.55

EfficientNet-B0[36]
Last 5 Blocks

Baseline 8.66 664 95.10 78.65 79.21 94.57 81.59 91.09

Ours-4b 3.94 525 95.54 79.12 80.05 92.88 81.14 90.71
Ours-2b 3.94 263 95.82 78.83 80.55 93.71 81.04 90.60

ResNet-18[13]
Last 2 Blocks

Baseline 2.87 664 93.63 75.47 74.98 92.03 75.84 88.85

Ours-4b 1.15 1200 93.82 76.38 74.85 91.93 75.84 88.50
Ours-2b 1.14 599 93.83 76.24 74.18 92.01 75.27 88.72

EfficientFormerV2-S0[22]
Last 5 Blocks

(ViT)

Baseline 6.62 664 94.20 74.97 77.58 91.51 81.98 90.57

Ours-4b 2.61 450 94.10 73.95 75.35 90.34 80.24 89.07
Ours-2b 2.61 226 94.21 74.22 75.60 90.83 80.72 89.15

Table 2. Results for on-device transfer learning with vanilla single-stage training (Baseline, Algorithm 1) and proposed two-stage training
(Algorithm 2). Ours-2/4b refers to the proposed method with 2/4-bit quantization for cache compression. For the baseline, metric “Data”
represent the size of the dataset, and for our two-stage training, metric “Data” represents the size of the cache, as shown in Figure 2. Latency
and data size are measured by training with CIFAR100. For latency and data size, we highlight results that outperform the baseline; for
accuracy, we highlight the highest accuracy for each dataset.

Figure 3. Accuracy and latency for finetuning the last 1/4/7 blocks in MobileNet-V2 on three different datasets. Latencies are measured on
NVIDIA Jetson Orin NX for the CIFAR100 dataset.

tion 5.5, we provide an example of how our method can be
combined with [25].

5.2. Evaluation: Accuracy and Speed

Figure 3 and Table 2 provide a comparison between our
two-stage training approach and the vanilla single-stage
method, in terms of accuracy, latency, and dataset size.
In most cases, our method outperforms the single-stage
training approach by offering lower latency, higher accu-
racy, and reduced memory usage for dataset storage. For
instance, as shown in Figure 3, with a similar accuracy
(0.4% higher than the baseline), our method achieves a

2.9⇥ speedup for training the MobileNet-V2 on CIFAR10
dataset, and with a similar latency (1.3⇥ faster than the
baseline), our method achieves a 15.1% higher accuracy
for training the MobileNet-V2 on the Cars dataset. These
results clearly illustrate that our method significantly en-
hances the efficiency of the on-device training system.

5.3. Scalability on Large-scale Datasets

While our technique is primarily designed for efficient
transfer learning on edge devices, it also performs impres-
sively on larger datasets. To test its scalability, we evalu-
ate the accuracy and training time on a large-scale dataset
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Model Method Speedup
Training Time

[minutes]

Accuracy

[%]

MBV2-1Blk Baseline - 460 50.98
Ours-4b 6.9⇥ 67 50.50

MBV2-4Blk Baseline - 429 53.21
Ours-4b 3.0⇥ 141 52.71

MBV2-7Blk Baseline - 603 53.70
Ours-4b 1.9⇥ 310 53.36

Table 3. Experimental results for training MobileNet-V2 on
Places365 dataset with NVIDIA A6000 GPU. “MBV2-1Blk” rep-
resents training the last block in MobileNet-V2. “Training Time”
represents total training time for 50 epochs on Places365 dataset.
“Ours-4b” refers our method with 4-bit cache compression.

Places365 which contains over 1.8M data samples. Of note,
since our model is pretrained on ImageNet, we cannot test
our transfer learning method on ImageNet.

The results in Table 3 underscore our method’s effi-
ciency. We achieved up to a 7⇥ increase in speed with only
a minor drop in accuracy. For instance, when training the
last block of the MobileNet-V2 model using our technique,
it took merely 67 minutes to hit an accuracy of 50.50%. In
contrast, the baseline approach demanded 7⇥ longer (460
minutes) to achieve a marginally better accuracy of 50.98%.
This clearly demonstrates our method’s capability for scal-
ing on larger datasets.

