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Supplementary Material

A. Overview

In this supplementary material, we provide additional de-
tails and experimental results for our proposed MA-AVT.
In summary, the following items are presented.

• Details of the mathematical notations used in the main
paper.

• Additional implementation details used in model training.
• Additional quantitative results for experimental study.
• Qualitative analysis of the model performance.

B. List of Notations

We provide a detailed list of all symbols, data types, and
corresponding feature dimensions in Table 6.

C. Implementation Details

We extract the visual frames with 1 fps in all experiments.
We use the same spatial resolution of (224 × 224) for all
images. We use the audio segment length of 1s for AVE
dataset, 5s for VGGSound dataset, and 3s for Crema-D
dataset. In particular, we use the whole 10s event duration
in AVE dataset with 10 audio-visual pairs representing 1s
duration each following prior work [15]. The VGGSound,
and Crema-D dataset are used with single audio-visual pair
from each video as reported in prior work [23]. For audio
processing, we use librosa and torchaudio packages with
PyTorch. We set the same learning rate of 0.01 across all
trainable parameters with a batch size of 256. Local self-
attention (LSA) processed learnable tokens are merged with
patch tokens after applying position embeddings to patch
tokens. We use multi-headed attention operations in LSA
modules with 8 attention heads. In blockwise contrastive
loss, we use separate projectors after each block to reduce
representation variance between audio and visual modali-
ties. We use simple MLP layers with 256 output nodes as
projector modules. We note that contrastive loss is only
used for training and all of these projector units are dis-
carded in the test phase. Therefore, we ignored the param-
eter count of these projector units in the reported trainable
parameter counts. Only the additional trainable parameters
that are used in the testing phase are considered, following
prior work [15]. We use temperature 0.07 for calculating
contrastive losses in all cases during training.

D. Additional Experimental Study

We present some additional experiments to compare and an-
alyze the performance of MA-AVT.

D.1. Comparison with different ViT backbones

We compare the performance of MA-AVT with different
ViT backbones as reported in Table 7. We use LAVISH [15]
as the baseline method for parameter-efficient audio-visual
transformers. We only report the accuracy on AVE dataset
for this analysis. We use ImageNet pretrained frozen trans-
former encoders for both LAVISH and MA-AVT. In gen-
eral, MA-AVT achieves significant accuracy improvements
over LAVISH with comparable parameter efficiency. To be
specific, MBT uses comparatively less trainable parameters
than LAVISH with ViT-Tiny and ViT-Large encoders, while
achieving +3.6, and +1.5 higher accuracy, respectively.
With ViT-Small, MA-AVT uses marginally higher trainable
parameters than LAVISH (1.81M vs. 1.65M) that achieves
+2.7 higher accuracy. In case of ViT-Base encoders, MA-
AVT incorporates slightly more trainable parameters than
LAVISH (7.1M vs. 4.7M) for achieving +2.6 higher ac-
curacy. For fair comparison, we incorporate more trainable
parameters into LAVISH by using deeper convolution in
intermediate adapter modules to increase model capacity
(∼ 7.3M). Nevertheless, MA-AVT maintains superior per-
formance over the larger variant of LAVISH with ViT-Base
encoders.

D.2. Effects of number of learnable tokens

We analyze the effect of different number of learnable to-
kens. As a rule of thumb, we maintain the same number
of tokens in all three groups, i.e. audio, visual, and shared
tokens. The results are given in Table 8. We report the ac-
curacy on AVE dataset for this analysis. We use ViT-Base
frozen encoders for both audio and visual modalities. The
best performance is achieved with 5 tokens in all three
groups. With increasing number of tokens, the complexity
of the network increases for expensive cross-attention op-
erations in transformer building blocks that results in lower
accuracy gain. Hence, we use 5 learnable tokens in each
group for all other experiments.

D.3. Comparison of throughput

In Table 9, we compare the throughput of MA-AVT with
other competitive transformer based methods, such as
MBT [20] and LAVISH [15]. We use the same A5000 GPU



Table 6. Different notations used to describe the operations of MA-AVT. We categorize the notations into three groups.

