ELSA: Exploiting Layer-wise N:M Sparsity for Vision Transformer Acceleration

Supplementary Material

1. Appendix
1.1. Visualization of Search Results

In our study, we visually compare the sparsity levels iden-
tified by various algorithms for the Swin-Transformer, as
depicted in Fig. 1. Observations from Fig. 1(b) and 1(c)
reveal hierarchical trends in the N:M sparsity configura-
tion for compression targets (i.e., weight matrices of linear
layers) identified by DominoSearch [5] and ER [4]. Specif-

ically, these trends show lower sparsity (applying a denser
choice, e.g., 4:4 sparsity) in the layers of the initial blocks,
with higher sparsity adopted in the deeper blocks. This
pattern aligns with the pyramid-like structure of the Swin-
Transformer, where the size of the linear layers increases
progressively deeper into the model.

In contrast, the visualization of sparse configuration iden-
tified by our proposed ELSA framework, shown in Fig. 1(a),
unveils a distinctive pattern. Here, higher sparsity (e.g., 1:4)
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Figure 1. Visualization of sparsity configuration identified by different algorithms for the Swin-B model.



is applied to the initial blocks, while lower sparsity is se-
lectively employed for the larger-sized linear layers in the
model’s middle and deeper sections. This strategic applica-
tion of sparsity by the ELSA framework leads to a notable
0.8% improvement in Top-1 accuracy compared to Domi-
noSearch, underscoring the critical importance and benefits
of meticulously selecting sparsity levels for each compres-
sion target. Furthermore, it showcases the effectiveness of
our ELSA framework in navigating these decisions.

1.2. Results on CNNs
Table 1. Experimental results of the proposed ELSA methodology

on ConvNext-S. Accuracy denotes the Top-1 accuracy measure on
the ImageNet-1K validation set.

Model ‘ FLOPs Accuracy
ConvNext-S 8.7G 82.8%
ELSA-ConvNext-S-2:4 | 4.3G (1.00x) 82.3%
ELSA-ConvNext-S-N:4 | 3.9G (1.11x) 82.2%
ELSA-ConvNext-S-N:4 | 3.5G (1.25x%) 82.0%
ELSA-ConvNext-S-N:4 | 3.1G (1.41x) 81.6%
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Figure 2. Comparisons of ELSA with DominoSearch on ConvNext-
S

In this expanded investigation, we have applied the ELSA
framework to the ConvNext-S model of convolution neural
networks (CNNs) to explore its integration. Our goal is to
demonstrate the comprehensive utility and effectiveness of
the ELSA framework, showcasing its compatibility not only
with vision transformers (ViTs) but also with a broader range
of neural network architectures, including CNNs.

To validate this premise, we have conducted experiments
on ConvNext-S, a notable advancement in CNN architecture.
The experimental results in Table | confirm that the ELSA
framework effectively adapts to the ConvNext-S model, sig-
nificantly enhancing its computational efficiency while main-
taining accuracy. This result is particularly significant, high-
lighting the versatility of the ELSA framework in accom-

modating various neural network paradigms, despite the
operational distinctions between CNNs and ViTs. Further-
more, the V: M sparse networks searched by ELSA sit on the
Pareto frontier, outperforming DominoSearch, as depicted
in Fig. 2.

1.3. Ablation Study and Analysis

In this section, we present an ablation study analyzing the
impact of our proposed supernet construction and sampling
strategy on the resulting supernet quality. We conduct the
experiment on the DeiT-S backbone. We visualize the result
using the Pareto frontier analysis as shown in Fig. 3.

Effectiveness of Two-step Sampling Strategy In this ab-
lation experiment, we adopt the vanilla sampling strategy [1],
in which each sparse configuration is sampled uniformly to
train a baseline supernet. The significant benefits of our
two-step sampling strategy are illustrated in Fig. 3. Here,
we can see that the proposed two-step sampling strategy
can yield sparse subnetworks with superior performance at
different levels of computation cost. Notably, at around the
1.6G FLOP mark, we can observe a nearly 1% improvement
in Top-1 accuracy.
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Figure 3. Pareto frontier of subnets randomly sampled from DeiT-S
supernet trained with different sampling strategy

Table 2. Comparison of different estimators (supernet versus dense
model)

Model ‘ FLOPs Estimator Accuracy
ELSA-DeiT-B-N:4 7.0G  Dense model 81.0%
ELSA-DeiT-B-N:4 7.0G Supernet 81.5%

Effectiveness of Supernet in Guiding Searching To
demonstrate the benefit of using supernet, we run the evo-
lutionary search and evaluate sparse configurations using



lightweight metrics, i.e., the accuracy of the sparse NN, be-
fore fine-tuning. As in Table 2 below, the more accurate
configuration ranking offered by the supernet can help iden-
tify a better sparse configuration with 0.5% higher accuracy.

Quality of Trained Supernet We aim to construct a high-
quality sparse supernet, capable of empowering sparse net-
works within the design space needed to achieve a perfor-
mance level close to fine-tuned networks. To evaluate our
proposed sparse supernet, we employ the training paradigm
for N:M sparse networks as ASP [3], refining the perfor-
mance of sparse subnets through fine-tuning, starting with
pretrained models. Each sparse subnet is meticulously fine-
tuned for 150 epochs, maintaining consistent settings for
knowledge distillation throughout the process. The com-
parison results are presented in Table 3. We note that the
sparse subnets derived from our supernet demonstrate only
a marginal decline in accuracy, ranging from 0.1% to 0.2%
across various ViT backbones. These findings emphasize the
effectiveness of our supernet training methodology. Through
a single training cycle, a broad spectrum of sparse networks
can be efficiently generated and inherited from our supernet,
substantially reducing the fine-tuning costs.

Table 3. Comparison of 2:4 sparse subnets with inherited weights
and 2:4 finetuned from pretrained weights (150 epochs)

Inherited Fine-tuned
Model | FLOPs from ELSA  from pretrained
DeiT-S 2.5G 79.1% 79.2%
DeiT-B 9.2G 81.6% 81.8%
Swin-S 4.6G 82.8% 82.9%
Swin-B 8.0G 83.1% 83.3%

1.4. Quantization results

Our analysis demonstrates that the ELSA framework, com-
bined with quantization methods, maintains the inherent
orthogonal characteristics between layer-wise sparsity and
quantization compression. According to the results presented
in Table 4, it is clear that the reduction in accuracy between
compressed ELSA models before and after quantization is
similar to that of the dense model before and after.
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