Figure 4. Loss curve for training 4 blocks in MobileNet-V2 on
Cars dataset with/without feature augmentation (Aug).

5.4. Ablation Study

In this section, we delve into the significance of augmented
feature caching (Section 4.2) and cache compression (Sec-
tion 4.3). Table 4 presents the results of our experiments.
More specifically:
Augmented Feature Caching: Augmented feature caching
is crucial for the two-stage on-device training as it enables
the caching of outputs from the frozen sub-network. Thus,
we cannot entirely disable this feature. Instead, we as-
sess the effectiveness of the feature augmentation step (Step
B2 in Algorithm 2) within the augmented feature caching
method. For this experiment, we set the cache compression
quantization to 8-bit and deactivate the feature augmenta-
tion. As shown in Table 4, the absence of augmented feature
caching results in a consistent decline in accuracy without
any latency benefits. For instance, when training the Cars
dataset without feature augmentation, the accuracy drops by

2.97% compared to our method with feature augmentation
and 8-bit cache compression. As Figure 4 illustrates, train-
ing without feature augmentation causes the loss value to
rapidly converge to zero, indicating model overfitting. This
finding underscores the importance of feature augmentation
in preventing overfitting.
Cache Compression: Table 4 shows that, in the absence
of cache compression, the cache size explodes to 3.5 GB,
which is too large for many edge devices with limited mem-
ory capacity. For example, Raspberry Pi devices may have
the DRAM size as small as just 1 GB. Indeed, our cache
compression method can substantially reduce memory us-
age, making on-device training feasible for a broad range of
hardware platforms.

5.5. Combining our Method with Prior Work

Table 5 presents the experimental results combining our
method with the “quantization-aware scaling” method pro-
posed in [25]. With quantized inference and BP, our method
can significantly reduce the training latency while achiev-
ing a higher accuracy. For instance, we observe a 1.58%
increase in accuracy and a 5.31⇥ speedup when training
the last two blocks in MCUNet-5fps on the CIFAR100
dataset. These findings highlight the broad applicability
of our method. In fact, our two-stage on-device train-
ing can be effectively combined with several other tech-
niques [3, 6, 15, 16, 34, 42] to further enhance efficiency.

5.6. Cache Compression Overhead

The key overhead of our method is cache compression and
decompression (Step A2 and B1 in Figure 2). Table 6 de-
tails the time required to compress and decompress one fea-
ture map when training the last four blocks of MobileNet-
V2. Meanwhile, the average time taken in both steps across
50 epochs is also provided.

As shown in Table 6, compression takes around 465us.
The majority of this time is spent on collecting the quantile
of the feature map (Qk and Q1�k in Equation 2) for quanti-
zation. In contrast, the decompression is significantly faster,
taking only about 30us. This time slightly increases as more
bits are used for quantization. This is because decompres-
sion (Equation 3) spent most time accessing the memory.
Consequently, as we use more bits for quantization, more
memory is accessed, leading to a slight increase in time.

It is important to note that compression is a one-time
process to generate the cache, while decompression is re-
peated for every epoch. Therefore, compression does not

pose a major issue as long as decompression remains ef-
ficient. The final row of the table shows the average time
taken by both operations over 50 epochs. This duration is
almost equivalent to the time needed for decompression and
is considerably less than the overall training time.
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Method
Cache

Compression

Feature

Aug.

Latency

[ms]

Cache

[MB]

Accuracy [%]

CF10 CF100 Cars Flowers Food Pets

Baseline - - 3.87 664 94.21 76.28 75.79 93.02 77.52 87.52

No Feature Aug. 8 bit 7 1.34 898 93.94 75.15 73.90 92.47 76.44 86.75
No Compression 7 3 1.34 3589 94.64 76.35 77.66 93.71 78.58 87.71

Compression 8 bit 8 bit 3 1.34 898 94.49 76.35 76.87 93.49 78.50 87.76
Compression 4 bit 4 bit 3 1.33 450 94.60 76.60 77.63 93.49 78.86 87.60
Compression 2 bit 2 bit 3 1.34 226 94.43 76.33 77.15 93.40 79.14 87.98
Compression 1 bit 1 bit 3 1.35 113 92.34 69.85 72.78 90.13 75.81 86.59

Table 4. Experimental results for disabling or changing hyper-parameters in our two-stage on-device transfer learning method. “Feature
Aug.” is short for “Feature Augmentation”. Baseline refers to the vanilla single-stage training algorithm (Algorithm 1).