Group Description Notation Datatype Dimension
Data Parameters complete dataset D - -

total audio-visual pairs N scalar R0

image frame v vector R3×H×W

audio spectrogram a vector RF×T

audio patch tokens P 0
a vector Rm×d

visual patch tokens P 0
v vector Rn×d

visual token embedding after k block Ek
v vector R(m+nv+ns+2)×d

audio token embedding after k block Ek
a vector R(n+na+ns+2)×d

Model Parameters learnable audio prompts za vector Rna×d

learnable visual prompts zv vector Rnv×d

learnable shared multimodal prompts zs vector Rns×d

learnable foreground class prompt zf vector R1×d

learnable background class prompt zb vector R1×d

audio prompt LSA unit Aa(·) operator -
visual prompt LSA unit Av(·) operator -
shared prompt LSA unit As(·) operator -

Loss foreground-background loss Lbf scalar R0

contrastive loss at kth block Lk
cnt scalar R0

audio-to-visual contrastive loss Lv→a scalar R0

visual-to-audio contrastive loss La→v scalar R0

total loss L scalar R0

background label yb vector R1×1

foreground label yf vector R1×C

total number of classes C scalar R0

Table 7. Comparison with different ViT encoders. We use ImageNet pretrained frozen (F) ViT encoders in all cases. * denotes our
improved implementation. We only report the accuracy on AVE dataset. In all ViT backbones, MA-AVT achieves significant accuracy
improvements over LAVISH with comparable parameter-efficiency.

Models Image
Encoder

Audio
Encoder

Total
Params (M)

Trainable
Params (M) Accuracy(%)

LAVISH [15] ViT-Tiny (F) ViT-Tiny (F) 10.39 0.65 61.8
MA-AVT (ours) ViT-Tiny (F) ViT-Tiny (F) 10.20 0.46 65.6

LAVISH [15] ViT-Small (F) ViT-Small (F) 31.72 1.65 71.4
MA-AVT (ours) ViT-Small (F) ViT-Small (F) 31.88 1.81 74.1

LAVISH [15] ViT-Base (F) ViT-Base (F) 107.2 4.7 75.3
LAVISH* [15] ViT-Base (F) ViT-Base (F) 110.4 7.3 75.8

MA-AVT (ours) ViT-Base (F) ViT-Base (F) 110.2 7.1 77.9

LAVISH [15] ViT-Large (F) ViT-Large (F) 340.1 14.5 78.1
MA-AVT (ours) ViT-Large (F) ViT-Large (F) 338.4 12.6 79.6

for measuring the throughput. We note that MA-AVT gains
2x and 1.5x speedup over LAVISH for ViT-Large and ViT-
Base encoders, respectively. In LAVISH, residual adapters
are used in intermediate blocks for cross-modal fusion and
modality alignment. However, this residual operation re-
duces the throughput in practice. In contrast, the learnable
tokens in MA-AVT directly operate on cross-attention lay-
ers of frozen transformer rather than relying on residual
adapters that results in almost 2x speedup. However, the

integrated local self-attention (LSA) modules increase the
computation burden compared to fully-tuned MBT which
operates without such additional blocks. Moreover, addi-
tional tokens in MA-AVT increase the computational cost
in each cross-attention layer. As a result, MBT is faster
than MA-AVT for both ViT-Base and ViT-Large encoders.
Nevertheless, MBT is parameter hungry since it relies on
fully-tuning and pre-training of the large transformer en-
coders. Therefore, MA-AVT provides considerable speedup



Table 8. Effects of number of tokens. We use the same number
of tokens in all three groups. Only accuracy in AVE dataset is re-
ported. The best accuracy is achieved with 5 learnable tokens.

Number of Tokens Accuracy(%)
2 76.3
5 77.9

10 77.5
15 77.1

Table 9. Throughput comparison. We use ViT-Base and ViT-
Large to compare throughput. We use the same A5000 GPU to
measure the throughput. MA-AVT is nearly 2x faster than LAV-
ISH. However, MBT is the fastest among three.

Model Image
Encoder

Audio
Encoder Samples/Sec.

MA-AVT (ours) ViT-Base ViT-Base 250
LAVISH [2023] ViT-Base ViT-Base 125

MBT [2021] ViT-Base ViT-Base 400
MA-AVT (ours) ViT-Large ViT-Large 85
LAVISH [2023] ViT-Large ViT-Large 55

MBT [2021] ViT-Large ViT-Large 218

with higher accuracy while maintaining parameter effi-
ciency comparable to LAVISH (Table 7).


