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A. Network architecture

The scene flow network is as a combination of the permu-
tohedral lattice from PermutoSDF [38], which provides a
latent vector for each 4D input position, and a shallow mul-
tilayer perceptron (MLP), which decodes the latent vector
into the scene flow. An overview of the network architec-
ture is presented in Fig. 6. The hash map of the permutohe-
dral lattice has L = 10 different levels, containing T = 218

feature vectors with a dimensionality of F = 2.
The MLP is four layers deep, with 32 nodes, and GELU

activation functions [16] in the hidden layers. For being
applicable to general scenes, FlowIBR does not utilize nor-
malized device coordinates (NDC) which are in the range
[0, 1], but rather unbounded cartesian coordinates, which
is the reason we use a linear activation for the final layer.
NDCs limit a method to forward facing scenes, but are com-
mon in NeRF based methods where the datasets often fulfill
this criterion. The network does not use batch normaliza-
tion, dropout or any other regularization not discussed in
this paper.

Images are synthesized by projecting the target rays
to eight temporally close source observations, which also
means projecting the rays to the eight respective times.

To show the effectiveness behind using a permutohedral
lattice instead of a common architecture, we conduct an ab-
lation by using a simple NeRF-like [28] ReLU MLP with
depth 5 and width 128 and a sinusoidal encoding of the in-
put. As shown in Tab. 4 the quality of the MLP and per-
mutohedral encoding are about the same, but the rendering
speed of the permutohedral encoding is substantially faster.

Table 4. Ablation of scene flow network Both methods were
trained for 45k steps which took 2:15h for the MLP and 2:05h for
the permutohedral encoding. The training parameters of the MLP
were found via grid search. Larger MLPs yielded only marginally
improvements while smaller ones decreased heavily in quality.
Metrics are averaged over the scenes Balloon1, Truck and Play-
ground.

Render Full Image Dynamic Regions
s/img PSNR SSIM LPIPS PSNR SSIM LPIPS

MLP 15.1 26.8 0.805 0.124 21.8 0.643 0.193
Permuto 11.8 26.4 0.799 0.118 21.5 0.631 0.197

B. Optimization

The network is trained over 60k steps with a batch size of
1024. Higher batch sizes are limited by the imposed restric-
tion of being able to train on a single GPU, lower batch sizes

lead to underfitting of the scene flow. Adam [19] is used
as the optimizer for training with β1 = 0.9, β1 = 0.999
and ϵ = 10−8. We experimented with a higher value for
β1 to increase the momentum in the running average to
compensate for only having one observation per training
step, but found results to be worse. The learning rate is
lflow ∈ [5 × 10−3, 1.0 × 10−4] for the flow network and
lGNT ∈ [10−3, 10−5] for the GNT [44] fine-tuning. Every
20k steps, the learning rate is decreased by 50%. To con-
tinue our approach of coarse-to-fine learning of the scene
flow, we follow the warm-up procedure of PermutoSDF
[38] and first initialize the coarse levels and continuously
include finer levels over the duration 12.5k training steps.
For pixels marked as dynamic, we reduce αslow by 50% to
encourage a large scene flow in those areas. Additionally,
we reduce the weight of the image reconstruction loss by
25% for potentially dynamic pixels, to decrease blurriness
in the image due to overfitting of the rendering backbone.

C. Depth estimation
Using the attention weights of the ray transformer, it is pos-
sible to infer a depth value for each pixel in the estimated
image [44]. This is possible, since the ray transformer will
put the most attention on the points sampled along the ray
that are contributing the most to the final pixel color, which
most likely corresponds to a solid surface. Therefore, depth
can be estimated by weighting the distance of points along
the ray by their respective attention weights. An example
for this is shown in Fig. 7. In future work, this could allow
for additional supervision with monocular depth estimation
methods.

D. Rendering at non-observed times
Rendering at continuous target times t̃ ∈ R outside the in-
tervals ∆t in which the scene has been observed, is facili-
tated by initiating the motion adjustment by first adjusting
the continuous times to the two neighbouring observations
times, with

t̃b =

⌊
t̃

∆t

⌋
(18)

as the previous neighbour, and

t̃f =

⌈
t̃

∆t

⌉
(19)

as the succeeding neighbour. With ⌊·⌋ we denote the floor
operator and with ⌈·⌉ the ceiling operator.
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Figure 6. Scene flow field architecture For estimating the scene flow for a position and time, the 4D pose is projected into the different
levels of the permutohedral lattice. The hashed positions of the surrounding vertices are used to extract latent vectors of length two from
the respective hash-map. Interpolating the latent vectors of the vertices yields the final latent vector describing the local properties of the
scene flow field at that level. The distinct latent vectors from each layer are then concatenated and inputted into a shallow 4-layer MLP
with a width of 32. The MLP functions to decode the latent information to the actual scene flow.

(a) Ground truth (b) Rendering (c) Depth Estimation

Figure 7. Depth estimation. After rendering the target image (b), the distances of points along the camera ray are weighted by the
corresponding ray attention weights and then summed to a depth estimate (c).

Using a scaling factor, given by:

δb =
t̃

∆t
− t̃b, (20)

for the backward time, and respectively:

δf = t̃f − t̃

∆t
, (21)

for the forward time to then displace the ray points from
the target time t̃ to the adjacent discrete observation times.
With this, forward time adjustments can be represented as:

pt̃→t̃f
= pt̃ + δbSf (pt̃, t̃b)− δfSb(pt̃, t̃f ) (22)

and backward time adjustments as:

pt̃→t̃b
= pt̃ + δfSb(pt̃, t̃f )− δbSf (pt̃, t̃b) . (23)

Following this initial step, the motion adjustment can con-
tinue as described for discrete times.

E. Images sequences

In Fig. 8 we present image sequences of view interpolation
for three different scenes. Overall, the method is able to
consistently interpolate between the different target view-
points without the sudden appearance of artifacts or flicker-
ing of the scene content. Nevertheless, the further the target
viewpoint gets away from the nearest source observation,
the more the dynamic content starts to blur because of the
missing information from that perspective.

F. Societal Impact

We anticipate several potential impacts of our proposed
method, and similar methods, on society in the future. Pri-
marily, we present a method to decrease the necessary train-
ing time for novel view synthesis methods for dynamic
scenes and allow training on a single consumer-grade GPU
which has the potential to democratize research capabili-
ties, alleviating the dependency on specialized hardware.
While our approach relies on the accumulated knowledge
from pre-training, it is imperative to note that any biases



present in the used datasets might propagate through our
system. However, as the essence of our research is to syn-
thesize views that are as faithful to the ground truth as pos-
sible, we are actively addressing this challenge to ensure
accuracy and integrity of our results.



(a) Scene: Balloon 2 (b) Scene: Umbrella (c) Scene: Jumping

Figure 8. Image sequences: Bullet time Three image sequences of bullet time renderings, where the viewpoint is continuously changed
while the time stays constant. Viewpoints are on an elliptical trajectory along the center of the camera rig.
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