Method
Latency

[ms]

Accuracy

CF10 CF100

[25] 5.16 87.55 64.04
+Ours-8b 0.97 87.93 65.62

Table 5. Accuracy and latency for training the last two blocks
in MCUNet-5fps by combining our method with “quantization-
aware scaling” method in [25]. Best results are highlighted.

Quantization bit 8-bit 4-bit 2-bit

Compression [µs] 466.36 471.99 465.78
Decompression [µs] 34.83 30.23 28.40
50 Epoch Average [µs] 44.16 39.67 37.72

Table 6. Overhead for cache compression. Average run time is
calculated for 50 epochs, i.e., compression runs once and decom-
pression is repeated 50 times.

6. Related Work

On-device transfer learning with layer freezing: Train-
ing only the last few layers has been used in prior work.
For example, [25] selectively train several channels in the
convolutional neural networks and accelerate the BP pro-
cess (Step 4 in Algorithm 1) with gradient quantization.
[39] train the last 2 or 4 layers in ResNets and other neu-
ral networks and speed up BP with gradient approximation.
Indeed, by training only the last few layers, the computa-
tional cost for BP can be greatly reduced. However, as we
analysed in Section 4.1, the key bottleneck is actually the
forward propagation through the frozen sub-network (Step
2 in Algorithm 1) instead of BP. So although these methods
can accelerate the BP significantly, the end-to-end speedup,
including both forward propagation and BP, is quite lim-
ited. Our method, instead, targets directly the true bottle-
neck, forward propagation through the frozen sub-network,
and achieves significant end-to-end speedup.
Orthogonal On-device Training methods: Existing
works can be classified into two categories. The first cat-
egory [3, 6, 8, 15–17, 25, 34, 39, 42] targets efficiency in
BP and does not modify the neural network. For exam-

ple, [39] propose to accelerate BP by approximating the
gradients with their average value, which can simplify the
computation; [3, 6, 15, 16, 25, 34, 42] reduce the cost for
arithmetic operations (add and multiply) by quantizing the
gradient during BP; [17] reduce the memory consumption
by pruning the context (xA in Step (2) Algorithm 1). The
second category of approaches proposes to accelerate on-
device training by attaching and training only a small resid-
ual connections to the neural network [5, 35]. For example,
[5] attach small inverted residual blocks to the MobileNet-
like models. Though [5] can reduce the memory consump-
tion, it incurs larger computational cost. Since our method
is the first one introducing feature caching, it can be com-
bined with prior works for a better efficiency. Section 5.5
shows an example combining our method with [25], which
achieves 5.3⇥ higher speedup with 1.6% more accuracy.

7. Conclusion

In this paper, we have addressed the on-device transfer
learning for resource-constrained edge devices. Through
comprehensive profiling, we have identified that the pri-
mary bottleneck for on-device training lies in the forward
propagation through the frozen sub-network. As a result,
we have proposed a novel two-stage on-device training ap-
proach to overcome this bottleneck and enhance the effi-
ciency of on-device transfer learning. In Section 4, we have
demonstrated our method, which eases the bottleneck by
storing and reusing the output from the frozen sub-network.
We have also addressed the challenges of non-cachable fea-
ture maps and cache size explosion. To this end, we have
developed augmented feature caching and cache compres-
sion techniques, making our two-stage on-device transfer
learning method truly practical. Our extensive experiments
presented in Section 5 have demonstrated our method’s ef-
ficiency and broad applicability on a real edge device. In-
deed, our approach achieves a significant speedup while
maintaining accuracy comparable to baseline methods.
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